


Abstract—Significant portion of digital design flow runtime is

related to the physical design stages. Partitioning is a critical

stage of physical design and its quality and runtime has

considerable impact on physical design efficiency. In this paper,

a new parallel partitioning algorithm is proposed and it is

suitable for GPU system. In the proposed algorithm, coarsening

phase of the partitioning is accelerated by parallelizing on GPU.

Experimental results show that runtime can be improved up to

7x for attempted circuit with negligible quality degradation.

Index Terms—GPU programming, multilevel partitioning,

parallel algorithms, physical design.

I. INTRODUCTION

Integrated circuits complexity has been grown in last

decades with exponential rate and it is predicted that this flow

will be continued in future years [1], [2]. This exponential

growth of modern circuits is an important challenge for

computer-aided design tools because their runtime will be

increased dramatically coping with this complexity growth

[3], [4]. On the other hand, the gap between complexity

growth and productivity of CAD tools (i.e. productivity gap)

will be increased for new ultra-large systems such as

system-on-chips and multi-core systems.

Considerable portion of total design time is related to

physical design stage. Physical design consists of some

important steps such as partitioning, floor-planning,

placement and routing. In Partitioning phase, design graph is

partitioned to some sub-graphs to facilitate rest of algorithms.

Floor-planning find location and shape of large blocks. Exact

location and orientation of the standard cells are fixed in

placement step and finally, the geometry of interconnects will

be determined in routing stage. A bundle of physical design

algorithms are NP-complete and NP-hard [5], [6]. Graph

partitioning is a critical sub-stage of physical design. Quality

and execution time of partitioning stage has considerable

impact on total quality of design and total execution time of

physical design flow. Therefore, we focused on parallelizing

the graph partitioning stage to improve its runtime regarding

to the partitioning quality.

Many contributions are reported on parallelizing the CAD

algorithms on multi-processor systems in the last years of 90's

Manuscript received September 5, 2016; revised December 12, 2016.

Atefe Taheri was with the Electronic and Computer Engineering

Department, Shahid Beheshti University, Tehran, Iran (e-mail:

atefetaheri1439@gmail.com).

Ali Jahanian is with Electronic and Computer Engineering Department,

Shahid Beheshti University, Tehran, Iran (e-mail: jahanian@sbu.ac.ir).

Behin Molaie is with the Computer Engineering Department, Sharif

University of Technology, Tehran, Iran (e-mail: molaie@ce.sharif.edu).

decade. Most of the proposed algorithms were used in

multi-processor and multi-computer systems that do not

equipped to efficient shared memories and communication

between processors, and inter-thread communications could

be done only with message passing protocol. Another

drawback of the previous algorithms is that they require

expensive hardware resources and do not efficiently executed

on ordinary personal computers.

Based on the previous researches which will be introduced

in Section II, more than half of the partitioning algorithm

runtime is spent in coarsening phase. Therefore, we focused

on accelerating this phase of the algorithm in this paper. In

this paper, a GPU-optimized parallel algorithm is proposed to

reduce execution time of the coarsening phase of the

hyper-graph partitioning without considerable quality

degradation. Our algorithm is a combination of sequential and

parallel phases. We analyzed the sequential algorithm and

parallelized more time consuming section over the underlying

GPU architecture. The important point is that the

parallelization should have as less as possible negative impact

on the quality of partitioning. In the proposed algorithm,

circuit netlist database is divided into n sections that are

executed as parallel threads on GPU platform. Each partition

will be coarsened in separated environment and the result sets

will merge together on CPU.

This paper organized as follows. Section III describes the

concept and existing algorithms for Multi-Level Hyper-Graph

Partitioning and the coarsening phase is illustrated in Section

IV. The article continues to describe the GPU programming

in Section V and Section VI describes the proposed

coarsening algorithm. Section VII describes the experimental

results and finally, Section VIII concludes the paper.

II. LITERATURE REVIEW

In last few years computing power of the main processing

units has not grown in comparison with growth of cells count

in the digital circuits. So the run time of the algorithms has

increased. On the other hand, Graphics Processing Units

revolutionized the general purpose algorithms performance

with their high computing power and low cost. These days

many of the software companies are trying to improve their

software performance using GPUs. Our idea was to create a

parallel GPU based algorithm to run the partitioning phase of

the design flow on a high performance GPU to speed up the

design process.

Actually, in these days, there are many [7] applications in

scientific computing for hypergraph partitioning. Foad

Lotfifar and Matthew Johnson presented a new partitioning

method for hypergraphs. They innovated a sequential

Parallelizing the Coarsening Phase of Hyper-Edge

Partitioning on the GPU Platform

Atefeh Taheri, Ali Jahanian, and Behin Molaie

250

International Journal of Computer Theory and Engineering, Vol. 9, No. 4, August 2017

DOI: 10.7763/IJCTE.2017.V9.1146

multi-level hypergraph partitioning algorithm. This algorithm

uses a technique of rough set clustering to categorize the

vertices of the hypergraph. They have paid attention so their

algorithm doesn't make a greedy decision. In fact, this

algorithm makes a trade-off between local decision and global

decision. Results show that the algorithm makes better

partitioning quality.

Hairong Liu [8] and his colleagues present a new

partitioning framework. This framework is based on

divide-and-conquer. Their new partitioning framework is

called dense subgraph partitioning (DSP). DSP has properties

such as revealing all meaningful clusters and etc. Moreover,

to presenting a new framework they established a relationship

with the densest k-subgraph problem (DkS). The results show

that this approach is suitable for parallel processing because it

is time-efficient and memory-friendly.

Many contributions are addressed in last few years to boost

the performance of CAD problems using high performance

GPUs. Authors of [9] have developed a parallel algorithm

called mPL to fit on GPU so they can speed up the time they

need to solve placement problems. mPL is an analytical

global placement method and it can find a reasonable solution

in a little time.

In [10] parallelizing the wire-length estimation on GPU

with CUDA structure is presented. Authors of [10] created a

parallel algorithm for calculating the wire-length of a solution

on GPU and they got 160x speed up over a serial CPU

algorithm.

Karypis and LaSalle implements the partitioning a graph on

multi core systems using OpenMP and MPI [11]. They

developed an algorithm to run on multithreaded CPU

environment and they get some good result on speed up and

memory usage and partitioning quality.

Authors of [12] proposed a parallel pathfinder global

routing algorithm that is the most used FPGA routing

algorithm. They introduce a parallel method to run on

multi-core systems mainly to improve the runtime of the

routing phase. They show with their experimental results that

the runtime of the routing phase. They show with their

experimental results that the run time can be reduces by

47.8% and 70.9% with dual and quad core systems.

In [6], a parallel Simulated Annealing algorithm on

multi-core systems is proposed. Simulated Annealing is a

known method to solve the optimization problems since 1953.

The algorithm is used for complex and nonlinear

combinatorial optimization problems. The algorithm searches

the search space and finds a near optimal solution. The

algorithm is taken a long time to finish if the search space is

large. They show by their experimental results that they can

improve the run time to 32% on average with considering the

quality of the solution.

Caldwell et al. [13] introduced a new algorithm on

multilevel partitioning. In their approach they introduce a

technique of move-based hypergraph partitioning heuristic

and they evaluated the performance of these heuristic in the

context of VLSI design their first result was software

architecture consist of 7 different reusable components. The

formula allows a flexible, efficient and accurate assessment of

the practical implications. Their second result was an

assessment of the modern context for hypergraph partitioning

research for VLSI design applications.

The biggest limitation of the algorithms mentioned before

is the runtime to find a good answer. Another problem is that

existing methods need a high resource environment to run.

III. MULTI-LEVEL HYPERGRAPH PARTITIONING

Hypergraph partitioning is an important problem in many

engineering and optimization applications such as VLSI

design flow. The main problem is to partition the nodes of a

hypergraph into k different sets such that cut size of

partitioning is minimized and balance criteria is not violated.

In other words, this problem is an optimization problem

whose goal is to minimize the cut size and its condition is the

balancing rule. Hypergraphs are generalization of graphs that

each edge can be a hyper edge. A hyper edge is an edge that

connects a set of vertices (two or more vertices).

Hyper edge partitioning is an NP-Hard problem in general

situation and an optimal solution is not viable practically for

large circuits. However, many heuristic and randomized

algorithms are developed for this problem to give a

reasonable answer because of the importance of this problem.

As mentioned in the previous section, HMetis [14]

hypergraph partitioning and it uses a multilevel hyper edge

paradigm. HMetis is a multi-level partitioner in which the

main objective is that local cut size of each level is considered

corresponding with the cut size of the next levels. In other

means, HMetis is planned to use the global cut size

information inclined with the local connection information of

the netlist.

HMetis uses the hypergraph representation of the netlist in

which nodes are standard cells and edges show the nets of the

circuit. HMetis partitioning algorithm has three basic phases:

A. Coarsening Phase

In this phase highly connected hypergraph nodes are

merged (coarsen) together and super nodes are generated.

Each super-node consists of the nodes that have more

connectivity and they should be clustered in a cluster. HMetis

coarsen the hypergraph recursively until the number of

super-nodes goes to 200 or less vertices in the hypergraph.

B. Initial Partitioning Phase

After the coarsening phase, hypergraph is reduced and a

classical partitioning algorithm can be applied to partition the

coarsened hypergraph into 2 parts. HMetis uses the

Fiduccia-Mattheyses [15] algorithm to bisection the

hypergraph. At the end of this phase, coarsened hypergraph is

partitioned into two balanced partitions.

C. Uncoarsening and Refinement Phase

In this phase, the partitioned graph is un-coarsened and

each super-node is expanded into basic nodes. After

coarsening of each super-node, the balancing of the

partitioned graphs may be violated. Therefore, a refinement

algorithm should be applied in each level of the un-coarsening

to balance the partitioned graph.

Fig. 1 shows the process of HMetis algorithm. In this figure,

the various phases of the multilevel graph bisection. In the

coarsening phase, the size of the graph is successively

251

International Journal of Computer Theory and Engineering, Vol. 9, No. 4, August 2017

solutions and tools are proposed by Karipis et al [14] on

decreased and the initial partitioning phase, a bisection of the

smaller graph is computed and the Uncoarsening phase, the

bisection is successively refined as it is projected to the larger

graphs.

G0

G1

G2

G3

GS

G0

G1

G2

G3

C
o
ar

se
n
in

g
 p

h
as

e

U
ncoarsen

ing ph
ase

Initial partitioning phase

Fig. 1. HMetis hyper edge coarsening process.

As mentioned before, HMetis developed in the multilevel

framework. The algorithm is very fast and has good results

with high quality partitioning. Hypergraphs with over

100,000 nodes can be bisected in a few minutes. The most

time consuming phase of the HMetis is coarsening phase.

Therefore, we focused on accelerating this phase of the

algorithm in this paper. The next subsection, describes this

phase in more details.

IV. COARSENING PHASE

In the coarsening phase, the goal is creating a hypergraph

with smaller vertices to facilitate the initial partitioning phase.

In general case, a hypergraph with more than 1000,000

vertices should be reduced to a hypergraph with fewer than

200 vertices. Coarsening process can be performed by three

different methods as follows:

A. Edge Coarsening

In this method, a hyper edge with more than two vertices

are selected and two of its vertices are combined together. In

iteration a coarser graph with "v-1" vertices will be

constructed. This process is shown in Fig. 2.

Fig. 2. Edge coarsening.

B. Hyper Edge Coarsening

In this method, hyper edges with fewer vertices are selected

and their vertices are combined together to create a coarser

graph and this coarsening is repeated until the goal of 200

vertices is achieved. This method is shown in Fig. 3.

Fig. 3. Hyper edge coarsening.

C. Modified Hyper Edge Coarsening

In this method process is performed as hyper edge

Coarsening method but after coarsening hyper edges, all the

other vertices that are not combined with any other vertex,

will be combined together. This technique is shown in Fig. 4.

We used the Hyper Edge Coarsening technique in our

implementations.

Fig. 4. Modified hyper edge coarsening.

V. PROGRAMMING ON GPU

To use the power of GPU in a general purpose application a

framework or a toolkit is required to provide the

programming, debugging and testing capabilities. In this

section, we provide a brief overview of these tools from early

day until now. In general, this field is quickly advancing and

we advise the readers to check the internet for newest

resources [16].

A. SH

It is an open source project to write C++ programs on

GPUs. This tool is an independent platform and supports

many kinds of graphics cards. The language of the main

program could be anything but the language of the source

code of the GPU program should be in C++. In early days it

was a great tool to use the performance of the GPU to

accelerate general purpose applications [17].

B. Direct Compute

Microsoft invented its own tool to use all the DirectX

supported GPUs in Windows Vista, Windows 7 and Windows

8 for general purpose programming. Microsoft Direct

Computer is an API to program on GPU and it was released

with the DirectX 11 but it is compatible with DirectX 10

devices [18].

C. OpenCL

Open Computing Language known as OpenCL is a

programming framework for writing programs that can run on

heterogeneous platforms consisting CPUs, GPUs, DSPs and

other processors. The language of programming is based of

C99 standards. This language is used to write kernels

(Functions that execute on OpenCL Processors) and there is

and API to define and control the run of the whole program.

We can write programs that are task-based parallel or data

based parallel with OpenCL. Currently Many Processors are

OpenCL supported [19]. They can execute OpenCL kernels

on them.

D. Nvidia CUDA

CUDA (Compute Unified Device Architecture) is a

programming framework created by Nvidia to write parallel

applications that run on CUDA enabled GPUs [20]. CUDA

unleashed some virtual instruction sets and memory for

parallel computation in CUDA GPUs. CUDA framework

enables developers to write programs that run on GPUs. The

252

International Journal of Computer Theory and Engineering, Vol. 9, No. 4, August 2017

main difference of this framework is that the programming is

easy and it is in higher performance compared to other

frameworks. The CUDA framework compiler is available for

C, C++ and FORTRAN languages. NVIDIA's compiler for

C/C++ CUDA is a llvm based compile called nvcc. CUDA is

provided in Microsoft Windows, Linux and Mac OS. The

SDK and drivers are downloadable in the NVIDIA's

developer's website. All new Nvidia GPU's are CUDA

compatible. There are 3 lines of NVIDIA GPU's known as

GeForce, Quadro and Tesla. CUDA Binaries are compatible

to future cards but some instructions are not available in older

GPUs [15].

VI. PARALLELIZING THE COARSENING PHASE OF

HYPERGRAPH PARTITIONING ON GPU

As mentioned before, partitioning is a widely used

algorithm in many of physical design tools. HMetis is a

high-quality and fast partitioning algorithm that is known as

the best hyper-graph partitioner in various applications such

as VLSI-CAD. One of the most time-consuming parts of this

algorithm is coarsening phase. To parallelize coarsening

phase and implement it on GPU, the circuit hypergraph

database should be distributed on GPUs. After this step, all of

these parts must send to GPU cores for processing and then,

GPU cores will do the coarsening of all parts in parallel. It is

noting that all parts will be coarsened separately. Since all of

the nodes for any part chosen randomly and coarsening

operation can be done on the basis of connection between

nodes, we must pay attention it is possible that there are a few

connections or no connection at all between nodes. Other

point we must consider is that some edges eliminated in the

partitioning phase. These edges must affect in the final result

of the coarsening phase.

It is worth noting that the quality of the coarsened graph in

GPU is lower than the coarsened graph in CPU normally

because, parallel coarsening of the GPU cores may tend to

incorrect decisions, because the graph is partitioned into

smaller sub-graphs and each core doesn't have a global view.

We divided the netlist based on its nets to divide the netlist

with lower level of connections. As will be seen in

experimental results, this database distribution makes good

results with considerable runtime improvement. Fig. 5 shows

the parallelized algorithm.

Parallel Coarsening pseudo code

Step 1 Read input hyper graph g.

Step 2 Partition g into n parts.

Step 3 Create n sub-graphs of g.

Step 4 FOR each sub graph gi of n sub graphs DO

Step 4-1 Copy sub graph gi into GPU global memory.

Step 5 Call GPU kernel to parallelize following tasks.

Step 5-1 While (number of vertices in this part > k) LOOP

Step 5-1-1 Find an edge e in sub graph.

Step 5-1-2 Merge all vertices e.

Step 6 Wait for all kernels to complete.

Step 7 Take back all the results from GPU global memory.

Step 8 Merge all coarsened sets in g.

Step 9 While the number of vertices in g is greater than 200 LOOP

Step 9-1 Find an edge e in g.

Step 9-2 Merge all vertices of e.

Step 10 Write the output.

Fig. 5. Parallelized coarsening algorithm.

VII. EXPERIMENTAL RESULTS

We implemented the proposed parallel algorithm in C++

using CUDA platform on Nvidia Geforce 295 GTX GPU

system. Eleven benchmark are selected from IWLS suite [21]

to evaluate the quality and runtime speedup of the proposed

algorithm. Statistical information of the attempted

benchmarks is shown in Table I.

TABLE I: GENERAL CHARACTERISTICS OF ATTEMPTED BENCHMARKS

OVERALL

Benchmark Cell Count Net Count

S15850 685 685

S13207 1219 1214

SPI 3227 3274

S38584 6724 6704

S35932 7273 7277

S38417 8278 8220

Mem_ctrl 11440 11398

Wb_conmax 29034 28739

B17 37117 37102

B17_1 37383 37369

DES_perf 98341 98391

TABLE II: EXECUTION TIME AND QUALITY OF COARSENING ON CPU

PLATFORM

Benchmark Super Node Internality Runtime (s)

S15850 188 68% 0.049

S13207 190 81% 0.131

SPI 200 95% 0.129

S38584 200 98% 0.426

S35932 200 96% 0.587

S38417 200 98% 0.611

Mem_ctrl 199 99% 1.154

Wb_conmax 200 99% 6.382

B17 200 99% 10.132

B17_1 200 99% 10.192

DES_perf 200 99% 61.367

We proposed and implemented several methods for initial

partitioning graph node for each GPU thread. The simplest

idea was to assign the nodes randomly to each thread. The

second approach was to divide nodes based on the occurrence

of the nodes in the input file. Another idea was to pick nodes

based on nets and its neighbors. The last idea was to use BFS

algorithm to pick nodes for each thread. As we tested, we

figured out that the method to divide nodes based on the input

file wat the best one, because netlist files are generated such

that the connected nodes are neighbors in the file and it is not

random.

As mentioned before, the quality of a parallelized

algorithm may be degraded because each GPU core should

decide based on its local information. Therefore, quality of

the coarsening is an important parameter that must be

considered. In other words, in addition to the low execution

time, coarsening phase should have considerable quality

results. The quality of a coarsened graph does not have any

standard measure. We defined a new metric called internality

to evaluate the quality of a coarsened graph. Average

Internality of graph g is defined as the average of internality of

each hyper edge of the graph.

253

International Journal of Computer Theory and Engineering, Vol. 9, No. 4, August 2017

Internality()

AverageInternality()
| |

e

e

g
g




 (1)

Internality of an edge is formulated as degree of locality of

the nodes in the edge. For example, consider an edge with 2

vertices. If both of them are coarsened together the internality

is 100% and if they are in different sets the internality is 0%. If

an edge with 3 vertices has 2 vertices in a set and one vertex

alone the internality is 33%. The internality of an edge can be

computed as:
2

in-groups

2

| | | |

Internality() 100
| | | |

v

v e

e
e e





 



 (2)

TABLE III: EXECUTION TIME AND QUALITY OF COARSENING ON GPU PLATFORM

Benchmark
PART8 PART16 PART32

Super Node Internality Runtime (s) Super Node Internality Runtime (s) Super Node Internality Runtime (s)

S15850 191 62% 0.218 193 63% 0.156 190 69% 0.14

S13207 195 77% 0.483 192 79% 0.25 189 72% 0.156

SPI 200 91% 3.12 200 92% 1.546 199 94% 0.789

S38584 198 95% 14.38 199 94% 6.418 1999 94% 2.879

S35932 199 91% 16.638 196 88% 7.058 197 96% 2.632

S38417 198 93% 20.673 193 95% 9.475 199 97% 3.972

Mem_ctrl 198 94% 40.641 191 93% 19.562 200 95% 9.908

Wb_conmax 200 95% 259.638 200 95% 108.769 200 96% 43.589

B17 200 97% 423.564 200 98% 198.812 200 98% 87.68

B17_1 196 93% 425.792 200 95% 199.171 200 97% 87.826

DES_perf NR NR NR 200 99% 787.644 200 99% 333.079

TABLE IV: EXECUTION TIME AND QUALITY OF COARSENING ON GPU PLATFORM

Benchmark
PART64 PART128 PART256

Super Node Internality Runtime (s) Super Node Internality Runtime (s) Super Node Internality Runtime (s)

S15850 188 65% 0.109 192 69% 0.109 190 69% 0.141

S13207 192 72% 0.198 191 72% 0.193 192 72% 0.204

SPI 199 92% 0.438 200 93% 0.256 200 93% 0.242

S38584 199 93% 0.941 199 95% 0.412 200 95% 0.271

S35932 199 93% 0.771 200 96% 0.381 200 96% 0.283

S38417 200 95% 1.301 200 96% 0.475 200 96% 0.294

Mem_ctrl 200 96% 2.513 200 97% 0.756 200 97% 0.381

Wb_conmax 200 99% 11.608 200 99% 4.657 200 99% 2.373

B17 200 99% 23.105 200 99% 6.472 200 99% 2.813

B17_1 200 99% 23.511 200 99% 6.248 200 99% 2.844

DES_perf 200 99% 95.488 200 99% 26.988 200 99% 8.588

TABLE V: COMPARSION BETWEEN VARIOUS IMPLEMENTATION OF THE PARALLEL ALGORITHM VS. SERIAL ALGORITHM

Benchmark
64 PARTS 128 PARTS 256 PARTS

RT INT RT INT RT INT

S15850 0.45 -4.41% 0.45 1.47% 0.35 1.47%

S13207 0.66 -11.1% 0.68 -11.11% 0.64 -11.11%

SPI 0.29 -3.16% 0.50 -2.11% 0.53 -2.11%

S38584 0.45 -5.10% 1.03 -3.06% 1.57 -3.06%

S35932 0.76 -3.12% 1.54 0.00% 2.07 0.00%

S38417 0.47 -3.06% 1.29 -2.04% 2.08 -2.04%

Mem_ctrl 0.46 -3.03% 1.53 -2.02% 3.03 -2.02%

Wb_conmax 0.55 0.00% 1.37 0.00% 2.69 0.00%

B17 0.44 0.00% 1.57 0.00% 3.60 0.00%

B17_1 0.43 0.00% 1.63 0.00% 3.58 0.00%

DES_perf 0.64 0.00% 2.27 0.00% 7.15 0.00%

We executed the algorithm on both CPU and GPU on each

test case to check the results of our work. We used an Intel

Core i7 2670QM on Windows7 OS with 8 Gigabytes of Main

memory as CPU platform and the GPU that is utilized, is an

Nvidia GeForce 295 GTX with 2 Gigabytes of Dedicated

memory. Table II represents the runtime of and internality of

coarsening phase on CPU in each test case. In this table,

column “Super Node” represents the number of super-nodes

254

International Journal of Computer Theory and Engineering, Vol. 9, No. 4, August 2017

in coarsened graph.

Experimental results of running the algorithm on GPU are

shown in Table III and Table IV. The Part variable shows the

number of parallel threads of CUDA.

It is worth noting that execution of the last benchmark with

8 parts has been too time consuming to make reports.

As can be seen in Table IV, Runtime can be reduced

considerably without significant quality degradation. It is

worth noting if the quality is reducing because we need both

runtime and quality. From our results we can see that if the

problem size is small GPU overheads takes advantage over

computing the result but in larger problems GPU shows its

capability and the run time improves much better.

Table V shows the Overall comparison between various

implementation of the parallel algorithm vs. serial algorithm.

In these algorithm columns RT and INT show the percentage

of runtime improvement and quality degradation of parallel

algorithms compared to serial implementation on CPU.

VIII. CONCLUSION

Significant portion of total digital design flow runtime is

related to various stages of the physical design such as

partitioning, floor planning, and placement and routing. In

this paper, a new parallel partitioning algorithm was proposed

for GPU system. In the proposed algorithm, coarsening phase

of the partitioning was accelerated by parallelizing on GPU.

Experimental results show that runtime can be improved up to

7x luck circuit with negligible quality degradation. Our

analyses show that the results are better for larger circuits with

more part number.

REFERENCES

Atefe Taheri was born in Babol, Mazandaran, Iran in

1987. She received the bachelor degree in hardware

engineering from Shahid Beheshti University, Tehran,

Iran in 2010 and her master’s degree in hardware

architecture from Shahid Beheshti University, Tehran,

Iran in 2013.

She then worked for some companies such as SAAT

Co, Tehran, Iran as a hardware designer. Currently she

is employed as hardware/software designer in Intelligent Information

Solutions Center in Sharif University, Tehran, Iran. Her current research

interest is CAD, High Performance Computing and Hardware/Software

Codesign.

Ali Jahanian received the B.Sc. degree in computer

engineering from Tehran University, Tehran, Iran in

1996, and the M.Sc. and Ph.D. degrees in computer

system architecture from Amirkabir University of

Technology, Tehran, Iran in 1998 and 2008,

respectively.

He is currently an assistant professor of Electrical and

Computer Engineering Department of Shahid Beheshti

University. His current research interest consists of VLSI design automation,

Emerging on-chip interconnect technologies, and embedded system design.

Behin Molaie received his bachelor’s degree in

computer engineering from Sharif University of

Technology, Tehran, Iran in 2009 and the M.S. in

software engineering from Sharif University of

Technology, Tehran, Iran in 2015. He is currently

working toward the Ph.D. degree in Software

Engineering at Sharif University of Technology, Tehran,

Iran.

He worked for Kamasystem company, Tehran, Iran as a technical manager

for 5 years. Currently he is employed as a technical team manager in

Intelligent Information Solutions Center in Sharif University of Technology,

Tehran, Iran. His current research interest is IoT, big data and parallel

computing.

 Mr. Molaie won a gold medal in Iran National Olympiad in informatics in

2004

255

International Journal of Computer Theory and Engineering, Vol. 9, No. 4, August 2017

[1] K. A. Sumithra. Algorithm for CAD tools VLSI design. [Online].

Available:

http://www.intechopen.com/books/vlsi-design/algorithms-for-vlsi-cad

-tools

[2] M. F. Chang, “CDMA/FDMA-interconnects for future ULSI

communications,” in Proc. International Conference on Computer

Aided Design, pp. 975-978, 2005.

[3] ITRS reports. [Online]. Available: http://www.itrs.net

[4] S. Sapatnekar et al., “Reinventing EDA with many core processors,” in

Proc. the 45th Annual Design Automation Conference, pp. 126-127,

2008.

[5] B. Catanzaro, K. Keutzer, and B. Y. Su, “Parallelizing CAD: A timely

research agenda for EDA,” in Proc. Design Automation Conference, pp.

12-17, 2008.

[6] M. Sanjabi, N. Miralaei, S. Amanollahi, and A. Jahanian, “ParSA:

parallel simulated annealing placement algorithm for multi-core

systems,” in Proc. International Symposium on Computer Architecture

and Digital Systems (CADS), pp. 19-24, 2012.

[7] F. Lotfifar and M. Johnson, “A multi-level hypergraph partitioning

algorithm using rough set clustering,” in Proc. International

Conference on Euro-par, pp. 14-23, 2015.

[8] H. Liu, L. Latecki, and S. Yan, “Dense subgraph partitioning of

positive hypergraphs,” in Proc. IEEE Transactions on Pattern Analysis

and Machine Intelligence, pp. 541-554, 2015.

[9] C. Fobel, G. Grewal, and D. Stacey, “GPU-accelerated wire-length

estimation for FPGA placement,” in Proc. International Conference on

IEEE Computer Aided Design, pp. 14-23, 2011.

[10] J. Cong and Y. Zou, “Parallel multi-level analytical global placement

on graphics processing units,” in Proc. International Conference on

Computer Aided Design, pp. 681-688, 2009.

[11] D. LaSalle and G. Karypis, “Multi-threaded graph partitioning,” IEEE

International Parallel & Distributed Processing Symposium, Boston,

Massachusetts USA, May 20-24, 2013.

[12] A. Farkish and A. Jahanian, “Parallelizing the FPGA global routing

algorithm on multi-core systems without quality degradation,” Institute

of Electrical, Information and Communication Engineers Electronic

Express Journal, vol. 8, no. 24, pp. 2061-2067, 2012.

[13] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Design and

implementation of move-based heuristics for VLSI hypergraph

partitioning,” in Proc. Asia and South Pacific Design Automation Conf.,

pp. 661-666, Jan. 2000.

[14] G. Karypis, R. Aggarwal, and V. Kumar, “Multilevel hypergraph

partitioning: Applications in VLSI domain,” in Proc. International

Conference on IEEE Transaction on very Large Scale Integration

(VLSI) Systems, pp. 69-79, 1999.

[15] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic for

improving network partitions,” in Proc. 19th IEEE Design Automation

Conf., pp. 175-181, 1982.

[16] A. Sheppard, Programming GPUs, 2013.

[17] Embedded meta programming language. [Online]. Available:

http://www.libsh.org/about.html

[18] D. Tarditi, S. Puri, and J. Oglesby, “Using data parallelism to program

GPUs for general-purpose uses,” Technical Report, Microsoft

Research, 2006.

[19] OpenCL supported products. [Online]. Available:

https://www.khronos.org/conformance/adopters/conformant-products

[20] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to

General-Purpose GPU Programming, 1st ed., 2010.

[21] IWLS benchmarks. [Online]. Available:

http://iwls.org/iwls2005/benchmarks.html

