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Abstract—Significant portion of digital design flow runtime is 

related to the physical design stages. Partitioning is a critical 

stage of physical design and its quality and runtime has 

considerable impact on physical design efficiency. In this paper, 

a new parallel partitioning algorithm is proposed and it is 

suitable for GPU system. In the proposed algorithm, coarsening 

phase of the partitioning is accelerated by parallelizing on GPU. 

Experimental results show that runtime can be improved up to 

7x for attempted circuit with negligible quality degradation. 

 
Index Terms—GPU programming, multilevel partitioning, 

parallel algorithms, physical design. 

 

I. INTRODUCTION 

Integrated circuits complexity has been grown in last 

decades with exponential rate and it is predicted that this flow 

will be continued in future years [1], [2]. This exponential 

growth of modern circuits is an important challenge for 

computer-aided design tools because their runtime will be 

increased dramatically coping with this complexity growth 

[3], [4]. On the other hand, the gap between complexity 

growth and productivity of CAD tools (i.e. productivity gap) 

will be increased for new ultra-large systems such as 

system-on-chips and multi-core systems. 

Considerable portion of total design time is related to 

physical design stage. Physical design consists of some 

important steps such as partitioning, floor-planning, 

placement and routing. In Partitioning phase, design graph is 

partitioned to some sub-graphs to facilitate rest of algorithms. 

Floor-planning find location and shape of large blocks. Exact 

location and orientation of the standard cells are fixed in 

placement step and finally, the geometry of interconnects will 

be determined in routing stage. A bundle of physical design 

algorithms are NP-complete and NP-hard [5], [6]. Graph 

partitioning is a critical sub-stage of physical design. Quality 

and execution time of partitioning stage has considerable 

impact on total quality of design and total execution time of 

physical design flow. Therefore, we focused on parallelizing 

the graph partitioning stage to improve its runtime regarding 

to the partitioning quality. 

Many contributions are reported on parallelizing the CAD 

algorithms on multi-processor systems in the last years of 90's 
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decade. Most of the proposed algorithms were used in 

multi-processor and multi-computer systems that do not 

equipped to efficient shared memories and communication 

between processors, and inter-thread communications could 

be done only with message passing protocol. Another 

drawback of the previous algorithms is that they require 

expensive hardware resources and do not efficiently executed 

on ordinary personal computers.  

Based on the previous researches which will be introduced 

in Section II, more than half of the partitioning algorithm 

runtime is spent in coarsening phase. Therefore, we focused 

on accelerating this phase of the algorithm in this paper. In 

this paper, a GPU-optimized parallel algorithm is proposed to 

reduce execution time of the coarsening phase of the 

hyper-graph partitioning without considerable quality 

degradation. Our algorithm is a combination of sequential and 

parallel phases. We analyzed the sequential algorithm and 

parallelized more time consuming section over the underlying 

GPU architecture. The important point is that the 

parallelization should have as less as possible negative impact 

on the quality of partitioning. In the proposed algorithm, 

circuit netlist database is divided into n sections that are 

executed as parallel threads on GPU platform. Each partition 

will be coarsened in separated environment and the result sets 

will merge together on CPU. 

This paper organized as follows. Section III describes the 

concept and existing algorithms for Multi-Level Hyper-Graph 

Partitioning and the coarsening phase is illustrated in Section 

IV. The article continues to describe the GPU programming 

in Section V and Section VI describes the proposed 

coarsening algorithm. Section VII describes the experimental 

results and finally, Section VIII concludes the paper. 

 

II. LITERATURE REVIEW 

In last few years computing power of the main processing 

units has not grown in comparison with growth of cells count 

in the digital circuits. So the run time of the algorithms has 

increased. On the other hand, Graphics Processing Units 

revolutionized the general purpose algorithms performance 

with their high computing power and low cost. These days 

many of the software companies are trying to improve their 

software performance using GPUs. Our idea was to create a 

parallel GPU based algorithm to run the partitioning phase of 

the design flow on a high performance GPU to speed up the 

design process. 

Actually, in these days, there are many [7] applications in 

scientific computing for hypergraph partitioning. Foad 

Lotfifar and Matthew Johnson presented a new partitioning 

method for hypergraphs. They innovated a sequential 
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multi-level hypergraph partitioning algorithm. This algorithm 

uses a technique of rough set clustering to categorize the 

vertices of the hypergraph. They have paid attention so their 

algorithm doesn't make a greedy decision. In fact, this 

algorithm makes a trade-off between local decision and global 

decision. Results show that the algorithm makes better 

partitioning quality. 

Hairong Liu [8] and his colleagues present a new 

partitioning framework. This framework is based on 

divide-and-conquer. Their new partitioning framework is 

called dense subgraph partitioning (DSP). DSP has properties 

such as revealing all meaningful clusters and etc. Moreover, 

to presenting a new framework they established a relationship 

with the densest k-subgraph problem (DkS). The results show 

that this approach is suitable for parallel processing because it 

is time-efficient and memory-friendly. 

Many contributions are addressed in last few years to boost 

the performance of CAD problems using high performance 

GPUs. Authors of [9] have developed a parallel algorithm 

called mPL to fit on GPU so they can speed up the time they 

need to solve placement problems. mPL is an analytical 

global placement method and it can find a reasonable solution 

in a little time. 

In [10] parallelizing the wire-length estimation on GPU 

with CUDA structure is presented. Authors of [10] created a 

parallel algorithm for calculating the wire-length of a solution 

on GPU and they got 160x speed up over a serial CPU 

algorithm. 

Karypis and LaSalle implements the partitioning a graph on 

multi core systems using OpenMP and MPI [11]. They 

developed an algorithm to run on multithreaded CPU 

environment and they get some good result on speed up and 

memory usage and partitioning quality. 

Authors of [12] proposed a parallel pathfinder global 

routing algorithm that is the most used FPGA routing 

algorithm. They introduce a parallel method to run on 

multi-core systems mainly to improve the runtime of the 

routing phase. They show with their experimental results that 

the runtime of the routing phase. They show with their 

experimental results that the run time can be reduces by 

47.8% and 70.9% with dual and quad core systems. 

In [6], a parallel Simulated Annealing algorithm on 

multi-core systems is proposed. Simulated Annealing is a 

known method to solve the optimization problems since 1953. 

The algorithm is used for complex and nonlinear 

combinatorial optimization problems. The algorithm searches 

the search space and finds a near optimal solution. The 

algorithm is taken a long time to finish if the search space is 

large. They show by their experimental results that they can 

improve the run time to 32% on average with considering the 

quality of the solution. 

Caldwell et al. [13] introduced a new algorithm on 

multilevel partitioning. In their approach they introduce a 

technique of move-based hypergraph partitioning heuristic 

and they evaluated the performance of these heuristic in the 

context of VLSI design their first result was software 

architecture consist of 7 different reusable components. The 

formula allows a flexible, efficient and accurate assessment of 

the practical implications. Their second result was an 

assessment of the modern context for hypergraph partitioning 

research for VLSI design applications.  

The biggest limitation of the algorithms mentioned before 

is the runtime to find a good answer. Another problem is that 

existing methods need a high resource environment to run.  
 

III. MULTI-LEVEL HYPERGRAPH PARTITIONING 

Hypergraph partitioning is an important problem in many 

engineering and optimization applications such as VLSI 

design flow. The main problem is to partition the nodes of a 

hypergraph into k different sets such that cut size of 

partitioning is minimized and balance criteria is not violated. 

In other words, this problem is an optimization problem 

whose goal is to minimize the cut size and its condition is the 

balancing rule. Hypergraphs are generalization of graphs that 

each edge can be a hyper edge.  A hyper edge is an edge that 

connects a set of vertices (two or more vertices). 

Hyper edge partitioning is an NP-Hard problem in general 

situation and an optimal solution is not viable practically for 

large circuits. However, many heuristic and randomized 

algorithms are developed for this problem to give a 

reasonable answer because of the importance of this problem. 

As mentioned in the previous section, HMetis [14] 

hypergraph partitioning and it uses a multilevel hyper edge 

paradigm.  HMetis is a multi-level partitioner in which the 

main objective is that local cut size of each level is considered 

corresponding with the cut size of the next levels. In other 

means, HMetis is planned to use the global cut size 

information inclined with the local connection information of 

the netlist. 

HMetis uses the hypergraph representation of the netlist in 

which nodes are standard cells and edges show the nets of the 

circuit. HMetis partitioning algorithm has three basic phases: 

A. Coarsening Phase 

In this phase highly connected hypergraph nodes are 

merged (coarsen) together and super nodes are generated.  

Each super-node consists of the nodes that have more 

connectivity and they should be clustered in a cluster. HMetis 

coarsen the hypergraph recursively until the number of 

super-nodes goes to 200 or less vertices in the hypergraph.  

B. Initial Partitioning Phase 

After the coarsening phase, hypergraph is reduced and a 

classical partitioning algorithm can be applied to partition the 

coarsened hypergraph into 2 parts. HMetis uses the 

Fiduccia-Mattheyses [15] algorithm to bisection the 

hypergraph. At the end of this phase, coarsened hypergraph is 

partitioned into two balanced partitions.  

C. Uncoarsening and Refinement Phase 

In this phase, the partitioned graph is un-coarsened and 

each super-node is expanded into basic nodes. After 

coarsening of each super-node, the balancing of the 

partitioned graphs may be violated. Therefore, a refinement 

algorithm should be applied in each level of the un-coarsening 

to balance the partitioned graph. 

Fig. 1 shows the process of HMetis algorithm. In this figure, 

the various phases of the multilevel graph bisection. In the 

coarsening phase, the size of the graph is successively 
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decreased and the initial partitioning phase, a bisection of the 

smaller graph is computed and the Uncoarsening phase, the 

bisection is successively refined as it is projected to the larger 

graphs. 
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Fig. 1. HMetis hyper edge coarsening process. 

 

As mentioned before, HMetis developed in the multilevel 

framework. The algorithm is very fast and has good results 

with high quality partitioning. Hypergraphs with over 

100,000 nodes can be bisected in a few minutes. The most 

time consuming phase of the HMetis is coarsening phase. 

Therefore, we focused on accelerating this phase of the 

algorithm in this paper. The next subsection, describes this 

phase in more details. 

 

IV. COARSENING PHASE 

In the coarsening phase, the goal is creating a hypergraph 

with smaller vertices to facilitate the initial partitioning phase. 

In general case, a hypergraph with more than 1000,000 

vertices should be reduced to a hypergraph with fewer than 

200 vertices. Coarsening process can be performed by three 

different methods as follows: 

A. Edge Coarsening 

In this method, a hyper edge with more than two vertices 

are selected and two of its vertices are combined together. In 

iteration a coarser graph with "v-1" vertices will be 

constructed. This process is shown in Fig. 2.  

 

 
Fig. 2. Edge coarsening. 

 

B. Hyper Edge Coarsening 

In this method, hyper edges with fewer vertices are selected 

and their vertices are combined together to create a coarser 

graph and this coarsening is repeated until the goal of 200 

vertices is achieved. This method is shown in Fig. 3.  

 

 
Fig. 3. Hyper edge coarsening. 

C. Modified Hyper Edge Coarsening 

In this method process is performed as hyper edge 

Coarsening method but after coarsening hyper edges, all the 

other vertices that are not combined with any other vertex, 

will be combined together. This technique is shown in Fig. 4. 

We used the Hyper Edge Coarsening technique in our 

implementations. 

 

 
Fig. 4. Modified hyper edge coarsening. 

 

V. PROGRAMMING ON GPU 

To use the power of GPU in a general purpose application a 

framework or a toolkit is required to provide the 

programming, debugging and testing capabilities. In this 

section, we provide a brief overview of these tools from early 

day until now. In general, this field is quickly advancing and 

we advise the readers to check the internet for newest 

resources [16]. 

A. SH 

It is an open source project to write C++ programs on 

GPUs. This tool is an independent platform and supports 

many kinds of graphics cards. The language of the main 

program could be anything but the language of the source 

code of the GPU program should be in C++. In early days it 

was a great tool to use the performance of the GPU to 

accelerate general purpose applications [17]. 

B. Direct Compute 

Microsoft invented its own tool to use all the DirectX 

supported GPUs in Windows Vista, Windows 7 and Windows 

8 for general purpose programming. Microsoft Direct 

Computer is an API to program on GPU and it was released 

with the DirectX 11 but it is compatible with DirectX 10 

devices [18].  

C. OpenCL 

Open Computing Language known as OpenCL is a 

programming framework for writing programs that can run on 

heterogeneous platforms consisting CPUs, GPUs, DSPs and 

other processors. The language of programming is based of 

C99 standards. This language is used to write kernels 

(Functions that execute on OpenCL Processors) and there is 

and API to define and control the run of the whole program. 

We can write programs that are task-based parallel or data 

based parallel with OpenCL. Currently Many Processors are 

OpenCL supported [19]. They can execute OpenCL kernels 

on them. 

D. Nvidia CUDA 

CUDA (Compute Unified Device Architecture) is a 

programming framework created by Nvidia to write parallel 

applications that run on CUDA enabled GPUs [20]. CUDA 

unleashed some virtual instruction sets and memory for 

parallel computation in CUDA GPUs. CUDA framework 

enables developers to write programs that run on GPUs. The 
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main difference of this framework is that the programming is 

easy and it is in higher performance compared to other 

frameworks. The CUDA framework compiler is available for 

C, C++ and FORTRAN languages. NVIDIA's compiler for 

C/C++ CUDA is a llvm based compile called nvcc. CUDA is 

provided in Microsoft Windows, Linux and Mac OS. The 

SDK and drivers are downloadable in the NVIDIA's 

developer's website. All new Nvidia GPU's are CUDA 

compatible. There are 3 lines of NVIDIA GPU's known as 

GeForce, Quadro and Tesla. CUDA Binaries are compatible 

to future cards but some instructions are not available in older 

GPUs [15].  

 

VI. PARALLELIZING THE COARSENING PHASE OF 

HYPERGRAPH PARTITIONING ON GPU 

As mentioned before, partitioning is a widely used 

algorithm in many of physical design tools. HMetis is a 

high-quality and fast partitioning algorithm that is known as 

the best hyper-graph partitioner in various applications such 

as VLSI-CAD. One of the most time-consuming parts of this 

algorithm is coarsening phase. To parallelize coarsening 

phase and implement it on GPU, the circuit hypergraph 

database should be distributed on GPUs. After this step, all of 

these parts must send to GPU cores for processing and then, 

GPU cores will do the coarsening of all parts in parallel. It is 

noting that all parts will be coarsened separately. Since all of 

the nodes for any part chosen randomly and coarsening 

operation can be done on the basis of connection between 

nodes, we must pay attention it is possible that there are a few 

connections or no connection at all between nodes. Other 

point we must consider is that some edges eliminated in the 

partitioning phase. These edges must affect in the final result 

of the coarsening phase. 

It is worth noting that the quality of the coarsened graph in 

GPU is lower than the coarsened graph in CPU normally 

because, parallel coarsening of the GPU cores may tend to 

incorrect decisions, because the graph is partitioned into 

smaller sub-graphs and each core doesn't have a global view. 

We divided the netlist based on its nets to divide the netlist 

with lower level of connections. As will be seen in 

experimental results, this database distribution makes good 

results with considerable runtime improvement. Fig. 5 shows 

the parallelized algorithm. 

 
Parallel Coarsening pseudo code 

Step 1 Read input hyper graph g. 

Step 2 Partition g into n parts. 

Step 3 Create n sub-graphs of g.  

Step 4 FOR each sub graph gi of n sub graphs DO 

Step 4-1  Copy sub graph gi into GPU global memory. 

Step 5 Call GPU kernel to parallelize following tasks. 

Step 5-1  While (number of vertices in this part > k) LOOP 

Step 5-1-1   Find an edge e in sub graph. 

Step 5-1-2   Merge all vertices e. 

Step 6 Wait for all kernels to complete. 

Step 7 Take back all the results from GPU global memory. 

Step 8 Merge all coarsened sets in g. 

Step 9 While the number of vertices in g is greater than 200 LOOP 

Step 9-1  Find an edge e in g. 

Step 9-2  Merge all vertices of e. 

Step 10 Write the output. 

Fig. 5. Parallelized coarsening algorithm. 

VII. EXPERIMENTAL RESULTS 

We implemented the proposed parallel algorithm in C++ 

using CUDA platform on Nvidia Geforce 295 GTX GPU 

system. Eleven benchmark are selected from IWLS suite [21] 

to evaluate the quality and runtime speedup of the proposed 

algorithm. Statistical information of the attempted 

benchmarks is shown in Table I. 
 

TABLE I: GENERAL CHARACTERISTICS OF ATTEMPTED BENCHMARKS 

OVERALL 

Benchmark Cell Count Net Count 

S15850 685 685 

S13207 1219 1214 

SPI 3227 3274 

S38584 6724 6704 

S35932 7273 7277 

S38417 8278 8220 

Mem_ctrl 11440 11398 

Wb_conmax 29034 28739 

B17 37117 37102 

B17_1 37383 37369 

DES_perf 98341 98391 

 

TABLE II: EXECUTION TIME AND QUALITY OF COARSENING ON CPU 

PLATFORM 

Benchmark Super Node Internality Runtime (s) 

S15850 188 68% 0.049 

S13207 190 81% 0.131 

SPI 200 95% 0.129 

S38584 200 98% 0.426 

S35932 200 96% 0.587 

S38417 200 98% 0.611 

Mem_ctrl 199 99% 1.154 

Wb_conmax 200 99% 6.382 

B17 200 99% 10.132 

B17_1 200 99% 10.192 

DES_perf 200 99% 61.367 

 

We proposed and implemented several methods for initial 

partitioning graph node for each GPU thread. The simplest 

idea was to assign the nodes randomly to each thread. The 

second approach was to divide nodes based on the occurrence 

of the nodes in the input file. Another idea was to pick nodes 

based on nets and its neighbors. The last idea was to use BFS 

algorithm to pick nodes for each thread. As we tested, we 

figured out that the method to divide nodes based on the input 

file wat the best one, because netlist files are generated such 

that the connected nodes are neighbors in the file and it is not 

random.  

As mentioned before, the quality of a parallelized 

algorithm may be degraded because each GPU core should 

decide based on its local information. Therefore, quality of 

the coarsening is an important parameter that must be 

considered. In other words, in addition to the low execution 

time, coarsening phase should have considerable quality 

results. The quality of a coarsened graph does not have any 

standard measure. We defined a new metric called internality 

to evaluate the quality of a coarsened graph. Average 

Internality of graph g is defined as the average of internality of 

each hyper edge of the graph. 
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Internality of an edge is formulated as degree of locality of 

the nodes in the edge. For example, consider an edge with 2 

vertices. If both of them are coarsened together the internality 
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TABLE III: EXECUTION TIME AND QUALITY OF COARSENING ON GPU PLATFORM 

Benchmark 
PART8 PART16 PART32 

Super Node Internality Runtime (s) Super Node Internality Runtime (s) Super Node Internality Runtime (s) 

S15850 191 62% 0.218 193 63% 0.156 190 69% 0.14 

S13207 195 77% 0.483 192 79% 0.25 189 72% 0.156 

SPI 200 91% 3.12 200 92% 1.546 199 94% 0.789 

S38584 198 95% 14.38 199 94% 6.418 1999 94% 2.879 

S35932 199 91% 16.638 196 88% 7.058 197 96% 2.632 

S38417 198 93% 20.673 193 95% 9.475 199 97% 3.972 

Mem_ctrl 198 94% 40.641 191 93% 19.562 200 95% 9.908 

Wb_conmax 200 95% 259.638 200 95% 108.769 200 96% 43.589 

B17 200 97% 423.564 200 98% 198.812 200 98% 87.68 

B17_1 196 93% 425.792 200 95% 199.171 200 97% 87.826 

DES_perf NR NR NR 200 99% 787.644 200 99% 333.079 

 
TABLE IV: EXECUTION TIME AND QUALITY OF COARSENING ON GPU PLATFORM 

Benchmark 
PART64 PART128 PART256 

Super Node Internality Runtime (s) Super Node Internality Runtime (s) Super Node Internality Runtime (s) 

S15850 188 65% 0.109 192 69% 0.109 190 69% 0.141 

S13207 192 72% 0.198 191 72% 0.193 192 72% 0.204 

SPI 199 92% 0.438 200 93% 0.256 200 93% 0.242 

S38584 199 93% 0.941 199 95% 0.412 200 95% 0.271 

S35932 199 93% 0.771 200 96% 0.381 200 96% 0.283 

S38417 200 95% 1.301 200 96% 0.475 200 96% 0.294 

Mem_ctrl 200 96% 2.513 200 97% 0.756 200 97% 0.381 

Wb_conmax 200 99% 11.608 200 99% 4.657 200 99% 2.373 

B17 200 99% 23.105 200 99% 6.472 200 99% 2.813 

B17_1 200 99% 23.511 200 99% 6.248 200 99% 2.844 

DES_perf 200 99% 95.488 200 99% 26.988 200 99% 8.588 

 
TABLE V: COMPARSION BETWEEN VARIOUS IMPLEMENTATION OF THE PARALLEL ALGORITHM VS. SERIAL ALGORITHM 

Benchmark 
64 PARTS 128 PARTS  256 PARTS 

RT INT RT INT RT INT 

S15850 0.45 -4.41% 0.45 1.47% 0.35 1.47% 

S13207 0.66 -11.1% 0.68 -11.11% 0.64 -11.11% 

SPI 0.29 -3.16% 0.50 -2.11% 0.53 -2.11% 

S38584 0.45 -5.10% 1.03 -3.06% 1.57 -3.06% 

S35932 0.76 -3.12% 1.54 0.00% 2.07 0.00% 

S38417 0.47 -3.06% 1.29 -2.04% 2.08 -2.04% 

Mem_ctrl 0.46 -3.03% 1.53 -2.02% 3.03 -2.02% 

Wb_conmax 0.55 0.00% 1.37 0.00% 2.69 0.00% 

B17 0.44 0.00% 1.57 0.00% 3.60 0.00% 

B17_1 0.43 0.00% 1.63 0.00% 3.58 0.00% 

DES_perf 0.64 0.00% 2.27 0.00% 7.15 0.00% 

 

We executed the algorithm on both CPU and GPU on each 

test case to check the results of our work. We used an Intel 

Core i7 2670QM on Windows7 OS with 8 Gigabytes of Main 

memory as CPU platform and the GPU that is utilized, is an 

Nvidia GeForce 295 GTX with 2 Gigabytes of Dedicated 

memory. Table II represents the runtime of and internality of 

coarsening phase on CPU in each test case. In this table, 

column “Super Node” represents the number of super-nodes 
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in coarsened graph. 

Experimental results of running the algorithm on GPU are 

shown in Table III and Table IV. The Part variable shows the 

number of parallel threads of CUDA. 

It is worth noting that execution of the last benchmark with 

8 parts has been too time consuming to make reports. 

As can be seen in Table IV, Runtime can be reduced 

considerably without significant quality degradation. It is 

worth noting if the quality is reducing because we need both 

runtime and quality. From our results we can see that if the 

problem size is small GPU overheads takes advantage over 

computing the result but in larger problems GPU shows its 

capability and the run time improves much better. 

Table V shows the Overall comparison between various 

implementation of the parallel algorithm vs. serial algorithm. 

In these algorithm columns RT and INT show the percentage 

of runtime improvement and quality degradation of parallel 

algorithms compared to serial implementation on CPU. 

 

VIII. CONCLUSION 

Significant portion of total digital design flow runtime is 

related to various stages of the physical design such as 

partitioning, floor planning, and placement and routing. In 

this paper, a new parallel partitioning algorithm was proposed 

for GPU system. In the proposed algorithm, coarsening phase 

of the partitioning was accelerated by parallelizing on GPU. 

Experimental results show that runtime can be improved up to 

7x luck circuit with negligible quality degradation. Our 

analyses show that the results are better for larger circuits with 

more part number.  
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