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Abstract—The Canny edge detector plays an important role 

in pre-processing images for many virtual reality systems. In 

this paper, a multiplier-less implementation of the Canny edge 

detector is proposed, which enables the system to be built at a 

lower cost. It is a heterogeneous system using both Field 

Programmable Gate Array (FPGA) and microcontroller. It is 

well known that the Canny edge detector involves a number of 

local operators such as image smoothing and gradient 

computation which are complex and time consuming. So, it is 

not efficient to be implemented on low end processors. In this 

work, the time consuming tasks in the local operators are 

offloaded to the FPGA so that real time processing can be 

achieved. Our experiments show that the proposed system can 

be implemented with less than 1000 lookup tables which are 

suitable for low end FPGA products while the precision of the 

edge detection result is comparable to that implemented by 

software running on a personal computer. 

 
Index Terms—FPGA, canny edge detection, smart camera, 

feature extraction.  

 

I. INTRODUCTION 

Computer vision is essential for virtual reality systems and 

applications. And recently, there is a trend of using computer 

vision in mobile devices such as cellphones, game console 

and PADs. Computer vision techniques allow machines to 

understand and interact with the world based on information 

extracted from the images. Typical useful information in 

computer vision includes the edge and the corner features. 

For edge detection methods, the Canny edge detector, first 

or second derivative operator methods are popular choices. 

As for corner feature detection, the SUSAN corner detector 

[1] and Harris corner detectors [2] are effective tools. These 

algorithms are local operators that involve operations of 

nearly all pixels in an image. Therefore, the running time of 

these kinds of operators are directly proportional to the size of 

the image and the number of the neighboring pixels required 

to be examined. This property prohibits the use of these 

methods on a small microcontroller because of the limited 

processing power and memory size available. Therefore, 

unless special hardware chips (for example, Digital Signal 

Processor (DSP) and Single Instruction Multiple Destination 

(SIMD) processor) are used, it is difficult to achieve a high 
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throughput computer vision system at low cost. Many people 

are interested in finding hardware solutions for computer 

vision algorithms. For example, it is possible to use FPGAs 

for building feature detectors to enable them to be more 

efficient in processing and power consumption. 

In the paper [3] the whole Harris detector is implemented 

using purely FPGAs. The speed is fast but the function may 

not be flexible enough to cater for different applications. That 

means you need to redesign the whole system for a specific 

task and specification. To make the system more flexible, 

some projects have demonstrated that the computationally 

intensive computer vision algorithms can be running at high 

frame rate on heterogeneous systems with an ordinary 

microcontroller and an FPGA. There are other examples such 

as [4], Benedetti and Perona designed and implemented a 

real-time 2D feature detection algorithm on FPGA. In the 

many projects the feature detection system is based on the 

work of feature detectors such as that in [5]-[7] and the KLT 

tracker [8]. However all these depend on image gradient 

information in both horizontal (x) and vertical (y) directions. 

To compute these image gradients, the whole image is 

convolved with a kernel and it is therefore very time 

consuming.  

There are also recent projects using FPGAs for computer 

vision, examples are [9], [10] and [11]. However, they are 

using high speed FPGAs for the vision tasks, the 

performances are good but the costs are relatively higher. 

Leeser, Miller and Yu [12] designed a smart camera setup 

based on FPGAs and demonstrated two very different 

applications of this setup: medical image processing and fluid 

dynamics computation. Part of the computation is shared by 

the FPGA and the result is sent to a computer for further 

processing. The first application requires comparing eight 11

×11 templates to be operated over the whole image. While 

cross-correlation of two areas (40×40 and 32×32) over two 

images of size 1008×1016 is needed in the second application. 

In both applications, they have speedups of over 20 times 

compared to a pure software implementation. There is a also 

hybrid approach such as the one by Tippetts et al. [13], it 

implemented a Harris Feature detector and priority queue 

using an FPGA. By using a micro-processor to run a 

RANSAC [14] algorithm on top of the result from the FPGA, 

they successfully implemented an on-board vision solution in 

determining movement of small unmanned air vehicles that 

should be small in size, weight and power consumption. This 

work shows that it is possible to use the FPGA approach in 

mobile devices.  

In this paper, we proposed a smart camera that finds the 

edge pixels by using the Canny edge detector [15] using an 

off-the-shelf microcontroller and an FPGA. 
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This system is intended to be used in applications like 

making a mobile virtual reality system that is required finding 

the correct display area for the projector etc. The FPGA acts 

as a special processor designed to handle the image 

processing tasks while the microcontroller is used to complete 

the other content to the correct position in a camera projector 

system. In such a system it is essential to have a high 

throughput image processor in order to achieve smooth and 

real-time projections.  

The organization of the paper is as follows. In Section II, 

the theory of our method will be discussed. Section III is 

about the details of the implementation. Experimental results 

are discussed in Section IV and we conclude the whole paper 

in Section V. 

 

Fig. 1. Overview of our proposed system. 

 

TABLE I: ACTIVATION OF EACH MODULE 

 
 

II. THEORY AND DESIGN 

A. The Canny Edge Detector 

The Canny edge detector is still the most widely used 

algorithm to extract edges in a scene since its introduction in 

1986. The Canny edge detector is preferred because by its 

accuracy and efficiency. The detector takes a gray level image 

and two thresholds as the input. By adjusting the values of the 

two thresholds, the user can control the number of edge pixels 

or the strength of the edges found. The edge detector takes the 

gray level image as the input and it will be processed by 

multiple stages sequentially, such as (i) noise reduction by 

smoothing; (ii) image gradient; (iii) non-maximum 

suppression and thresholding; and (iv) edge tracing. The 

output is a binary image representing the edges. 

B. System Design 

Our design is intended to offload the heavy image 

processing work from the microcontroller to the FPGA 

hardware. Our smart camera is a combination of an ordinary 

camera, a microcontroller and a FPGA module. The overview 

of system is shown in Fig. 1. In the diagram, the camera 

provides a stream of data to the processor. The processor 

extracts edge pixels from the data by using the Canny edge 

detector. However, since the number of iterations required 

depends on the image input and cannot be determined 

beforehand, therefore, only stage (i) to (iii) mentioned in the 

last section are suitable for FPGA processing. While stage 

(iv) is handled by software running on a microcontroller in 

our system. 

Since the image processing techniques require neighboring 

pixel values of the target pixel, it is necessary to delay the 

output of one stage so that the value can be used in the next 

stage. For example, to find the gradient of pixel P at (x, y), 8 

neighboring pixels are required, where 6 pixels are from the y 

- 1 row and the y + 1 row, 2 pixels are from the left and right 

pixel. To eliminate the need of storing the whole image before 

any processing to take place, line buffers are added between 

stages. Each line buffer is a circular buffer which can store up 

to 4 rows of pixels. Each row is stored in independent RAM 

chip so that three of them provide the data for the next stage 

while the one left stores the data from the previous stage. With 

the line buffers, each stage can run in parallel and return the 

edge information to the microcontroller as soon as possible. 

Thus, the delay is minimized.  

In Fig. 1 the camera interface has two parts: timing signal 

and data signal. Since the data stream is a raster scan from the 

camera, the stream can be considered as a 1D array. To 

convert this 1D array to 2D array which is more suitable for 

most image processing techniques, the 1D array has to be 

divided into different rows. The timing signal tells (i) when 

the data for this pixel is ready; (ii) when the row has ended; 

and (iii) when the data stream has ended. The data signals are 

the raw pixel intensities from different channels. The signal 

values obtained directly from the camera are encoded, 

therefore decoding is required to extract the values of 

individual channels. Although the modules for each stage are 

running in parallel, the activation times are different as some 

of the data are delayed. A control unit is used to generate 
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control signals to each module. The control signals are 

derived from the timing signal of the camera. Table I shows 

the activation of different modules when the i-th row is 

sending from the camera. The module is active if there is a „Y‟ 

in the cell. Otherwise, the module is deactivated. As shown in 

Table I, h is the height of the image, and we can see that the 

first pixel of the result image is ready after reading 9 rows of 

pixels from the camera. Since the result is delayed, the 

original timing signal from the camera is not usable and 

cannot be sent to the microcontroller directly without 

modification. To synchronize the system a timing signal 

generator is used to generate the correct timing signals to the 

microcontroller to coordinate the system. It is achieved by 

sending a delayed version of the timing signal of the camera to 

other parts to achieve synchronization.  

C. Image Acquisition 

There are various kinds of image encoding standards 

available in the industry. In this paper, we assume the pixels in 

the data stream are encoded in the RGB565 format. Each 

pixel of the multichannel image IRGB is 16 bits long and the 

first 5 bits are the value of the red channel. The following 6 

bits are the value of the green channel. The last 5 bits are the 

value of the blue channel. The resolution of the red channel 

and blue channel is 1-bit lower than the green channel. Table 

II shows the number of bits, resolution and range of each 

channel.  

To process the image, the pixels have to be decoded in 

order the find the value of each channel. Because the ranges of 

the three channels are not the same, the values of red channel 

and blue channel have to scale up (by multiplying two) before 

any processing with the green channel.  

In order to decode the pixel, the processor has to process 3 

masking operations and shift the masked results accordingly. 

The temporary results for red and green channel have to be 

shifted to the right by 10 bits and 5 bits respectively. For the 

blue channel, the temporary result has to be shifted to left by 1. 

It would be computationally expensive to use the 

microcontroller to decode the image. But by using the FPGA 

the masking and bit shifting operation can be processed 

instantly by just wiring the signal to the correct places. Zeroes 

are padded in the front so that a pixel is represented by 3 

bytes. 
 

TABLE II: SUMMARY OF EACH CHANNEL 

Channel No. of bits Resolution Range  

Red 5 32 0-31 

Green 6 64 0-63 

Blue 5 32 0-31 

 

 
Fig. 2. The bit arrangement of the 16-bit RGB pixel data. 

 

In Fig. 2, we show how a RGB565 encoded pixel data can 

be decoded by the FPGA. It is achieved by rewiring the 

signals through masking and shifting.  

D. RGB-to-Gray Conversion Module 

After decoding, the RGB image is ready to be converted 

into a grayscale format. RGB conversion is a weighted 

average operation of the three channels. The conventional 

grayscale value Pgray is calculated by using the formulation 

introduced in [16], the formula is shown here as follows. 

 

gray 0.3* 0.59* 0.11*R G BP P P P                      (1) 

 

However, for simplicity in design and avoiding floating 

point calculation, we use equation (2) to convert a RGB pixel 

to a grayscale pixel, because all multiplications in equation 2 

can be implemented by bit shifting. 

 

gray 0.25* 0.5* 0.25*R G BP P P P                     (2) 

 

 
Fig. 3. Conversions of the original image to different formats. 

 

The visual effect of the conversion by applying equation 

(2) 2 is more or less the same as the result of applying the 

conventional equation (1). Fig. 3 shows the conversion result 

of the two formulae. The result of conversion is stored in the 

line buffer for the next stage of operation. Since the resolution 

of the green channel is 6-bit, the converted grayscale value is 

also in 6-bit resolution. In Fig. 3, the image (a) is the original 

RGB image, (b) and (d) are the grayscale conversion results 

by applying the conventional equation (1) and our simplified 

equation (2) respectively. The image in (c) shows the absolute 

difference of (b) and (d). It is scaled up by a factor of 5 to 

make the difference more noticeable. 

E. Image Smoothing Module 

The first stage of the Canny edge detector is noise 

reduction by image smoothing. It is achieved by convolving a 

Gaussian kernel with the image. The Gaussian kernel is an 

approximation of the 2D Gaussian distribution function. The 

constants in the kernel are floating point numbers smaller than 

1. But it is not practical to use floating point numbers since 

their operations are slower than integer arithmetic. 

Furthermore, we found that the result of using floating 

point arithmetic does not yield significantly better result than 

using integer arithmetic. Therefore we use integer arithmetic 

here as follows. First, the constants of the kernel are scaled up 
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by an integer so that all the constants are greater than 1. Then, 

the kernel values are rounded to the nearest integers. And, the 

image is convolved with the new integer kernel. Finally, the 

result of the convolution is divided by the scale factor.  

However, the direct implementation of this integer 

arithmetic does not favor FPGA implementation because of 

two reasons. The first reason is that it requires a multiplication 

unit for each constant in the kernel. A multiplication unit will 

consume many logic blocks. The second reason is that 

division has to take several clock cycles to complete and it 

also uses a lot of logic blocks to make one division unit. To 

make it more suitable for the FPGA implementation, we 

specially designed a kernel where the convolution operation 

will only need shifting and adding to complete. The proposed 

kernel is:  
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Fig. 4. Block diagram of the Add-Shift-Add module. 

 

The proposed kernel is an approximation of the Gaussian 

Kernel with sigma equal to 0.76. Notice that, to compute the 

convolution of this kernel with a 3 × 3 pixel patch P, four 

“Add-Shift-Add” (ASA in short) operations are required. In 

Fig. 4, the inputs and output relation of the ASA operator is 

shown and >> is bitwise right shift and << is bitwise left shift. 

Consider the following: 
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where ASA(x, y, z) = x + 2y + z. The multiplication of 2 in the 

ASA operator can be realized by shifting the input to the left 

by 1 bit. The ASA operator is simple in architecture because it 

is multiplier-less and has only two adders and a shifter. This 

ASA operator can be reused in the gradient operators which 

will be discussed later. Since the scale factor of the Gaussian 

filter is 16, the implementation is simple. It just performs an 

arithmetic right shift by 4 bits on the result of the final ASA 

module. Fig. 4 shows the block diagram of the ASA operator. 

The architecture of the ASA module is simple which consists 

of two adders and a shift-left-by-1 module. The 

implementation of the proposed Gaussian filter is shown in 

Fig. 5. It uses four ASA modules and an arithmetic right shift 

module. The right shift module will shift the result of the last 

ASA module by 4 bits. 

 

 
Fig. 5. Block diagram of the Gaussian filter module. 

 

F. Image Gradient Module 

The Sobel gradient operator is used to find the image 

gradient. The Sobel gradient operator returns the horizontal 

gradient Gx and vertical gradient Gy of an image I. They are 

defined as: 
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We can reuse the Add-Shift-Add module introduced 

previously to implement the kernels. Similar to the Gaussian 

filter, the Sobel operator can be implemented with adder and 

shifter. In Fig. 6, it shows our implementations of the Sobel 

operator in the vertical and horizontal directions. In the 

system, the two operators are having a similar architecture the 

only difference is the inputs they take. It is noted that, in the 

architectures, the right shift module must be arithmetic right 

shift since the result from the subtraction module can be 

negative. 

The result of the horizontal gradient and vertical gradient 

calculation is 7 bits long but not the same as the 6-bit long 

input. It is because the gradient could be a negative value and 

one extra bit is required to represent the negative values. Fig. 

7 shows the block diagram of the Sobel operator. In the Figure, 

it shows the absolute value module takes a 7 bits binary 

number b using the two‟s complement format,  b0 is the least 

significant bit while b6 is the most significant bit. The label 

5:0 and 6:1 indicate the numbers of bits and how they are 

connected. For example, 6:1 means from bit 6 to bit 1 are 

connected to inputs, and bit 0 is not connected. The 

magnitude G and the angle  of the gradient is calculated as: 
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Normally, the magnitude G is calculated using the 

Euclidean norm which involves squaring the values and then 

taking square root.  
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Fig. 6. Block diagram of Sobel operator. 

 

 
Fig. 7. Block diagram of gradient magnitude module. 

 

In practice, to increase the processing speed, the sum of the 

absolute values of the horizontal gradient and vertical 

gradient is used and it gives accurate enough result. This 

operation is also suitable to be implemented by a FPGA.  

The value of  in Equation 5 is rounded to the four angles to 

representing horizontal line (0
o
), vertical line (90

o
) and the 

two diagonals (45
o
 and 135

o
). The trigonometric function 

tan
-1

( ) is involved and it is implemented using table lookup. 

By using table lookup, the calculation of (Gy/Gx) is not 

needed. Since the function is symmetric, it is possible to 

consider the first quadrant only. We first determine whether 

the line is horizontal or vertical. If the line is neither 

horizontal nor vertical, then it must be a diagonal line. To 

check if it is a 45
o
-diagonal line or a 135

o
-diagonal line, we 

only have to examine the signs of Gx and Gy. If both of the 

signs are the same, the line is a 45
o
-diagonal line.  

 
TABLE III. GRADIENT ORIENTATION LOOKUP TABLE. THE COLUMN AND 

THE ROW ARE THE ABSOLUTE VALUE OF GX AND GY RESPECTIVELY. THE 

INCLINED ANGLE OF THE LINE (0O, 45O, 90O, 135O) IS MAPPED TO 0, 1, 2 AND 

3 RESPECTIVELY 

 
 

Otherwise, it is a 135
o
-diagonal line. Since the first 

quadrant is considered, the absolute values of Gx and Gy are 

used in the table lookup. A portion of the lookup table is 

shown in Table III as it is too messy to show all entries. The 

reader should able to deduce the remaining values.  

The number of bits required to store Gx and Gy is 7 bits. 

However, the absolute value of them is not greater than 63. 

Therefore, 6 bits are used to store the absolute value of Gx or 

Gy. The magnitude of the gradient is the sum of them, and 

therefore 7 bits are needed to be stored. The number of bits 

required for orientation is 2 bits. So the total required is bits. 

However, since most memory unit available nowadays 

requires 8-bit word size, we discard the least significant bit of 

the magnitude. By using such arrangement, we can encode the 

magnitude and orientation in an 8-bit data and store them in 

the line buffer. 

G. Non-maximum Suppression and Hysteresis 

Thresholding 

To thin the line into one-pixel wide, non-maximum 

suppression or NMS is applied to the gradient magnitude 

image. To determine whether the pixel is on the edge or not, 

the gradient magnitude G of this pixel is compared with the 

other adjacent pixels along the gradient orientation O. If the 

gradient magnitude of this pixel is less than the other two 

pixels G1 and G2, then this pixel is not an edge. Otherwise, 

the pixel is compared to the high threshold Thigh and low 

threshold Tlow. If G < Tlow, the pixel is not an edge pixel. If Tlow 

< G < Thigh, it is a weak edge. Otherwise it is a strong edge. To 

summarize, an edge pixel must fulfill the following conditions 

simultaneously: (1) Greater than the adjacent pixel along the 

gradient orientation and; (2) Greater than the low threshold. 

Fig. 8 shows the modules that process the non-maximum 

suppression stage in one clock cycle. In the diagram, we use 

two bits to encode the gradient orientation result O. Strong 

edge, weak edge and non-edge is encoded into 11(b), 01(b) 

and 00(b), respectively.  

 

 
Fig. 8. Non-maximum suppression and hysteresis thresholding module. 

 

Four comparison statements are required to determine 

whether the point is a strong edge, weak edge or not on edge. 

They should be executed sequentially in software when 

implemented using a single CPU system. However, for our 

FPGA approach they can be handled in parallel, since they are 

independent with each other. In Fig. 8, the component relies 

on the Adjacent Selector to select suitable values of G, G1 and 

G2 from the gradient magnitudes of the neighbor pixels 

according to the value of the gradient orientation O. This step 

can be achieved by using a lookup table.  

The architecture is shown in Fig. 8. In the diagram, the 
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adjacent selector picks the correct value of G, G1 or G2 

according to the gradient orientation O. The comparator 

outputs logic 1 if the input a is greater than b. Otherwise, the 

output will be 0. The result is encoded by using 3 2-input 

AND gates. 

 

III. IMPLEMENTATION 

Our proposed smart camera is implemented using the 

VHSIC hardware description language (VHDL) on a Xilinx 

Spartan-3E XC3S250E device. Three sets of line buffers are 

used for different stages. We assumed the data stored in the 

line buffers is one byte long and the size of the image is 320 × 

240. Since each line buffer stores 4 rows of data, the number 

of memory cells required for one line buffer is 1280 bytes. 

Therefore, the total number of bytes for the line buffers is 

3840 bytes. The data of 3 rows in the line buffer should be 

accessed in parallel and used as the inputs of the image 

processing module. 

The number of Lookup Tables (LUTs) is another important 

resource in FPGA since all combinational logic is 

implemented using LUTs. The number of LUTs of 

RGB-to-gray convertor, Gaussian blur module, Gradient 

module and non-maximum suppression and thresholding 

module are 9 LUTs, 64 LUTS, 265 LUTS and 50 LUTS 

respectively. The number of LUTs for the image processing 

modules is 388. We estimate that the total number of LUTs 

required for the whole system including the control units, line 

buffers and timing signal generator is the 776. As the 

XC3S250E has 4896 LUTs, only around 16% of LUTs is 

needed. This result gives enough room for implementing 

more sophisticated color space converters and Gaussian 

kernels for the smoothing module. As the number of LUT 

required in this design is low, it is possible to implement 

another detector into one FPGA. For example, the Harris 

feature detector can reuse the result of the gradient module 

and outputs the result together with the Canny edge detector. 

 

IV. EXPERIMENT 

 
Fig. 9. Comparison of the edge detector results of the proposed hardware 

approach and OpenCV software implementation. (a) is the original image. (b) 

and (c) are the edge image from OpenCV and the proposed system 

respectively. (d) shows the difference between the two edge images. 

 

To evaluate the result of our proposed hardware Canny 

edge detector on FPGA, we also implemented a pure software 

edge detector based on the OpenCV [17] library for 

comparison. Fig. 9 shows the results of our proposed system 

and the result of using the software library. The results are 

comparable to most significant edges are found in the images. 

The discrepancy in the two edge images, as shown in part (d) 

of Fig. 9, are caused by different RGB-to-gray conversion 

methods and Gaussian kernels used in the smoothing process. 

For more information, please visit our project web page at 

https://www.cse.cuhk.edu.hk/~khwong/www2/conference/20

16/IWPR2016/IWPR2016.html. 

 

V. CONCLUSION 

A hardware implementation of the Canny edge detector is 

proposed in this paper. It is multiplier-less and is suitable for 

low cost devices. In this work, the Canny edge detector is 

divided into different stages and the system can process the 

data stream directly. The detail of each module is discussed in 

this paper. They are implemented using VHDL and 

synthesized using the target device Xilinx-Spartan-3E. It 

shows that the number of LUTs required is low, so there is a 

possibility that additional functions such the Harris feature 

detector can be added to the device in future. The result of our 

hardware approach is compared to that generated by a pure 

software method using OpenCV. Both results are similar and 

visually acceptable. It is believed that our method is suitable 

for many mobile virtual reality applications. 
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