



Abstract—The Canny edge detector plays an important role

in pre-processing images for many virtual reality systems. In

this paper, a multiplier-less implementation of the Canny edge

detector is proposed, which enables the system to be built at a

lower cost. It is a heterogeneous system using both Field

Programmable Gate Array (FPGA) and microcontroller. It is

well known that the Canny edge detector involves a number of

local operators such as image smoothing and gradient

computation which are complex and time consuming. So, it is

not efficient to be implemented on low end processors. In this

work, the time consuming tasks in the local operators are

offloaded to the FPGA so that real time processing can be

achieved. Our experiments show that the proposed system can

be implemented with less than 1000 lookup tables which are

suitable for low end FPGA products while the precision of the

edge detection result is comparable to that implemented by

software running on a personal computer.

Index Terms—FPGA, canny edge detection, smart camera,

feature extraction.

I. INTRODUCTION

Computer vision is essential for virtual reality systems and

applications. And recently, there is a trend of using computer

vision in mobile devices such as cellphones, game console

and PADs. Computer vision techniques allow machines to

understand and interact with the world based on information

extracted from the images. Typical useful information in

computer vision includes the edge and the corner features.

For edge detection methods, the Canny edge detector, first

or second derivative operator methods are popular choices.

As for corner feature detection, the SUSAN corner detector

[1] and Harris corner detectors [2] are effective tools. These

algorithms are local operators that involve operations of

nearly all pixels in an image. Therefore, the running time of

these kinds of operators are directly proportional to the size of

the image and the number of the neighboring pixels required

to be examined. This property prohibits the use of these

methods on a small microcontroller because of the limited

processing power and memory size available. Therefore,

unless special hardware chips (for example, Digital Signal

Processor (DSP) and Single Instruction Multiple Destination

(SIMD) processor) are used, it is difficult to achieve a high

Manuscript received August 16, 2016; revised December 14, 2016. This

work is supported by a direct grant (Project Code: 4055045) from the Faculty

of Engineering of The Chinese University of Hong Kong.

Hung Kwan Fung and Kin Hong Wong are with the Department of

Computer Science and Engineering, The Chinese University of Hong Kong,

HSH Engineering Building, CUHK, Shatin, Hong Kong (e-mail:

edwardfung123@gmail.com, khwong@cse.cuhk.edu.hk).

throughput computer vision system at low cost. Many people

are interested in finding hardware solutions for computer

vision algorithms. For example, it is possible to use FPGAs

for building feature detectors to enable them to be more

efficient in processing and power consumption.

In the paper [3] the whole Harris detector is implemented

using purely FPGAs. The speed is fast but the function may

not be flexible enough to cater for different applications. That

means you need to redesign the whole system for a specific

task and specification. To make the system more flexible,

some projects have demonstrated that the computationally

intensive computer vision algorithms can be running at high

frame rate on heterogeneous systems with an ordinary

microcontroller and an FPGA. There are other examples such

as [4], Benedetti and Perona designed and implemented a

real-time 2D feature detection algorithm on FPGA. In the

many projects the feature detection system is based on the

work of feature detectors such as that in [5]-[7] and the KLT

tracker [8]. However all these depend on image gradient

information in both horizontal (x) and vertical (y) directions.

To compute these image gradients, the whole image is

convolved with a kernel and it is therefore very time

consuming.

There are also recent projects using FPGAs for computer

vision, examples are [9], [10] and [11]. However, they are

using high speed FPGAs for the vision tasks, the

performances are good but the costs are relatively higher.

Leeser, Miller and Yu [12] designed a smart camera setup

based on FPGAs and demonstrated two very different

applications of this setup: medical image processing and fluid

dynamics computation. Part of the computation is shared by

the FPGA and the result is sent to a computer for further

processing. The first application requires comparing eight 11

×11 templates to be operated over the whole image. While

cross-correlation of two areas (40×40 and 32×32) over two

images of size 1008×1016 is needed in the second application.

In both applications, they have speedups of over 20 times

compared to a pure software implementation. There is a also

hybrid approach such as the one by Tippetts et al. [13], it

implemented a Harris Feature detector and priority queue

using an FPGA. By using a micro-processor to run a

RANSAC [14] algorithm on top of the result from the FPGA,

they successfully implemented an on-board vision solution in

determining movement of small unmanned air vehicles that

should be small in size, weight and power consumption. This

work shows that it is possible to use the FPGA approach in

mobile devices.

In this paper, we proposed a smart camera that finds the

edge pixels by using the Canny edge detector [15] using an

off-the-shelf microcontroller and an FPGA.

A Multiplier-Less Implementation of the Canny Edge

Detector on FPGA and Microcontroller

Hung Kwan Fung and Kin Hong Wong

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

172DOI: 10.7763/IJCTE.2017.V9.1133

mailto:edwardfung123@gmail.com
mailto:khwong@cse.cuhk.edu.hk

This system is intended to be used in applications like

making a mobile virtual reality system that is required finding

the correct display area for the projector etc. The FPGA acts

as a special processor designed to handle the image

processing tasks while the microcontroller is used to complete

the other content to the correct position in a camera projector

system. In such a system it is essential to have a high

throughput image processor in order to achieve smooth and

real-time projections.

The organization of the paper is as follows. In Section II,

the theory of our method will be discussed. Section III is

about the details of the implementation. Experimental results

are discussed in Section IV and we conclude the whole paper

in Section V.

Fig. 1. Overview of our proposed system.

TABLE I: ACTIVATION OF EACH MODULE

II. THEORY AND DESIGN

A. The Canny Edge Detector

The Canny edge detector is still the most widely used

algorithm to extract edges in a scene since its introduction in

1986. The Canny edge detector is preferred because by its

accuracy and efficiency. The detector takes a gray level image

and two thresholds as the input. By adjusting the values of the

two thresholds, the user can control the number of edge pixels

or the strength of the edges found. The edge detector takes the

gray level image as the input and it will be processed by

multiple stages sequentially, such as (i) noise reduction by

smoothing; (ii) image gradient; (iii) non-maximum

suppression and thresholding; and (iv) edge tracing. The

output is a binary image representing the edges.

B. System Design

Our design is intended to offload the heavy image

processing work from the microcontroller to the FPGA

hardware. Our smart camera is a combination of an ordinary

camera, a microcontroller and a FPGA module. The overview

of system is shown in Fig. 1. In the diagram, the camera

provides a stream of data to the processor. The processor

extracts edge pixels from the data by using the Canny edge

detector. However, since the number of iterations required

depends on the image input and cannot be determined

beforehand, therefore, only stage (i) to (iii) mentioned in the

last section are suitable for FPGA processing. While stage

(iv) is handled by software running on a microcontroller in

our system.

Since the image processing techniques require neighboring

pixel values of the target pixel, it is necessary to delay the

output of one stage so that the value can be used in the next

stage. For example, to find the gradient of pixel P at (x, y), 8

neighboring pixels are required, where 6 pixels are from the y

- 1 row and the y + 1 row, 2 pixels are from the left and right

pixel. To eliminate the need of storing the whole image before

any processing to take place, line buffers are added between

stages. Each line buffer is a circular buffer which can store up

to 4 rows of pixels. Each row is stored in independent RAM

chip so that three of them provide the data for the next stage

while the one left stores the data from the previous stage. With

the line buffers, each stage can run in parallel and return the

edge information to the microcontroller as soon as possible.

Thus, the delay is minimized.

In Fig. 1 the camera interface has two parts: timing signal

and data signal. Since the data stream is a raster scan from the

camera, the stream can be considered as a 1D array. To

convert this 1D array to 2D array which is more suitable for

most image processing techniques, the 1D array has to be

divided into different rows. The timing signal tells (i) when

the data for this pixel is ready; (ii) when the row has ended;

and (iii) when the data stream has ended. The data signals are

the raw pixel intensities from different channels. The signal

values obtained directly from the camera are encoded,

therefore decoding is required to extract the values of

individual channels. Although the modules for each stage are

running in parallel, the activation times are different as some

of the data are delayed. A control unit is used to generate

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

173

control signals to each module. The control signals are

derived from the timing signal of the camera. Table I shows

the activation of different modules when the i-th row is

sending from the camera. The module is active if there is a „Y‟

in the cell. Otherwise, the module is deactivated. As shown in

Table I, h is the height of the image, and we can see that the

first pixel of the result image is ready after reading 9 rows of

pixels from the camera. Since the result is delayed, the

original timing signal from the camera is not usable and

cannot be sent to the microcontroller directly without

modification. To synchronize the system a timing signal

generator is used to generate the correct timing signals to the

microcontroller to coordinate the system. It is achieved by

sending a delayed version of the timing signal of the camera to

other parts to achieve synchronization.

C. Image Acquisition

There are various kinds of image encoding standards

available in the industry. In this paper, we assume the pixels in

the data stream are encoded in the RGB565 format. Each

pixel of the multichannel image IRGB is 16 bits long and the

first 5 bits are the value of the red channel. The following 6

bits are the value of the green channel. The last 5 bits are the

value of the blue channel. The resolution of the red channel

and blue channel is 1-bit lower than the green channel. Table

II shows the number of bits, resolution and range of each

channel.

To process the image, the pixels have to be decoded in

order the find the value of each channel. Because the ranges of

the three channels are not the same, the values of red channel

and blue channel have to scale up (by multiplying two) before

any processing with the green channel.

In order to decode the pixel, the processor has to process 3

masking operations and shift the masked results accordingly.

The temporary results for red and green channel have to be

shifted to the right by 10 bits and 5 bits respectively. For the

blue channel, the temporary result has to be shifted to left by 1.

It would be computationally expensive to use the

microcontroller to decode the image. But by using the FPGA

the masking and bit shifting operation can be processed

instantly by just wiring the signal to the correct places. Zeroes

are padded in the front so that a pixel is represented by 3

bytes.

TABLE II: SUMMARY OF EACH CHANNEL

Channel No. of bits Resolution Range

Red 5 32 0-31

Green 6 64 0-63

Blue 5 32 0-31

Fig. 2. The bit arrangement of the 16-bit RGB pixel data.

In Fig. 2, we show how a RGB565 encoded pixel data can

be decoded by the FPGA. It is achieved by rewiring the

signals through masking and shifting.

D. RGB-to-Gray Conversion Module

After decoding, the RGB image is ready to be converted

into a grayscale format. RGB conversion is a weighted

average operation of the three channels. The conventional

grayscale value Pgray is calculated by using the formulation

introduced in [16], the formula is shown here as follows.

gray 0.3* 0.59* 0.11*R G BP P P P   (1)

However, for simplicity in design and avoiding floating

point calculation, we use equation (2) to convert a RGB pixel

to a grayscale pixel, because all multiplications in equation 2

can be implemented by bit shifting.

gray 0.25* 0.5* 0.25*R G BP P P P   (2)

Fig. 3. Conversions of the original image to different formats.

The visual effect of the conversion by applying equation

(2) 2 is more or less the same as the result of applying the

conventional equation (1). Fig. 3 shows the conversion result

of the two formulae. The result of conversion is stored in the

line buffer for the next stage of operation. Since the resolution

of the green channel is 6-bit, the converted grayscale value is

also in 6-bit resolution. In Fig. 3, the image (a) is the original

RGB image, (b) and (d) are the grayscale conversion results

by applying the conventional equation (1) and our simplified

equation (2) respectively. The image in (c) shows the absolute

difference of (b) and (d). It is scaled up by a factor of 5 to

make the difference more noticeable.

E. Image Smoothing Module

The first stage of the Canny edge detector is noise

reduction by image smoothing. It is achieved by convolving a

Gaussian kernel with the image. The Gaussian kernel is an

approximation of the 2D Gaussian distribution function. The

constants in the kernel are floating point numbers smaller than

1. But it is not practical to use floating point numbers since

their operations are slower than integer arithmetic.

Furthermore, we found that the result of using floating

point arithmetic does not yield significantly better result than

using integer arithmetic. Therefore we use integer arithmetic

here as follows. First, the constants of the kernel are scaled up

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

174

by an integer so that all the constants are greater than 1. Then,

the kernel values are rounded to the nearest integers. And, the

image is convolved with the new integer kernel. Finally, the

result of the convolution is divided by the scale factor.

However, the direct implementation of this integer

arithmetic does not favor FPGA implementation because of

two reasons. The first reason is that it requires a multiplication

unit for each constant in the kernel. A multiplication unit will

consume many logic blocks. The second reason is that

division has to take several clock cycles to complete and it

also uses a lot of logic blocks to make one division unit. To

make it more suitable for the FPGA implementation, we

specially designed a kernel where the convolution operation

will only need shifting and adding to complete. The proposed

kernel is:



















121

242

121

16

1
smoothK

Fig. 4. Block diagram of the Add-Shift-Add module.

The proposed kernel is an approximation of the Gaussian

Kernel with sigma equal to 0.76. Notice that, to compute the

convolution of this kernel with a 3 × 3 pixel patch P, four

“Add-Shift-Add” (ASA in short) operations are required. In

Fig. 4, the inputs and output relation of the ASA operator is

shown and >> is bitwise right shift and << is bitwise left shift.

Consider the following:

  

 )),,(),,,(),,,((
16

1

2(2)2()2
16

1

*

,

ihgASAfedASAcbaASAASA

efdhigbca

KP

hence

ihg

fed

cba

P

smooth























where ASA(x, y, z) = x + 2y + z. The multiplication of 2 in the

ASA operator can be realized by shifting the input to the left

by 1 bit. The ASA operator is simple in architecture because it

is multiplier-less and has only two adders and a shifter. This

ASA operator can be reused in the gradient operators which

will be discussed later. Since the scale factor of the Gaussian

filter is 16, the implementation is simple. It just performs an

arithmetic right shift by 4 bits on the result of the final ASA

module. Fig. 4 shows the block diagram of the ASA operator.

The architecture of the ASA module is simple which consists

of two adders and a shift-left-by-1 module. The

implementation of the proposed Gaussian filter is shown in

Fig. 5. It uses four ASA modules and an arithmetic right shift

module. The right shift module will shift the result of the last

ASA module by 4 bits.

Fig. 5. Block diagram of the Gaussian filter module.

F. Image Gradient Module

The Sobel gradient operator is used to find the image

gradient. The Sobel gradient operator returns the horizontal

gradient Gx and vertical gradient Gy of an image I. They are

defined as:

IGIG yx *

121

000

121

4

1
,*

101

202

101

4

1















































We can reuse the Add-Shift-Add module introduced

previously to implement the kernels. Similar to the Gaussian

filter, the Sobel operator can be implemented with adder and

shifter. In Fig. 6, it shows our implementations of the Sobel

operator in the vertical and horizontal directions. In the

system, the two operators are having a similar architecture the

only difference is the inputs they take. It is noted that, in the

architectures, the right shift module must be arithmetic right

shift since the result from the subtraction module can be

negative.

The result of the horizontal gradient and vertical gradient

calculation is 7 bits long but not the same as the 6-bit long

input. It is because the gradient could be a negative value and

one extra bit is required to represent the negative values. Fig.

7 shows the block diagram of the Sobel operator. In the Figure,

it shows the absolute value module takes a 7 bits binary

number b using the two‟s complement format, b0 is the least

significant bit while b6 is the most significant bit. The label

5:0 and 6:1 indicate the numbers of bits and how they are

connected. For example, 6:1 means from bit 6 to bit 1 are

connected to inputs, and bit 0 is not connected. The

magnitude G and the angle  of the gradient is calculated as:

















x

y

yx

G

G

GGG

1tan

Normally, the magnitude G is calculated using the

Euclidean norm which involves squaring the values and then

taking square root.

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

175

Fig. 6. Block diagram of Sobel operator.

Fig. 7. Block diagram of gradient magnitude module.

In practice, to increase the processing speed, the sum of the

absolute values of the horizontal gradient and vertical

gradient is used and it gives accurate enough result. This

operation is also suitable to be implemented by a FPGA.

The value of  in Equation 5 is rounded to the four angles to

representing horizontal line (0
o
), vertical line (90

o
) and the

two diagonals (45
o
 and 135

o
). The trigonometric function

tan
-1

() is involved and it is implemented using table lookup.

By using table lookup, the calculation of (Gy/Gx) is not

needed. Since the function is symmetric, it is possible to

consider the first quadrant only. We first determine whether

the line is horizontal or vertical. If the line is neither

horizontal nor vertical, then it must be a diagonal line. To

check if it is a 45
o
-diagonal line or a 135

o
-diagonal line, we

only have to examine the signs of Gx and Gy. If both of the

signs are the same, the line is a 45
o
-diagonal line.

TABLE III. GRADIENT ORIENTATION LOOKUP TABLE. THE COLUMN AND

THE ROW ARE THE ABSOLUTE VALUE OF GX AND GY RESPECTIVELY. THE

INCLINED ANGLE OF THE LINE (0O, 45O, 90O, 135O) IS MAPPED TO 0, 1, 2 AND

3 RESPECTIVELY

Otherwise, it is a 135
o
-diagonal line. Since the first

quadrant is considered, the absolute values of Gx and Gy are

used in the table lookup. A portion of the lookup table is

shown in Table III as it is too messy to show all entries. The

reader should able to deduce the remaining values.

The number of bits required to store Gx and Gy is 7 bits.

However, the absolute value of them is not greater than 63.

Therefore, 6 bits are used to store the absolute value of Gx or

Gy. The magnitude of the gradient is the sum of them, and

therefore 7 bits are needed to be stored. The number of bits

required for orientation is 2 bits. So the total required is bits.

However, since most memory unit available nowadays

requires 8-bit word size, we discard the least significant bit of

the magnitude. By using such arrangement, we can encode the

magnitude and orientation in an 8-bit data and store them in

the line buffer.

G. Non-maximum Suppression and Hysteresis

Thresholding

To thin the line into one-pixel wide, non-maximum

suppression or NMS is applied to the gradient magnitude

image. To determine whether the pixel is on the edge or not,

the gradient magnitude G of this pixel is compared with the

other adjacent pixels along the gradient orientation O. If the

gradient magnitude of this pixel is less than the other two

pixels G1 and G2, then this pixel is not an edge. Otherwise,

the pixel is compared to the high threshold Thigh and low

threshold Tlow. If G < Tlow, the pixel is not an edge pixel. If Tlow

< G < Thigh, it is a weak edge. Otherwise it is a strong edge. To

summarize, an edge pixel must fulfill the following conditions

simultaneously: (1) Greater than the adjacent pixel along the

gradient orientation and; (2) Greater than the low threshold.

Fig. 8 shows the modules that process the non-maximum

suppression stage in one clock cycle. In the diagram, we use

two bits to encode the gradient orientation result O. Strong

edge, weak edge and non-edge is encoded into 11(b), 01(b)

and 00(b), respectively.

Fig. 8. Non-maximum suppression and hysteresis thresholding module.

Four comparison statements are required to determine

whether the point is a strong edge, weak edge or not on edge.

They should be executed sequentially in software when

implemented using a single CPU system. However, for our

FPGA approach they can be handled in parallel, since they are

independent with each other. In Fig. 8, the component relies

on the Adjacent Selector to select suitable values of G, G1 and

G2 from the gradient magnitudes of the neighbor pixels

according to the value of the gradient orientation O. This step

can be achieved by using a lookup table.

The architecture is shown in Fig. 8. In the diagram, the

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

176

adjacent selector picks the correct value of G, G1 or G2

according to the gradient orientation O. The comparator

outputs logic 1 if the input a is greater than b. Otherwise, the

output will be 0. The result is encoded by using 3 2-input

AND gates.

III. IMPLEMENTATION

Our proposed smart camera is implemented using the

VHSIC hardware description language (VHDL) on a Xilinx

Spartan-3E XC3S250E device. Three sets of line buffers are

used for different stages. We assumed the data stored in the

line buffers is one byte long and the size of the image is 320 ×

240. Since each line buffer stores 4 rows of data, the number

of memory cells required for one line buffer is 1280 bytes.

Therefore, the total number of bytes for the line buffers is

3840 bytes. The data of 3 rows in the line buffer should be

accessed in parallel and used as the inputs of the image

processing module.

The number of Lookup Tables (LUTs) is another important

resource in FPGA since all combinational logic is

implemented using LUTs. The number of LUTs of

RGB-to-gray convertor, Gaussian blur module, Gradient

module and non-maximum suppression and thresholding

module are 9 LUTs, 64 LUTS, 265 LUTS and 50 LUTS

respectively. The number of LUTs for the image processing

modules is 388. We estimate that the total number of LUTs

required for the whole system including the control units, line

buffers and timing signal generator is the 776. As the

XC3S250E has 4896 LUTs, only around 16% of LUTs is

needed. This result gives enough room for implementing

more sophisticated color space converters and Gaussian

kernels for the smoothing module. As the number of LUT

required in this design is low, it is possible to implement

another detector into one FPGA. For example, the Harris

feature detector can reuse the result of the gradient module

and outputs the result together with the Canny edge detector.

IV. EXPERIMENT

Fig. 9. Comparison of the edge detector results of the proposed hardware

approach and OpenCV software implementation. (a) is the original image. (b)

and (c) are the edge image from OpenCV and the proposed system

respectively. (d) shows the difference between the two edge images.

To evaluate the result of our proposed hardware Canny

edge detector on FPGA, we also implemented a pure software

edge detector based on the OpenCV [17] library for

comparison. Fig. 9 shows the results of our proposed system

and the result of using the software library. The results are

comparable to most significant edges are found in the images.

The discrepancy in the two edge images, as shown in part (d)

of Fig. 9, are caused by different RGB-to-gray conversion

methods and Gaussian kernels used in the smoothing process.

For more information, please visit our project web page at

https://www.cse.cuhk.edu.hk/~khwong/www2/conference/20

16/IWPR2016/IWPR2016.html.

V. CONCLUSION

A hardware implementation of the Canny edge detector is

proposed in this paper. It is multiplier-less and is suitable for

low cost devices. In this work, the Canny edge detector is

divided into different stages and the system can process the

data stream directly. The detail of each module is discussed in

this paper. They are implemented using VHDL and

synthesized using the target device Xilinx-Spartan-3E. It

shows that the number of LUTs required is low, so there is a

possibility that additional functions such the Harris feature

detector can be added to the device in future. The result of our

hardware approach is compared to that generated by a pure

software method using OpenCV. Both results are similar and

visually acceptable. It is believed that our method is suitable

for many mobile virtual reality applications.

REFERENCES

[1] S. M. Smith and J. M. Brady, “Susana new approach to low level image

processing,” International Journal of Computer Vision, vol. 23, no. 1,

pp. 45–78, 1997.

[2] C. Harris and M. Stephens, “A combined corner and edge detection,”

in Proc. the Fourth Alvey Vision Conference, 1988, pp. 147–151.

[3] T. L. Chao and K. H. Wong, “An efficient fpga implementation of the

Harris corner feature detector,” in Proc. 2015 14th IAPR International

Conference on Machine Vision Applications (MVA), 2015, pp. 89–93.

[4] A. Benedetti and P. Perona, “Real-time 2-d feature detection on a

reconfigurable computer,” in Proc. the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 1998, p.

586.

[5] M. Krystian and C. Schmid, “An affine invariant interest point

detector,” Computer Vision—ECCV 2002, Springer Berlin Heidelberg,

pp. 128-142, 2002.

[6] J. Shi and C. Tomasi, “Good features to track,” in Proc. 1994 IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition, 1994, pp. 593–600.

[7] B. D. Lucas and T. Kanade, “An iterative image registration technique

with an application to stereo vision,” pp. 674–679, 1981.

[8] C. Tomasi and T. Kanade, “Detection and tracking of point features,”

International Journal of Computer Vision, Tech. Rep., 1991.

[9] D. Honegger, H. Oleynikova, and M. Pollefeys, “Real-time and low

latency embedded computer vision hardware based on a combination

of fpga and mobile cpu,” in Proc. 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2014, pp. 4930–4935.

[10] Q. Xu, S. Varadarajan, C. Chakrabarti, and L. J. Karam, “A distributed

canny edge detector: algorithm and fpga implementation,” IEEE

Transactions on Image Processing, vol. 23, no. 7, pp. 2944–2960,

2014.

[11] P. R. Possa, S. A. Mahmoudi, N. Harb, C. Valderrama, and P.

Manneback, “A multi-resolution fpga-based architecture for real-time

edge and corner detection,” IEEE Transactions on Computers, vol. 63,

no. 10, pp. 2376–2388, 2014.

[12] M. Leeser, S. Miller, and H. Yu, “Smart camera based on

reconfigurable hardware enables diverse real-time applications,” in

Proc. the 12th Annual IEEE Symposium on Field-Programmable

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

177

https://www.cse.cuhk.edu.hk/~khwong/www2/conference/2016/IWPR2016/IWPR2016.html
https://www.cse.cuhk.edu.hk/~khwong/www2/conference/2016/IWPR2016/IWPR2016.html

Custom Computing Machines, Washington, DC, USA, 2004, pp.

147–155.

[13] B. Tippetts, S. Fowers, K. Lillywhite, D.-J. Lee, and J. Archibald,

“Fpga implementation of a feature detection and tracking algorithm for

realtime applications,” in Proc. the 3rd International Conferenceon

Advances in Visual Computing, Volume Part I, , 2007, pp. 682–691.

[14] M. A. Fischler and R. C. Bolles, “Random sample consensus: A

paradigm for model fitting with applications to image analysis and

automated cartography,” Commun. ACM, vol. 24, pp. 381–395, June

1981.

[15] J. Canny, “A computational approach to edge detection,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol.

PAMI-8, no. 6, pp. 679–698, Nov. 1986.

[16] W. K. Pratt, Digital Image Processing, New York, NY, USA: John

Wiley & Sons, Inc., 1978.

[17] OPENCV, Intel. Open Source Computer Vision Library. [Online].

Available:

http://www.intel.com/technology/computing/opencv/index.html

Kin Hong Wong obtained his Ph.D. from the

University of Cambridge, UK and is now an Associate

Professor of the Computer Science and Engineering

Department of the Chinese University of Hong Kong.

His research interests include computer vision, signal

processing and virtual reality.

Hung Kwan Fung is now at the Department of

Computer Science and Engineering, The Chinese

University of Hong Kong, HSH Engineering Building,

CUHK, Shatin, Hong Kong, he has obtained M.Phil.

and B.Eng. degrees in computer engineering.

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

178

