


Abstract—This paper presents the use of fuzzy logic in

designing the enemy behaviour for a popular arcade game called

Meteor Escape. The original game was played against a cloud of

meteors that might collide with a spaceship which is trying to

make its way in the deep space. The game is extended with

additional Kamikaze drones working with a simple decision

mechanism based on zero-order Sugeno model. The results show

that this additional feature improves the gameplay.

Index Terms—Fuzzy logic, arcade game, enemy design, Unity

3D.

I. INTRODUCTION

Artificial intelligence is a fundamental method for creating

opponents in games [1]. The user might play the game alone

and the game has to provide a significant level of challenge.

This can be provided by creating enemy units with artificial

intelligence, allowing the game to be played against the

computer.

In the past days, creating AI in games were harder. Old

technology and low processor speeds were creating big

problems for game developers. All the graphics and game

engine had to be processed by the same processor, developers

didn‟t have enough process power for creating good AI

systems. But thanks to the current technology, game graphics

are processed by separate graphics processors (GPUs)

providing an enormous power for AI [2].

It is known that the purpose of game AI is to make the game

more challenging, but not unbeatable, hence more interesting.

The enemies in a game can be programmed to know the user

position in advance, before line of sight, making it impossible

to beat the enemies. AI, here, should be designed so that it

doesn‟t overwhelm the player while adding challenging

parameters to the game. This feature of AI actually what

makes a game success [3].

There are many different ways of creating enemies with AI.

State machines can be used for creating AI. State machines

includes specific states for related occasions. In the game loop

these states can change according to the gameplay or

according to the rules. The drawback of this method is that it

can be difficult to improve and change the system. Certainly,

state machines are widely used inside most popular games,

but it is not the only way to do it. Fuzzy logic can also be

implemented within the game AI [4] which can provide more

human-like decisive behaviour.

Manuscript received August 18, 2016; revised December 8, 2016.

The authors are with SAAT Lab in Computer Engineering Department,

Ankara University, Turkey (e-mail: alisoylucicek@gmail.com,

ebostanci@ankara.edu.tr, a.buraksafak@gmail.com).

Fuzzy logic is not widely used inside games. Some

implementations are made in some AI systems inside games,

but they are not very popular. But there are some examples

which most of the gamers know.

Unreal is a very popular first person shooter game. Enemy

AI inside the game was implemented with fuzzy logic [5].

This made the enemies in game more intelligent and less

predictable. Players really enjoyed the enemies inside the

game. S.W.A.T. 2 is a real time strategy game [6] in which the

characters that are controlled by the game (Non-Player

Character, NPC) using fuzzy logic based AI. Enemy Nations

is another example of fuzzy logic implemented AI. Rules and

the inference engine is separated from each other for better

enemy behaviour [7].

As it can be seen from these examples, fuzzy logic can

work inside AI systems and they provide very good results.

This paper presents the fuzzy-logic based enemies for a

popular game. The rest of the paper is structured as follows:

Section II gives general information about fuzzy logic and its

principles, followed by Section III cases where possible

caveats of such systems can arise are discussed along with

their advantages. Section IV gives a brief information about

Unity 3D which was used for implementing the game. Section

V describes the fuzzy logic system used in the game and the

results for this is presented in Section VI. Finally, the paper is

concluded in Section VII.

II. FUZZY LOGIC

Fuzzy logic was presented by Lotfi A. Zadeh in 1965.

Conventional logic in computers have two consequents: true

or false, facilitating a bimodal structure for decision making.

However, this method is far from the way used in human

thinking. In real life, people may have levels to decide an

occasion by constructing statements like „it is really hot today.

„I usually read books‟. From these examples it can be seen

that humans think in a fuzzy way, i.e. we use words of

uncertainty to describe behaviours or events [8], [9].

A fuzzy decision making engine comprises of 3 main steps:

Fuzzification, inference and defuzzification. Fuzzification

step involves obtaining inputs and converting them to

linguistic variables. For example: a person who is 180 cm

height can be considered as a tall person. So this person is a

member of the group of tall people. In fuzzy logic, this group

is called a fuzzy set. Fuzzy sets describe a degree of a variable

in linguistic way. From previous example, a 180 cm person is

member of “Tall” fuzzy set.

After fuzzifying crisp inputs to linguistic variables, a type

of inference must be chosen. In this case, we will focus on

Sugeno type fuzzy inference. Sugeno type fuzzy inference is

A Fuzzy Logic Based Attack Strategy Design for Enemy

Drones in Meteor Escape Game

Ali Emre Soylucicek, Erkan Bostanci, and Aykut Burak Safak

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

167DOI: 10.7763/IJCTE.2017.V9.1132

mailto:alisoylucicek@gmail.com
mailto:ebostanci@ankara.edu.tr

developed by Takagi, Sugeno and Kang [6]. Sugeno type

inference uses a single spike, a.k.a. singleton. This singleton

is the consequent of the related fuzzy rule.

The inference engine must check the rule base, which is the

database of rules of the behaviours. These rules are prepared

for the behaviours of enemies inside the AI system. The rules

in this system have two antecedents and a single consequent.

Antecedents are the linguistic variables and their membership

values. If the antecedents of the specific rules are right, then

that specific rules are fired. Structure of a rule is as follows:

• if x is “A” OR y is “B” then z is f(x,y)

Fig. 1 depicts the rule evaluation process. Two antecedents

are calculated in “OR” operator, which takes maximum of two

membership values. The taken value is multiplied by the

constant k1 which can be seen as a consequence of the

decision making process. All of the fired rules create an

output value, and average of these values is the output value.

This output value can be used according to the needs of the AI

system.

Fig. 1. Sugeno Type Rule Evaluation [2].

Fuzzy logic systems are very useful in behaviour-based

systems and decision making. For example, enemy can guess

how scared the opponent is from its movements, or how

strong the opponent is and hence it can decide next action

accordingly. Also there are more implementations of fuzzy

logic and neural networks for more natural and realistic

behaviour AI enemies inside games.

III. PROS AND CONS OF FUZZY DECISION MAKING

Implementation of fuzzy logic inside AI system is quite

different from other type of logics. Most of the AI systems are

created by state machines. Creating states according to the

behaviours of enemies inside a game. But the number of states

might be overwhelming in some implementations. And also

maintenance of state machines is really hard and time

consuming.

But in fuzzy logic, rules are separated from the inference

engine and all the rules can be changed much easier. Easy

maintenance means less time consumed for development of

the system, which is more efficient. Also these rules can be

decided without a programmer. Rules can be decided in a

linguistic way, then a programmer can implement it inside the

rule base. Yet, these rules must be prepared with caution.

Someone with game design experience should prepare the

rules. Otherwise, rules can conclude incrorrect solutions,

which makes development progress longer.

A drawback of fuzzy logic system is the dependence of

inputs. If there are a lot of inputs to the inference engine, rules

are increased exponentially. This makes calculations harder

and longer. The fuzzy system needs to be created according to

the inputs, or should be separated to different sections and

work sequentially.

IV. UNITY 3D

Unity 3D is a cross-platform free game engine. It features a

lot of components which makes creating games easier. Having

its own physics engine and image implementations makes it a

powerful tool. Unity supports C#, Javascript and also Lua as

the programming and scripting languages.

Engine features are not the only thing which makes Unity

3D a powerful tool. Also the trainings provided by Unity‟s

website [10]. There are lessons about scripting, animations

and even physics. Hours of lessons and documentation makes

this game engine one of the best tool for game developers.

In addition to this, the community of Unity is huge. There is

a dedicated website for the community questions and answers.

Developers can ask questions about their problems and more

experienced developers offer their solutions and this is really

good for beginner developers.

Unity has a clean and organized user interface. There is a

scene view to see all the objects in the game scene. Also there

is a game pre-view to see how users will be seeing the game.

Game view only sees what the main camera is looking at the

scene. It is almost similar to making a movie which you can

participate. Hierarchy panel is the objects in the scene and all

the objects are well organized in child and parent hierarchy.

Every object in the game engine is a Unity Game Object,

which can have multiple components. From physics

components to renderer components, there are a lot of choices

for the programmer‟s needs.

The game in this paper is developed inside Unity3D engine

and fuzzy logic is implemented inside enemy AI.

V. FUZZY ENEMY DESIGN

This is a space themed 2D arcade game to implement fuzzy

logic in enemy AI. Game components are user spaceship,

enemy drones and meteors as depicted in Fig. 2. Objective of

the game is to stay alive as long as possible.

Fig. 2. Game objects

All of the designs of game objects were prepared in Adobe

Illustrator program. Background photo is edited in Adobe

Photoshop. Designs were created as simple as possible,

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

168

because main objective is to show how fuzzy logic works

inside enemy AI.

The spaceship is the game object which user controls. The

movement of the spaceship is prepared due to the movement

in free space. Thrusters can only move ship forward, to turn

and move the ship to another direction, user must use thrusters

and the rotation. User spaceship also has 100 life points

before it is destroyed.

Meteors have low level artificial intelligence. User

spaceship has a gravitational pulling force at certain radius.

When a meteor enters this radius, it follows user spaceship.

When it gets out of the pull radius, it continues to move like it

would do in empty space.

Enemy „Kamikaze‟ drones are the most complicated

objects in the game. Fuzzy logic was implemented inside

these drones. These drones have a radar of certain distance

radius. This radar has an operation frequency as will be

described later. When the user spaceship enters this radar,

fuzzy logic inside the drone calculates the position and

distance between itself and the user spaceship. After fuzzy

logic calculations, it shoots itself into a direction and explodes

as in Fig. 3. The main purpose is to destroy the user spaceship.

Fig. 3. Kamikaze drone motion directions.

For the explosion of enemy drone, a free 2D explosion

asset package was used from Unity asset store. Explosions

have certain radius of effect, and if user spaceship is inside

this radius, ship loses 20 life points. This free asset package

already has the particle effect and the animations ready. In the

code of the enemy drone controller, when it reaches maximum

range or gets close enough to the user spaceship, this

explosion is spawned at the location of enemy drone. When

explosion occurs, an explosion force is applied to the user

spaceship to give a more realistic effect.

For the implementation of fuzzy logic inside enemy drones,

input and output membership functions are created.

Membership values of inputs are calculated through input

membership functions and outputs are calculated through

output membership functions.

X axis of this graph is the input value. Y value of the graph

is the membership value of the fuzzy sets. For example:

according to the graph, if we choose value 2 for the input, it is

member of the “High” fuzzy set and the membership value of

the input is 1 (Fig. 4).

Low Medium High

Distance

µ(Distance)

-1.0 -0.5 0.5 1.0

1.0

0.5

0.25

0.75

Fig. 4. Input membership fuzzy sets.

k1 k5k4k3k2 k6 k7 k8 k9

1.0

Fig. 5. Output membership functions.

The following set of rules shown in Table I are used for the

enemy drones:

TABLE I. RULES IN THE FUZZY DRONE CONTROL

X Distance Y Distance Consequent

Left Middle West (k1)

Left Top North West (k2)

Middle Top North (k3)

Middle Middle Explosion (k4)

Right Top North East (k5)

Right Middle East (k6)

Right Bottom South East (k7)

Middle Bottom South (k8)

Left Bottom South West (k9)

These rules are checked from the rule base, and the

membership values are sent back to the inference engine.

Inference engine gets output membership values and takes the

output membership values and places them into an integer

array. Average of these values are taken and placed to output

membership graph of Fig. 5. The average crisp value is placed

at the X axis of the graph. The closest output function of that

value is chosen as the final output function. Then the enemy

drone shoots itself according to the output function.

Every enemy drone has its own inference engine. Because

if there are more than one drone trying to get calculations

from inference engine there will be conflict problems.

Individual inference engine solves this problem.

Let‟s see an example how an enemy drone detects the user

spaceship and fires itself to the chosen direction.

If we look at Fig. 6 we can see the movement of enemy

drone. At the moment of enemy drone radar scan, user

spaceship is at the north east of the enemy drone. X and Y

distances are both 2 units. If we look at the Fig. 4 we can

calculate the membership values of these crisp inputs. These

are both equivalent to 1 and both are members of fuzzy set

“High”. Then inference engine sends these linguistic

variables with their membership values and a specific rule

(Table I) is fired:

If X is “High” and Y is “High” then

direction is “North East”.

North east is the fifth output membership function where

enemy drone shoots itself to the north east direction.

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

169

Obviously there is only 1 rule fired and average of the output

membership function values is same as the output of fifth rule.

But if there were more than one rule fired, then there would be

multiple outputs. In this case, the average of all these values

would be chosen and the closest output function would be

chosen as the crisp output value.

Fig. 6. Example of an enemy drone movement.

VI. RESULT

During the calculations and tests on gameplay, enemy

drones hit user spaceship mostly accurately. Some of the

times user spaceship moves too fast and when enemy drone

fires itself towards the chosen direction, speed of the enemy

drone is not fast enough to catch the user spaceship. But this is

a very rare situation, user spaceship doesn‟t move too fast

most of the times.

Fig. 7. Drone approaching the spaceship.

Fig. 8. Explosion effect after the drone collides.

During the implementation of fuzzy logic there were some

problems. At first only the membership values were taken as

the output value evaluation. This resulted in concluding for

the incorrect directions for motion. Every rule fired produces

a membership value, and this value must be multiplied with a

constant value declared before. Sugeno output functions are

singletons, and every membership value sent to the functions

are multiplied with a constant variable. Average of all these

values are chosen as the output value as a result enemy drone

can shoot itself to the right direction more frequently as shown

in Figs. 7 and 8.

VII. CONCLUSION

Fuzzy logic is a powerful tool for the AI implementations

inside the games. Of course state machines would work

without any problem for such games. However, bigger and

more complicated AI systems can have problems with the

state machines. Too many options can produce too many state

machines, which makes it harder for the developers. Making a

minor change inside this AI system will also be very hard

because of the quantity of the states.

When fuzzy logic is employed, every component can be

separated from each other and can be manipulated easily.

Addition or removal of rules from the rule base is much faster

and can be done even without a high level of programming

experience. Also the behaviours of the AI characters inside

the game are connected to each other with fuzzy inference.

For instance, a character can have emotions, physical strength

and movement systems. With fuzzy inference system AI

characters can decide where to move or what to do according

to emotional state and physical awareness. This makes AI

actions more realistic.

In this paper we have shown that a fuzzy logic based AI

implementations can make significant contributions to game

development as well as making the game more challenging

and hence enhancing the gameplay. The enemy drones

operated with zero order Sugeno inference engine can decide

on the time for attacking the spaceship and giving damage.

The player would not be able to guess whether a drone is in

sleep mode (not sending radar signals) or is ready to attack.

For research purposes, fuzzy logic should be used more

commonly inside AI systems for games since it is a quite

efficient way to see AI behaviour implemented characters

inside games.

REFERENCES

[1] M. Buckland, Programming Game AI by Example, Jones& Bartlett

Learning, 2005.

[2] M. Negnevitsky, Artificial Intelligence: A guide to Intelligent Systems,

Addison-Wesley, Reading, MA, 2005.

[3] M. Pirovano, “The use of fuzzy logic for artificial intelligence in

games,” Department of Computer Science, University of Milano,

Milano, Italy, 2012.

[4] D. Johnson and J. Wiles, “Computer games with intelligence,”

Proceedings of the FUZZ-IEEE, pp. 1355-1358, 2001.

[5] S. Woodcock. (August, 1999). Game AI: The State of the Industry.

[Online]. Available:

http://www.gamasutra.com/features/19990820/game_ ai_01.htm

[6] S. Woodcock. (2008). Games making interesting use of artificial

intelligence techniques. [Online]. Available:

http://www.gameai.com/games.html

[7] P. Sweetser, “Emergence in games,” Cengage Learning, 2008.

[8] T. Ross, Fuzzy Logic with Engineering Applications, Wiley, 1999.

[9] L. A. Zadeh, “Fuzzy logic = computing with words,” Computer

Science Division/Electronics Research Laboratory, Department of

EECS, University of California, 1996.

[10] Anonymous. (2016) Unity Tutorials. [Online]. Available:

https://unity3d.com/learn/tutorials

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

170

Ali Emre Soylucicek is currently a senior student at

Ankara University, Computer Engineering

Department, Turkey. He graduated from Golbasi

Anatolian High School. He completed Erasmus+

exchange program in Poland – Krakow for one year as

well as participating in Erasmus+ internship program

in Krakow. He performed his internship at a game

company called “Duckie Deck”. He is currently

working part-time GelişimPark Inc. at

Cyberpark-Bilkent.

He is focused on developing games as a programmer for both mobile and

other platforms. He also conducted research about artificial intelligence

implementations inside games. He improved himself by doing researches

about Unity3D game engine. He created variety of games on both iOS and

Android games, also published them to the market. He is currently

developing more games and doing research in game development and

artificial intelligence implementations inside games.

Erkan Bostanci received a BSc degree in the

Computer Engineering Department from Ankara

University, Turkey in 2007. Consequently, he joined

the same department as a Research Assistant and

completed his MSc on real-time battlefield

simulation in 2009. He obtained his PhD from

School of Computer Science and Electronic

Engineering, University of Essex, United Kingdom

in 2014 with his thesis on real-time user tracking for

augmented reality.

 He started working with the Gendarmarie Schools Command as a

Planning Officer Designate in June, 2014 where he conducted the research

for developing a vision-based system for analysing crime scenes. He has

been promoted to Second Lieutenant in January, 2015. Having completed

his military service, he currently continues his post in Ankara University as

an Assistant Professor.

 His research interests include different yet closely related aspects of

computer science from image processing, computer vision and graphics to

artificial intelligence and fuzzy logic as well as mathematical modelling and

statistical analysis. He recently developed a vision-based user tracking

system for various augmented reality applications for cultural heritage in

particular. He setup the SAAT laboratory in the department for conducting

research with the main aim for incorporating AI approaches for solving a

wide range of real world problems.

 Dr. Bostanci has been involved in technical committees for several

conferences and acted as a reviewer for various journals.

Aykut Burak Safak is a senior student in Ankara

University, Computer Science Department. He

graduated from Bor Akin Gonen Anatolian High

School. He completed two summer internships at

TaleWorlds Entertainment. His work interests include

computer graphics, artificial intelligence, genetic

algorithms and fuzzy logic. He has been working in

TaleWorlds Entertainment as a junior developer since

2014.

He is focused on developing artificial intelligence in games. His studies

also focus on the graphics programming in games. He created several games

using Unity 3D and SFML and a simple game engine using Open-GL for the

purpose of self-development yet haven‟t published any of them.

Author‟s formal

photo

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

171

Computer Science and Applied Technology

