

Abstract—This research is created Test Sequence using

Unified Modeling Language. State Transition Diagram is

behavior diagram, which helps analyzer to see the relationship

of each process in software and it can be done before developing

real software. The XML document assists in data managements.

Thus, various applications can be easily deployed and easy to

use. To generate test sequence and find priority of test case by

Ant Colony Optimization method (ACO). The function of this

method is that the ants will choose the path of the likelihood of a

multiple of the amount of pheromone and heuristic values from

the path connecting. Starting from start node to the end node,

the decrease of amount of pheromones is determined by the rate

of evaporation. The advantages of evaporation is able to force

the ants avoid selecting local optimal solution and add sub

transition search. If the probability is equal to, the ants do not

walk in the transition that has been in the past. So to be able to

explore other paths which have never been before. Researchers

create test sequence this way and focus on the analysis of

priorities of test cases so that testers can test the software

according to the important of test case.

Index Terms—Test sequence, test case, state transition

diagram, ant colony optimization (ACO), extensible markup

language (XML).

I. INTRODUCTION

Nowadays, the need of software utilizations is

overwhelming. Therefore, software companies try to find a

way to evaluate its performance so that customer can trust in

the software they have built. However, the lines of code have

grown complicated. The benchmarks have to be redesigned

to suit with software size variations. Testers have to be

precise about the test in order to make sure that the

benchmark will work properly and it would not fail on testing

some processes.

The research on testing software processes has been

continuously studied so as to raise standard on benchmark.

The popular methods are Cuckoo Search [1] and Firefly

Algorithm [2]. Both researches to establish test sequence and

priorities of the test case. The results of the research can be

designed to be appropriate. By giving priority to the node

over the path. Some path have disappeared, and test cases to

test software that is not covered enough. Ant Colony

Optimization (ACO) [3], [4] is a way to test software function

by imitating the way ants find a route to deliver its food.

Analyzing of pheromone value and heuristic value lead to a

greater possibility to find better directions to home. This

method allows better outcome, proper directions and may

Manuscript received August 4, 2016; revised December 5, 2016.

Both authors are with the Department of Computer and Information

Science of King Mongkut's University of Technology North Bangkok,

Thailand (email: suchada.rata@gmail.com, phakapan31@gmall.com).

lead to a new part which they have never been before. [5]-[8]

is a way to analyze the traffic and the traveling salesman can

design routes that appropriate the problem by using ACO.

II. RELATED WORK

A. Ant Colony Optimization (ACO)

ACO was founded by Marco Dorigo in 1991, based on an

idea that ants usually try to find the shortest ways to deliver

its food by measuring pheromone value. The process contains

two main steps.

1) Edge Selection: Select a route from the current node to

the next node. Analyze that which node is the node from

the current node, a node analysis and probability as

follow.

*)
i

ij ij

ij

ij ij

P

 (1)

ijP = The probability of selecting a node i to node j.

ijτ = The amount of pheromone paths between nodes i to

node j.

ijη = The heuristic value of the path between nodes i to

node j.

(*)ij iji
τ η

 = Total amount of pheromone and the

heuristic path of all the lines connected to the node i.

α = The weighted importance of pheromones.

β = The weighted importance of the heuristic.

2) Pheromone Update: Once they made a decision on their

path, they will adjust pheromone value as follow.

(1) k

ij ij ijk
τ ρ τ τ (2)

ρ = The rate of evaporation of pheromones.

ijτ = The amount of pheromone paths between nodes.

k

ijτ = The pheromone from the selected path from node i

to node j.

B. State Transition Diagram

It is one of many behavior diagrams in UML, used to

analyze system requirements, which contains three parts as

below.

1) State: is a condition to wait for a particular event.

2) Event: is working to make the system conditions change.

Automated Generate Test Sequence from State Transition

Diagram Using Ant Colony Optimization

Suchada Ratanakongnate and Phakakarn Makmun

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

156DOI: 10.7763/IJCTE.2017.V9.1130

mailto:suchada.rata@gmail.com

3) Transition: is a path indicates the event.

Fig. 1. State transition diagram.

Fig. 1 The state are a black spot, login and select menu.

Events are connected nodes between each state.

C. Extensible Markup Language (XML)

XML is a language to represent data. XML has open and

closed tags as same as HTML, but can produce tags and

manage data structures on itself. Data transferring and

connections between applications can be done easily due to

meta data management. Researchers have brought XML pros

to help collect data in a diagram so as to create software

benchmark.

Fig. 2. XML from state transition diagram.

Fig. 2 is a diagram of an xml data type which has two parts:

the state is an element called "subvertex" and transition in the

element of "transition" follows.

1) "subvertex" with the following information.

 xmi: type-this type of state is divided into three

categories:

uml: Pseudostate -the start state.

uml: State -the state that work together

uml: FinalState- the end state

 xmi : id- is defined by the code of the program.

 Name -is the name of the state

 Visibility -is defined as public

2) "transition" with the following information.

 xmi: type-this type of transition is set to uml: Transition.

 xmi : id -is defined by the code of the program

 name -is the name of the transition

 visibility -is defined as public

 source -the id of source state

 target -the id of destination state

D. Cyclomatic Complexity

 Cyclomatic Complexity, established by Thomas J.

McCabe, Sr. in 1976, is a measurement to evaluate software

complexity. It can index code paths. The flow graphs can be

calculated as follow.

() 2V G E N (3)

()V G = Cyclomatic Complexity

E = Number of connections between nodes

N = Number of nodes

In this study, the researchers use Cyclomatic Complexity

to determine the number of paths offered.

III. LITERATURE SURVEY

There are many researches to study and apply Ant Colony

Optimization implemented in the software testing or the

management of travel and other such research was conducted

as follows. [3] Analysis of the flow chart reversed by Ant

Colony, research shows that it can create the tests that have

been running reverse. And prioritization of testing by giving

priority to the pheromone and the heuristic. If the path is

formatted as a tree graph. The test will be repeated or loop.

[4] Analyzing Activity Diagram of none-loop graph and

enhances pheromone value without considering evaporating

rate. If it is found that the rate is zero, there is only an option

to the destination. In this case, the path could be reused,

leading to the overflow. [5] This is search which adapted to

find an optimum by Ant Colony method to find the best

prediction. First, testers create all possible routes to a

destination, which enrich an average time to the finishing

line. It is 47% and 56 % better used along with Previous Path

Replacement (PPR). [9] This research presents Feature

Selection Problem. It makes use of non-direction connection

and ACO to solve a problem. [10] It is the best to use ACO

with Normalized Root Mean Square Error (NRMSE) to

measure software reliability. Compared with BPNN, TANN,

PSN, MARS, GRNN, MLR, TreeNet, DENFIS, Morlet based

WNN and Gaussian based WNN, ACM is the best way to

create a benchmark. [11] This research method is used Ant

Colony Optimization to build test sequence from UML

statechart diagram using amount of pheromones which is a

core value in comparison to the next node. The researcher

concluded that is the advantages of the UML tools to create

test sequence. But this research uses all state coverage criteria

which is not the best test coverage. [12] This article describes

the behavior of ants, each of the Ant System, Max-Min Ant

System, Ant Colony System, which each are suitable for

different uses and examples of solutions to traveling

salesman. The researcher said that the effectiveness of Ant

Colony Optimization is a relatively young metaheuristic

which compared to others such as evolutionary computation,

tabu search, or simulated annealing. Yet, it has proven to be

quite efficient and flexible. [13] This research was presented

to create and prioritize the creation of the test sequence using

Ant Colony Optimization to create a path that has the

appearance of one condition to the other conditions (Decision

to Decision –DD graph) of the control flow graph. Without a

backward path and return results from the calculation as an

example to illustrate the process of creating a path. The

research found that can create a path that covers the entire

graph.

From study research of the effectiveness of Ant Colony

Optimization. Evaluated this method to be applied to the

design of the test sequence by using transition coverage and

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

157

path coverage criteria

IV. THE PROPOSED ALGORITHM

This section presents the ways of the ant to make the

testing process and the priorities of the test.

1) Generate an XML file from state transition diagram.

2) Input the XML to propose algorithm.

3) Path traversal is created a testing procedure with the

following steps.

 Calculate the complexity of state transition diagram to

be used to determine the number of paths.

 Set initial parameters.

 Find paths with the ant colony.

Calculating the probability of each transition that connect

to the current node (feasible set). To select the next node with

a higher probability. If the probability is equal. then will find

the followings:

The nodes are connected to the current node is whether the

end node and has not been selected. Select this node. If not,

do the following steps.

The nodes of the feasible set that a node has not been

selected. So select this node. If not, do the following steps.

Check the status of all sub-path graph. If that status has not

been selected. Select a node connected to the current node

with the status of the child is not selected. If not, do the

following steps.

Check count the numbers of transition from Feasible Set.

Choose a transition that went through more than a number of

transition that traverse. If equal, select a state randomly.

 Update Pheromone and heuristic value of each transition.

And check start node with equal or end node. If equal,

the end stage of this path, reduce complexity and priority

of the path. If not, go to the second step.

4) Path prioritization is calculated by multiplying the

pheromone and the heuristic value of the transition

together. And is divided by the total number of

transitions.

V. EXPERIMENTAL DESIGN

1) Create state diagram from examples by using two

example systems in Table I. Both examples have been

working on different things. The more important part is

to demonstrate how the proposed system is working with

loops and no loops. The Transfer ATM has four loops

but Order online has no loop. The transfer ATM has 13

states and 19 possible events. In the other hand, Order

online has 23 states and 26 possible events.

TABLE I: THE EXAMPLE SYSTEM USED IN THE RESEARCH

No. System State Event Loop

1 Transfer ATM 13 19 4

2 Order online [4] 23 26 0

2) Save the file as an XML document using Magic Draw.

The structure is as follows (Table II).

TABLE II: THE STRUCTURE OF XML

Element Attributes Detail

Subvertex xmi:type State Type

Element Attributes Detail

xmi:id State ID

name State Name

Transition xmi:type Transition Type

xmi:id Transition ID

name Transition Name

source Source State

target Destination State

The structure of XML is the same as Fig. 2 which is

described under Fig. 2.

3) Variable used for data analysis in Table III.

TABLE III: THE INITIAL OF PARAMETERS OF ALGORITHM

Parameter Detail Value

α The weight of the pheromone. 1

β The weight of the heuristic. -1

ρ Evaporation rate 1

τ Pheromone of transition 1

η Heuristic Value of transition 2

CC

Cyclomatic Complexity used to determine the

number of paths (number of ants) operation.

E = Total Transition

N = Total State

CC =

E-N+2

Vstate State Status 0

Vtrans Transition Status 0

Cstate Count the number of transition 0

weight Weight total per path 0

trans Total transition in one path 0

i Source State

e End State

N State Set

E Transition Set

4) Create a program to import and analyze data using

Visual C # with the ACO.

1. Input: XML File from State Transition Diagram

2. Set parameter : Configuration parameters in Table III.

3. While CC>0 //Define the number of paths.

4. While i <> e //Examines the current state and the end

state that are equal or not. If equal, go to step 5. If not

equal, go to step 4.1

4.1 Calculate feasible set from state i

4.2 Calculate probability from feasible set

*)
i

α β

ij ij

ij α β

ij ij

η
P

η

 (4)

 4.3 If P(ij) <>P(ik) // Compare the probability of

feasible set. Select the transition with the probability over.
If P(ij) > P(ik) Select P(ij)

If P(ij) < P(ik) Select P(ik)

 4.4 If P(ij) =P(ik) //If the probability is equal. Follow

these steps:
 4.4.1 If j or k = e // Choosing this transition

whether the transition is connected to the

end state

 4.4.2 If j and k <> e // If end state. Check the

status of state.

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

158

 4.4.2.1 If Vstate = 0 Select this state
 4.4.2.2 If Vstate <> 0 //Check parent child

transition (Vtrans)

If Vtrans = 0 //Select feasible state of parent state

If Vtrans = 1 //Check count the number of transition from

Feasible Set (Cstate)

If Cstate (ij) > Cstate (ik) Select Cstate (ij)

If Cstate (ij) < Cstate (ik) Select Cstate (ik)

If Cstate (ij) = Cstate (ik) Random state

 4.5 Update pheromone

(1) k

ij ij ijk
 (5)

 4.6 Update heuristic value

2*ij ij (6)

 4.7 Update weight

weight = weight (*)ij ij (7)

 4.8 Update number of transition

trans = trans 1 (8)

 4.9 set i = j or k (next node) Go to Step 4

 5. If i = e Calculate priority and Go to step 6

weight
priority =

trans
 (9)

6. Set CC = CC – 1

 If CC > 0 Go to Step 3

 If CC = 0 finish and show test sequence

VI. EXPERIMENTAL RESULT

Table IV represents the method outcomes of two systems.

The first system has repeated processes, but the second does

not. The function of two groups also work under conditional

process and unconditional ones. The result shows that test

processes differ from the previous case and the ordering

processes by priority of test case from Table V. Fig. 3 shows

the display screen of application which shows test sequence

of test case number 1 of transfer ATM system. And Table VI

illustrates the steps of test sequence of path 1 and 2 of

Transfer ATM System to compare the alternative transition

with loop of path and condition of state.

TABLE IV: RESULT OF TWO SYSTEMS

System No. of

states

No. of

events

No. of

loops

No. of

paths

No. of

TC.

1 13 19 4 8 8

2 23 26 0 5 5

TABLE V: THE RESULT OF TRANSFER ATM SYSTEM

TC. Priority

Value

Sequence of State

1 2.000 1, 2, 3, 4, 13

2 1.600 1, 2, 2, 3, 4, 5, 6, 8, 6, 8, 13

TC. Priority

Value

Sequence of State

3 1.308 1, 2, 2, 3, 4, 5, 7, 6, 8, 9, 10, 11, 12, 13

4 0.627 1, 2, 2, 3, 4, 5, 7, 6, 8, 9, 10, 9, 10, 11, 9, 10, 9,

10, 11, 12, 13

5 0.206 1, 2, 3, 4, 5, 7, 6, 8, 6, 8, 9, 10, 11, 9, 10, 11,

12, 13

6 0.045 1, 2, 2, 3, 4, 5, 6, 8, 6, 8, 9, 10, 9, 10, 11, 9, 10,

11, 12, 13

7 0.033 1, 2, 2, 3, 4, 5, 6, 8, 6, 8, 9, 10, 9, 10, 11, 9, 10,

9, 10, 11, 12, 13

8 0.002 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 9, 10, 11, 12, 13

TABLE VI: METHOD TO CHOOSE THE NEXT STATE

Path 1

no. i j 𝑃𝑖𝑗
Update

τ
Update

η
Path

1 1 2 1.000 0.500 4.000 1, 2

2 2
2 0.500 1.000 2.000

3 0.500 0.500 4.000 1, 2, 3

3 3 4 1.000 0.500 4.000 1, 2, 3, 4

4 4
5 0.500 1.000 2.000

13 0.500 0.500 4.000 1, 2, 3, 4, 13

Path 2

1 1 2 1.000 0.125 8.000 1, 2

2 2
2 0.800 0.500 4.000 1, 2, 2

3 0.200 0.500 4.000

3 2
2 0.500 0.500 4.000

3 0.500 0.125 8.000 1, 2, 2, 3

4 3 4 1.000 0.125 8.000 1, 2, 2, 3, 4

5 4
5 0.800 0.500 4.000 1, 2, 2, 3, 4, 5

13 0.200 0.500 4.000

6 5
6 0.500 0.500 4.000 1, 2, 2, 3, 4, 5, 6

7 0.500 1.000 2.000

7 6 8 0.500 0.500 4.000 1, 2, 2, 3, 4, 5, 6, 8

8 8

6 0.500 0.500 4.000
1, 2, 2, 3, 4, 5, 6,

8, 6

9 0.500 1.000 2.000

13 0.500 1.000 2.000

9 6 8 1.000 0.125 8.000
1, 2, 2, 3, 4, 5, 6,

8, 6, 8

10 8

6 0.111 0.500 4.000

9 0.444 1.000 2.000

13 0.444 0.500 4.000
1, 2, 2, 3, 4, 5, 6,
8, 6, 8, 13

Fig. 3. The screen of application of transfer ATM.

In Fig. 3, Test case no. column shows the number of test

cases. Sequence no. column shows the number of test

procedures of each test case. State column shows the status

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

159

of each test step-by-step sequence relationship continuity

from initial state to the final state. Transition column shows

the change in condition between the current and previous

state.

Fig. 4. Flow graph of transfer ATM system.

Fig. 5. Flow graph of order online system.

Fig. 4 and Fig. 5 are a diagram of flow graph to illustrate

the path of the system in Table IV. And Table V is the result

of test case and priority of transfer ATM System.

Table VI is the process of creating a path by the

presentation of the Transfer ATM system. The first step (no.

1) from the node 1, the start node (i) and calculate the

probability (𝑃𝑖𝑗) of next node (j). Select the node 2 as a single

node to connect and update the pheromone (Update τ) and

heuristic value (Update η), step 2, starting from the node 2 and

calculate the probability of the feasible set. the next node with

a line connecting the node and the next node is node 3. Since

the probability of more than two nodes and updating the

pheromone and heuristic value, Step 3 is to connect one node,

select a node 4 and update pheromone and heuristic value,

Step 4 Do the same step 2 and compare the probability and

select the node 13 is the next node, Therefore, the path is {1,

2, 3, 4, 13}. The second did the same from the first node to

the last node on the present and the next in line, the results in

Table V. Table V shows the test cases from the Transfer ATM

system. The test cases presented in order of priority to be

calculated from the formula 9, in descending order of

importance, from most to least. And display sequence of state

that each test case.

The aim of work is to create algorithm which can prioritize

the shortest path first amongst the long paths. The reason to

give priority to the path with shorter lengths because it will

mostly take shorter time. Moreover failure in the early

sequence should be test and handling before continuing to

test other paths. But sometime the critical path is the path that

went through a number of times.

VII. CONCLUSIONS

This research is to study the process of benchmark creation

test sequence by state transition diagram. State transition

diagram that helps simulate software functionality in aspects

of its behavior, that allowing tester to see the relationship

between small parts. This method can be done even before

software developing processes. First, tested software are

converted into XML and test processes are designed by ACO.

Start by checking the possible relative to the current state and

selecting a next state to the law of probability and to update of

pheromones will do when that path is selected. The result

shows that the proposed method is proved to be magnificent.

It can allow testers to create test case and test sequence. Also

the method can be used along with repeat process without any

redundancies. There is also the method that can be combined

with repeatable processes without making a duplicate of the

selected path in the past. However, this method is still needed

to be proved in other situations such as compatibility of other

diagrams and more.

REFERENCES

[1] P. R. Srivastava, C. Sravya, Ashima, S. Kamisetti, and M. Lakshmi,

“Test sequence optimization: an intelligent approach via cuckoo

search,” Int. J. Bio-Inspired Computation, vol. 4, no. 3, pp. 139-148,

2012.

[2] P. R. Srivastava, B. Mallikarjun, and X. S. Yang, “Optimal test

sequence generation using firefly algorithm,” Swarm and Evalutionary

Computation, vol. 8, pp. 44-53, 2013.
[3] S. Biswas, M. S. Kaiser, and S. A. Mamun, “Apply Ant Colony

Optimazation in software testing to generate prioritized optimal path

and test data,” in Proc. ICEEICT, 2015, pp. 1-6.
[4] A. Mishra, “Generation and prioritization of test sequences using UML

activity diagram,” Bachelor Thesis, Department of Computer Science

and Engineering, National Institute of Technology, India, May 2014.
[5] J. Kponyo, Y. Kuang, E. Zhang, and J. Kponyo, “Dynamic travel path

optimization system using Ant Colony Optimization,” IEEE, pp.

141-146, 2014.
[6] R. S. Jadon and U. Datta, “Modifiied Ant Colony Optimization

algorithm with uniform mutation using Self-Adaptive Approach for

travelling salesman problem,” in Proc. ICCCNT, 2013, pp. 1-4.
[7] M. Dorigo and L. M. Gambardella, “Ant Colony system: A cooperative

learning approach to the travelling sales problem,” IEEE, pp. 53-66,

1997.
[8] G. Singh, P. Rana, and P. Kakkar, “Evaluation of test cases using Ant

Colony Optimization with a new heuristic function: a proposed

approach,” IJARCSSE, 2014, pp. 220-225.
[9] H. Y. Markid, B. Z. Dadaneh, and M. E. Moghaddam, “Sequence

based feature selection using Ant Colony Optimazation,” IEEE, pp.

100-105, 2015.
[10] R. Mohanthy, V. Naik, and A. Mubeen, “Predicting software reliability

using Ant Colony Optimization,” IEEE, pp. 496-500, 2014.

[11] H. Li and C. P. Lam, “An Ant Colony Optimization approach to test
sequence generation for state based software testing,” IEEE, pp.

255-262, 2005.

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

160

[12] M. Dorigo and K. Socha, “An introduction to Ant Colony

Optimization,” IRIDIA Technical Report Series, pp. 1-12, 2006.

[13] M. Mann and O. P. Sangwan, “Generating and priortizing optimal path
using Ant Colony Optimization,” IAEES, pp. 1-15, 2015.

Suchada Ratanakongnate got the bachelor degree in
computer science from Chulalongkorn University in 1983

and mater degree in computer science from National

Institute of Development Administration in 1990. Her
current position is associate professor of the Department

of Computer and Information Science, King Mongkut's

University of Technology North Bangkok. The area of
her research is software testing.

Phakakarn Makmun got the bachelor degree from

Phranakhon Rajabhat University in 2009 and master

degree from the Department of Computer and
Information Science of King Mongkut's University of

Technology North Bangkok in 2016. Currently she is

working as a software developer. The area of her
research is software testing.

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

161

