



Abstract—If a session initiation protocol (SIP) server receives

enough SIP messages to exceed its processing capacity, it goes

into overload. When a SIP server receives new SIP messages

under overload, the SIP message queue in the server lengthens,

which may cause significant throughput degradation in the

network. An overload control mechanism using the 503

response code is specified in the SIP standard to improve

throughput in the event of such an overload. However, it is

known that this is insufficient to control overloading in a large

SIP network. In this paper we propose a queue management

scheme at a SIP server to improve throughput and prevent

overload propagation when overload occurs. In the proposed

scheme, SIP messages are dropped based on a dropping

probability that is calculated by prioritizing the items in the SIP

queue. We also show the effectiveness of the proposed scheme

by simulation experiments.

Index Terms—IMS, overload control, queue management,

SIP.

I. INTRODUCTION

A SIP can use either TCP or UDP [1]. Most vendors

choose UDP as the transport protocol to avoid the overhead

of state management such as the TCP three-way handshake

[2]. When using UDP as the transport protocol, SIP supports

application-level transmission mechanisms in order to

achieve reliable delivery in the application layer [1]. If a

sender of a SIP message does not receive the corresponding

reply message until the retransmission timer expires, it will

retransmit the SIP message.

If a SIP server receives a quantity of SIP messages that

exceeds its processing capacity, it goes into overload. This

can occur for many reasons, including emergency-induced

call volume, flash crowds, DoS attacks, and component

failures [3]. When a SIP server receives new SIP messages

while in an overload state, the message queue in the SIP

server lengthens, which may cause queuing delay or queue

overflow. Such a delay or overflow may also cause an

increase in the number of retransmissions from SIP-UAs and

upstream SIP servers. Due to retransmissions, the processing

load of both the overloaded SIP server and its upstream

servers may be increased even more. Once a server enters the

overload state, the overload propagates to its neighbors and

eventually spreads throughout the network [4]. In this way,

an overload may cause significant throughput degradation in

a SIP network. Throughput is defined as the total number of

completed calls per second, where a completed call is one

Manuscript received November 4, 2014; revised March 27, 2015.
The authors are with the NTT Network Service Systems Laboratories,

Nippon Telegraph and Telephone Corporation, 3-9-11 Midori-Cho,

Musashino-Shi, Tokyo, 180-8585 Japan (e-mail:

nozoe.tadasuke@lab.ntt.co.jp).

whose execution sequence from session establishment to

termination has been completed normally. When a call that

did not receive any provisional responses (100 Trying or 180

Ringing) to an INVITE receives a final response (200 OK), it

is also regarded as a completed call.

An overload control mechanism using the 503 (Service

Unavailable) response code is specified in [1]. When an

overloaded server receives a SIP request, it will respond with

a 503 to the SIP-UA or the upstream sending server to refuse

to process the request. However, the 503 response only stops

the current request, so other SIP-UAs or upstream servers

continue to send the request to the overloaded server.

Consequently, the overloaded server continues to expend

resources (such as CPU time) to respond with 503 responses,

which amplifies the overload of the server. The overload

control mechanism defined in [1], as explained above, is

insufficient to control overloads in a large SIP network.

In this paper we propose a queue management scheme at a

SIP server to improve throughput and provide steady service

even when overload occurs. We also demonstrate the

effectiveness of the proposed scheme with simulation

experiments.

The rest of paper is organized as follows. In Section II, we

briefly discuss related work on overload control in a SIP

network. In Section III the proposed scheme is presented.

Section IV describes the simulation model and Section V

presents and discusses simulation results. In Section VI, we

conclude the paper and discuss future work.

II. RELATED WORK

More overload control mechanisms have been proposed

for a SIP network than just using a 503 response [2].

M. Ohta proposed a queue management scheme that

rejects SIP messages with low priority to increase throughput

under overload conditions [5]. In this scheme, SIP servers

maintain two queues, one a low-priority queue and the other a

high-priority queue. Every SIP message is assigned to either

the low-priority queue or the high-priority queue according to

the priority class of the SIP message, so that an INVITE

message is assigned to the low-priority class and other

requests and response messages are assigned to the

high-priority class. Only when the high-priority queue is

empty are INVITE messages in the low-priority queue

processed. By giving high priority to non-INVITE messages

under overload, the termination of an established session is

processed prior to establishing a new session. This results in

higher throughput in the network when overload occurs. W.

Zhu et al. pointed out that the scheme proposed in [6] is

inefficient due to its use of two queues. They provided an

example of this inefficiency in [6] as follows. When the

Priority-Based Queue Management Scheme to Reduce

Overloads on SIP Servers

Tadasuke Nozoe, Masahiko Noguchi, Minoru Sakuma, Kazuaki Misawa, and Mikio Isawa

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

389DOI: 10.7763/IJCTE.2016.V8.1076

high-priority queue is full and the low-priority queue is not,

the received non-INVITE messages must be dropped even if

there is plenty of space in the low-priority queue. To

maximize queue utilization under overload, they proposed

that all SIP messages share the same queue, and every SIP

method type is assigned a unique priority. In this scheme, the

priority level indicates the order of SIP messages to be

replaced under overload. When a SIP server receives a new

SIP message and its queue is full, the SIP server tries to find

an existing SIP message with a lower priority level than the

received message by searching sequentially from the head of

the queue to the tail. If a message with lower priority is found

in the queue, that message is replaced by the received

message. This ensures that SIP messages with a higher

priority level are preferentially processed. A higher priority

level is given to a SIP method type appearing at a later stage

of the basic SIP sequence. This means that an INVITE

request has the lowest priority level and a 200 OK (BYE)

response has the highest.

The queue management scheme proposed in [6], however,

needs to search the queue at every reception of a new SIP

message when its queue is full. Assuming that SIP servers

receive a large number of packets in an overload situation, the

use of their resources on searching the queue may cause

further overload.

III. PROPOSED SCHEME

We propose a queue management scheme to solve the

problem described in Section II.

The proposed scheme adopts a single-queue model to deal

with the question of queue utilization efficiency discussed in

[6]. It is also based on RED (Random Early Detection),

which is a queue management scheme for a router [7]. In

RED, packets are dropped based on a dropping probability

that depends on the average queue length. In contrast to the

original RED proposed in [7], which did not distinguish

packet types, our proposed scheme for a SIP server enables

the calculation of different dropping probabilities according

to the SIP method type because [5] and [6] showed that queue

management based on giving a priority to each SIP method

type could improve throughput under overload. The proposed

scheme can calculate different dropping probabilities

according to the SIP method type even if the queue length is

the same when receiving a new SIP message.

When a SIP server receives a SIP message, an average

queue length is calculated by (1).

qwavgwavg qq )1((1)

where wq is a weight to balance the impact of burst traffic and

q is the current queue length.

The average queue length is compared with two

thresholds, the minimum threshold minth, and the maximum

threshold maxth, and the dropping probability is estimated by

the following (2).



















avg

avg
pcount

P
C

avg

p

th

thth

b

b

method

th

a

max1

maxmin
1

min0

 (2)

where count is the number of SIP messages enqueued since

the last packet dropped. Cmethod is a coefficient defined for

each SIP method type. The higher the priority of a SIP

method type is, the lower the value of Cmethod because the

dropping probability for messages with higher priority should

be lower than for those with a lower priority. pb is calculated

by (3).

p

thth

th
b

avg
p max

minmax

min






 (3)

where maxp is the maximum value of pb.

In the proposed scheme, SIP servers drop SIP messages

according to the dropping probability pa estimated by (2).

IV. SIMULATION MODEL

A. Network Model

The SIP network topology we have used in our simulation

experiments is depicted in Fig. 1. In the simulation, all SIP

servers in the network run as a stateless proxy server that just

forwards SIP messages and does not manage the SIP

transactions. The SIP transactions between two SIP-UAs are

managed by the SIP-UAs themselves. SIP servers 1 and 5 are

edge servers, and all SIP-UAs connect to either SIP server 1

or 5. The other SIP servers in the network form a core server,

relaying SIP messages from the upstream server to the

downstream server.

Fig. 1. Network topology and SIP sequence.

In the simulation, all sessions are initiated by SIP-UAs

connecting to SIP server 1 and terminated by SIP-UAs

connecting to SIP server 5. This means that only SIP-UAs

connecting to SIP server 1 can send an INVITE message and

only SIP-UAs connecting to SIP server 5 can send a BYE

message, as shown in Fig.1. There is, naturally, no session

between SIP-UAs connecting to the same edge server in the

simulation.

SIP requests and responses sent from SIP-UAs or the

upstream SIP server are enqueued in the SIP message queue.

The messages in the queue are dequeued in a FIFO manner

and processed by the CPU, then forwarded to the SIP-UA or

the downstream SIP server.

The processing time of a SIP message depends on the SIP

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

390

message type. In general, the processing time of an INVITE

message is longer than that of non-INVITE messages

because a SIP server has to process it by checking the user

profile, determining the next hop, and so on, when receiving

an INVITE message. In the simulation, we assume that the

processing time of an INVITE message is double that of a

non-INVITE message.

We use UDP as the transport protocol. We assume that

there is sufficient bandwidth between entities such as

SIP-UAs and SIP servers in the network, so we do not

consider any packet loss in the simulation other than that

from dropping by the queue management scheme. We also

ignore the transmission delay of the link between the entities

because of the high bandwidth.

Each SIP server has a queue length of 200 messages, and

processes an INVITE message in 2 ms and a non-INVITE

message in 1 ms.

B. SIP-UA Model

Each SIP-UA connected to SIP server 1 sends an INVITE

request to establish a new session, with timing following a

Poisson distribution and giving an average arrival rate .

When the SIP-UA connected to SIP server 5 receives this

request, it sends provisional responses and also sends 200 OK

after waiting for the ringing time according to an exponential

distribution with Ta=5.0 seconds. The holding time for an

established session follows an exponential distribution with

Ts=30.0 seconds.

The SIP-UA supports Timer A, Timer B, Timer E, Timer

F, a retransmit interval timer for an INVITE response, and a

wait timer for ACK receipt, and can retransmit a SIP message

by using the retransmission mechanism defined in [1]. The

values of T1 and T2 are set to 0.5 seconds and 4.0 seconds

respectively in the simulation (the default values proposed in

[1]). In the simulation, when Timer B, Timer F or the wait

timer for ACK receipt fires, SIP-UAs release the resource

assigned to the dialog established between them. The SIP-UA

stops retransmitting an INVITE request when receiving a

provisional response (100 Trying or 180 Ringing). When

SIP-UA haven't received a 200 OK response for Tabdn seconds

after receiving a provisional response, the SIP-UA cancels

establishing the session. The SIP-UA also releases the

resource for the dialog if it does not receive a BYE request for

Tmax seconds after sending an ACK request because this

situation is regarded as a session time-out. We set the values

of Tabdn and Tmax to 32.0 seconds and 300.0 seconds,

respectively.

C. Parameter Values

Table I and Table II respectively summarize the values of

the parameters for the proposed scheme and of Cmethod for

each SIP method discussed in section III. We set Cmethod as

follows. CINVITE is set to a higher value than any other so as to

increase the dropping probability of an INVITE message

because it is shown in [5] and [6] that a high throughput can

be achieved by giving the INVITE message lower priority. A

SIP-UA retransmits an INVITE request until it receives a

response (100 Trying, 180 Ringing, or 200 OK). In other

words, it is possible to stop retransmitting if the SIP-UA just

receives 100 Trying or 180 Ringing after sending an INVITE

request, so we set C100 and C180 respectively to a higher value

and a lower one. CACK and C200(BYE) are set to a higher value to

avoid being dropped because an ACK request and a 200 OK

response for a BYE request are not retransmitted in the

manner described in [1].

TABLE I: SUMMARY OF PARAMETER VALUES

Parameter Value

wq

minth

maxth

maxp

0.8

0.7

1.0

0.2

TABLE II: VALUES OF CMETHOD

Parameter Value

CINVITE

C100

C180

C200(INVITE)

CACK

CBYE

C200(BYE)

5.0

3.0

0.1

1.0

0.1

1.0

0.1

Fig. 2. Throughput as a function of the average arrival rate 

V. SIMULATION RESULTS

A. Throughput Characteristics

Fig. 2 shows throughput as a function of the average

arrival rate . In order to present the effectiveness of the

proposed scheme, we compare it with two schemes, the Drop

Tail scheme, which is a basic queue management scheme,

and the RED scheme, which is similar to our proposal except

that the values of each Cmethod are set to 1.0.

Throughput drops significantly at about 120 calls per

second (cps) as shown in Fig. 2. This means that overload

occurs in the SIP network as the network receives a quantity

of SIP messages from SIP-UAs that exceeds the capacity of

the network. Fig. 2 indicates that the proposed scheme

improves throughput compared to the other schemes under

overload conditions, and the throughput of RED is plotted in

much the same way as that of Drop Tail. We conclude from

the results that dropping SIP messages based on the priorities

proposed in Section III improves throughput.

B. Overload Propagation

Fig. 3 and Fig. 4 show the queue utilization as a function of

time in Drop Tail and the proposed scheme. In these figures,

the horizontal axis and the vertical axis represent the SIP

server's number as shown in Fig. 1, and time. The shading in

these figures corresponds to the queue utilization of the SIP

server.

As shown in Fig. 3 and Fig. 4, the queue utilization of SIP

server 1 is higher than that of the other servers because SIP

server 1 receives a large variety of both original INVITE

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

391

requests and retransmitted requests from the SIP-UAs when

overload occurs. In Fig. 3, we can see that the Drop Tail

scheme causes overload propagation from a server to its

neighbor with time. Fig. 4, on the other hand, indicates that

the proposed scheme does not cause such propagation, so it

can prevent overload propagation in a SIP network.

Fig. 3. Queue utilization in Drop Tail.

Fig. 4. Queue utilization in proposed scheme.

We assume that overload propagation occurs in Drop Tail

due to the SIP retransmission mechanism. When many

SIP-UAs send an INVITE request to SIP server 1 at the same

time, and the server drops these requests nearly

simultaneously because of a filled queue, SIP-UAs retransmit

the request repeatedly (with the same timing) until they

receive a response. In the proposed scheme, a SIP server

drops messages according to the dropping probability, which

delays the retransmission of messages from SIP-UAs. The

proposed scheme, therefore, can prevent overload

propagation in a SIP network.

VI. CONCLUSION

In this paper we have proposed a queue management

scheme for a SIP server to improve throughput under

overload conditions, which is based on prioritizing SIP

methods by type. The proposed scheme has the advantage

that it is not necessary to search the SIP message queue at

every reception of a new SIP message when the queue is full,

in contrast to the scheme proposed in [6].

We have presented simulation results which suggest that

the proposed scheme can improve throughput under overload

and prevent overload propagation.

We employed a stateless SIP proxy server as the SIP server

in the simulation. In our future work, we would like to apply

the proposed scheme to a stateful SIP server that retains its

state for a dialog or a B2BUA SIP server that manages

multiple dialogs. In the simulation, we used five servers

connected in series to examine overload propagation

characteristics, so we still need to evaluate the proposal with

other network topologies. Finally, we plan to explore how

throughput and overload propagation are affected by

variation of the parameters in the proposed scheme.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: Session initiation

protocol,” in Proc. IETF, RFC 3261, 2002.
[2] Y. Hong, C. Huang, and J. Yan, “A comparative study of SIP overload

control algorithms,” Network and Traffic Engineering in Emerging

Distributed Computing Applications, pp. 1-20, 2012.
[3] J. Rosenberg, “Requirements for management of overload in the

session initiation protocol,” in Proc. IETF, RFC 5390, 2008.

[4] V. Hilt and I. Widjaja, “Controlling overload in networks of SIP

servers,” in Proc. IEEE ICNP, 2008, pp. 83-93.

[5] M. Ohta, “Overload protection in a SIP signaling network,” in Proc.

ICISP '06, 2006.
[6] W. Zhu, A. K. A. Hamid, Y. Kawahara, T. Asami, and Y. Murata,

“Automatic originator regulation of IMS multiple traffic by stateless

signaling prioritization,” in Proc. 2012 IEEE GLOBECOM, 2012, pp.
2846-2851.

[7] S. Floyd and V. Jacobson, “Random early detection gateways for

congestion avoidance,” IEEE/ACM Trans. on Networking, vol. 1, no.
4, pp. 397-413, 1993.

Tadasuke Nozoe was born in Fukuoka, Japan, in 1982.
He received a master of information science degree

from the Kyushu University in Fukuoka, Japan, in 2007.

He joined Nippon Telegraph and Telephone West
Corporation (NTT West) in Osaka, Japan, in 2007. In

2009, he transferred to NTT Network Service Systems

Laboratories in Tokyo, Japan, where he has been
engaged in the research and development of next

generation network.

Masahiko Noguchi was born in Niigata, Japan, in 1968.

He received a master of engineering degree from the

Niigata University in Niigata, Japan in 1992. He joined
NTT Network Service Systems Laboratories in 1992.

He worked on the development of switching system of

PSTN. He has participated in the research and
development of Carrier Grade Middleware. He is a

member of IEICE of Japan.

Minoru Sakuma was born in Japan, in 1972. He

received a M.A. degree in media and governance from
Keio University, Tokyo in 1996. In 1996, he joined NTT

Network Service Systems Laboratories. He worked on

the development of PSTN Intelligent Networks and the
research of privacy control technologies. He has been

engaged in the research and development of next

generation network.

Kazuyuki Misawa was born in Chiba, Japan, in 1974.

He received a master of science degree from the Tokyo
Institute of Technology in Tokyo, Japan, in 1999. He

joined Nippon Telegraph and Telephone East
Corporation (NTT East) in 1999. He has been with the

NTT Network Service Systems Laboratories as a senior

research engineer since 2012, where he has worked on
next generation network.

Mikio Isawa was born in Japan, in 1964. He received a
master of engineering from the Tokyo University of

Agriculture and Technology in Tokyo, Japan, in 1989.

He has been with the NTT Network Service Systems
Laboratories since 1989, where he is currently a senior

research engineer. He has conducted research and

development widely in telecommunication systems such
as ATM, STP, SIP and so on.

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

392

