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Abstract—Systems as asymmetric multiprocessor platforms 

are considered power-efficient multiprocessor architectures, 

efficient task partitioning (assignment) and play a crucial role 

in achieving more energy efficiency at these multiprocessor 

platforms. This paper addresses the problem of energy-aware 

static partitioning of periodic real time tasks on heterogeneous 

multiprocessor platforms. A modified Particle Swarm 

Optimization variant based on min-min and priority 

assignment algorithms for task partitioning is proposed. The 

proposed approach aims to minimize the overall energy 

consumption, meanwhile avoid deadline violations. An 

energy-aware cost function is proposed to be considered in the 

proposed approach. Extensive simulated experiments and 

comparisons with related approaches have been conducted and 

the achieved results demonstrate that the proposed partitioning 

scheme significantly outperforms in terms of the number of 

executed iterations to accomplish a specific task in addition to 

the energy savings. 

 
Index Terms—Task partitioning, task assignment, 

heterogeneous multiprocessors, particle swarm optimization, 

min-min, priority assignment algorithm.  

 

I. INTRODUCTION 

Nowadays, embedded systems are involved in most details 

of our life such as smart phones, pocket PCs, personal digital 

assistants (PDAs), multimedia devices, etc. As the 

applications on these devices are being complicated, there is 

a need to increase the performance while keeping the energy 

consumption of these devices in accepted levels especially 

for the portable battery-powered ones. So, minimizing energy 

consumption to prolong the battery life while achieving 

higher performance is a critical issue in the design of portable 

embedded systems. As the processor is one of the most 

important power consumers in any computing system, 

today’s chip multiprocessor (CMP) or multiprocessor system 

on chip (MPSoC) platforms can deliver a higher performance 

at the cost of lower power consumption than uniprocessor 

systems. Embedded systems today are often implemented 

upon platforms comprised of different kinds of processing 

units, such as CPU’s, DSP chips, graphics co-processors, 

math co-processors, etc., with each kind of processing unit 

specialized to perform a different function most efficiently. 

Such platforms are commonly referred to as heterogeneous 

platforms [1]-[3]. TI’s OMAP™ [4] mobile processors are 

good example of these heterogeneous platforms. The 

multiprocessor scheduling of recurrent real-time tasks can be 
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generally carried out under the partitioned scheme or under 

the global scheme. In the partitioned scheme, the tasks are 

statically partitioned among the processors and all instances 

(jobs) of a task are executed on the same processor and no job 

is permitted to migrate among processors. In the global 

scheme, a task can migrate from one processor to another 

during the execution of different jobs. Furthermore, an 

individual job of a task that is preempted from some 

processor, may resume execution in a different processor. 

Nevertheless, in both schemes, parallelism is prohibited, i.e., 

no job of any task can be executed at the same time on more 

than one processor. This paper considers the partitioned 

scheduling scheme. The problem of partitioning tasks among 

processors, sometimes, [1], [5], referred to as Task 

Assignment Problem (TAP), is an intractable NP-Hard 

problem even if the processors are homogeneous, [6]. So, 

approximation algorithms and heuristic techniques are used 

to solve this problem. This paper proposes a modified 

Particle Swarm Optimization (PSO) variant based on 

Min-min technique and priority assignment algorithm for 

energy-aware task partitioning on heterogeneous 

multiprocessor platforms. The rest of this paper is organized 

as follows: Section II reviews existing research on task 

partitioning upon heterogeneous platforms and related areas. 

Section III defines the problem and describes task, processor, 

and power models used in this paper. Section IV presents 

PSO, Min-min and priority assignment techniques for task 

partitioning and introduces our proposed approach. Section V 

presents simulation results for the proposed algorithm and 

discusses these results. Section VI summarizes our 

conclusions.  

 

II. REVIEW STAGE 

The author in [7] proved that task partitioning among 

heterogeneous multiprocessors is intractable (strongly NP 

hard), represented the problem as an equivalent Integer 

Linear Programming (ILP) problem, and designed a 2-step 

approximation algorithm for solving this problem. The idea 

of LP relaxations to ILP problems is used in the first step to 

map most tasks, while in the second step the algorithm maps 

the remaining tasks using exhaustive enumeration. This 

two-step algorithm takes time polynomial in the number of 

tasks, and exponential in the number of processors. Braun et. 

al. [8] used tree partitioning in the second step instead of 

exhaustive enumeration to make the algorithm takes time 

polynomial in the number of tasks, and polynomial in the 

number of processors. They compared 11 heuristics for 

mapping a set of independent tasks onto heterogeneous 

distributed computing systems. The best one that has 

minimum makespan, that is defined as the maximum 
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completion time for the whole processors, was the Genetic 

Algorithm (GA) followed by Min-min algorithm. Chen and 

Cheng [9] applied the Ant Colony Optimization (ACO) 

algorithm. They proved that ACO outperforms both GA and 

LP-based approaches in terms of obtaining feasible solutions 

as well as processing time. The authors in [5] presented a 

modified algorithm based on the Particle Swarm 

Optimization (PSO) for solving this problem and showed that 

his approach outperforms the major existing methods such as 

GA and ACO methods. Then, his PSO approach is developed 

to can further optimize the solution to reduce the energy 

consumption by minimizing average utilization of processors 

(without using any energy or power model). Finally, a 

tradeoff between minimizing the design makespan as well as 

energy consumption is obtained. The work in [10] presented 

a hybrid PSO method for solving the task assignment 

problem. Their algorithm has been developed to dynamically 

schedule heterogeneous tasks onto heterogeneous processors 

in a distributed setup. It considers load balancing and handles 

independent non-preemptive tasks. The hybrid PSO yields a 

better result than the normal PSO when applied to the task 

assignment problem. The results are also compared with GA. 

The results infer that the PSO performs better than the GA. 

Omidi and Rahmani [11] used PSO for task scheduling in 

multiprocessor systems as an important step for efficient 

utilization of resources. They considered independent tasks 

on homogeneous multiprocessor systems. Apart from all 

these efforts, this paper integrates the PSO approach with a 

polynomial-time partitioning techniques; Min-min and 

priority assignment. The proposed approach takes into 

account energy efficiency during task partitioning among 

heterogeneous cores in MPSoCs. 

 

III. SYSTEM MODEL 

This paper considers the problem of power-aware task 

partitioning on heterogeneous multiprocessor platforms. So, 

models of task, processor, and power are presented. 

A periodic real-time task τi generates an infinite sequence 

of task instances (jobs). Each job executes for C time units at 

most, be generated every T time units, and has a relative 

deadline D time units after its arrival. 

This paper considers a periodic task set {τ1, τ2,…,τn } of n 

independent real-time tasks. A task is τi represented as 3-tuple 

(Cij, Di, Ti) where Cij is the Worst-Case Execution Time 

(WCET) of task τi on processor j, D is the relative deadline, 

and T is the period. Implicit deadlines are considered in this 

paper, i.e., the relative deadline is assumed to be the same as 

the period. Each task τi has a utilization  

Uij=Cij/Tij on processor j.  

A heterogeneous multiprocessor platform with m 

preemptive processors based on CMOS technology is defined 

as {P1, P2,…,Pm}. Also this paper considers Dynamic 

Voltage/Frequency Scaling (DVFS) processors that supports 

variable frequency (speed) and voltage levels continuously, 

i.e., DVFS processors can operate at any speed/voltage in its 

range (ideal). Of course, practical DVFS processors supports 

discrete speed/voltage levels (non-ideal). So, the desired 

speed/voltage of the ideal DVFS processor is rounded to the 

nearest higher speed/voltage level of the practical DVFS 

processor supports. The time (energy) required to change the 

processor speed is very small compared to that required to 

complete a task. It is assumed that the speed/voltage change 

overhead, similar to the context switch overhead, is 

incorporated in the task execution time. In this work, it is 

assumed that the processor’s maximum speed (frequency) is 

1 and all other speeds are normalized with respect to the 

maximum speed. When MPSoCs platforms are considered, 

there are per-core and full-chip DVFS techniques [12], [13]. 

In the per-core DVFS, each core operates at individual 

frequency/voltage, and has no operating frequency 

constraint. On the other hand, the practical full-chip DVFS 

designs restrict that all the cores in one chip operate at the 

same clock frequency/voltage. For each processor, the tasks 

are scheduled according to Earliest Deadline First (EDF) 

scheduling algorithm. So, a processor utilization Uj which is 

the sum of the utilizations of tasks assigned to this processor 

cannot exceed 1, i.e., Uj=∑uij≤1. 

The power consumption in CMOS circuits has two main 

components: dynamic and static power. The dynamic power 

consumption which arises due to switching activity can be 

represented as in [8]: 

 

Pdynamic=Ceff.Vdd^2.f                                 (1) 

 

where Ceff is the effective switching capacitance, Vdd is the 

supply voltage, and f is the processor clock frequency (speed)  

which can be expressed in terms of a constant k, supply 

voltage Vdd and threshold voltage Vth as follows: 

 

f=k.(Vdd-Vth)^2/Vdd                                  (2) 

 

The static power consumption is primarily occurred due to 

leakage currents (Ileak) (Kong et al., (2012)), and the static 

(leakage) power (Pleak) can be expressed as: 

 

Pleak=Ileak.Vdd                                      (3) 

 

When the processor is idle, a major portion of the power 

consumption comes from the leakage. Currently, leakage 

power is rapidly becoming the dominant source of power 

consumption in circuits and persists whether a computer is 

active or idle [2]. So, lowering supply voltage is one of the 

most effective ways to reduce both dynamic and leakage 

power consumption. As a result, it reduces energy 

consumption where the energy consumption is the power 

dissipated over time. For simplicity reasons, Eq. (1) is 

reduced to a simplified power model P=f^3 using normalized 

values where f is the processor speed (frequency). Then, a 

simplified energy model E=f^2 (using normalized values) 

can be used.  

 

IV. THE PROPOSED APPROACH 

Before introducing our proposed approach in this paper, a 

background on PSO and priority assignment and min-min 

techniques will be presented. 

A. PSO 

Authors in [14] developed the PSO algorithm simulating 

the behavior of swarms in the nature, such as birds, fish, etc. 

In PSO, the potential solutions, called particles, fly through 

the problem space by following the current optimum 
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particles. PSO has been successfully applied in many 

scientific areas and there are many variants of the algorithm. 

At the beginning, a set (swarm) of random solutions 

(particles) is used to initialize the PSO algorithm that starts 

iterations looking for optimal solution. During every 

iteration, each particle is updated by two best values. The first 

one is the personal best pbest that the particle has achieved so 

far. The second is the global best gbest obtained by any 

particle in the swarm. After finding the two best values, the 

particle updates its velocity and position according to 

equations (4) and (5) respectively. The following is the 

typical procedure of PSO: 

 

Initialize the Population Randomly. 

DO{ 

For each particle.{ 

Calculate fitness value 

If the fitness value is better than the best fitness value 

(pbest) then set current value as the new pbest.} 

Choose the particle with the best fitness value of all 

particles as the gbest. 

For each particle.{ 

Calculate new velocity: 

Vnew= W.Vo1d+C1. R1. (pbest-X)+C2. R2.(gbest-X)       (4) 

Update particle position: 

Xnew=Xold+Vnew             }}                       (5) 

Until termination criterion is met. 

 

The random numbers R1 and R2 are generated uniformly 

between 0 and 1 and the constants C1 (self-knowledge factor) 

and C2 (social-knowledge factor) are usually in the range 

from 1.5 to 2.5. Finally, the inertia factor W can be fixed or 

varied with a decreasing value as the algorithm proceeds [11] 

or it may be restarted as in [5]. PSO has been applied to solve 

the problem of task partitioning for homogeneous and 

heterogeneous multiprocessors [5], [10], [11]. Considering a 

system consisting of m processors and n tasks. A possible 

solution (particle) is a vector of n elements, each element is 

associated to a given task. Each element takes an integer 

value i where 1≤i≤m and represents the processor that the 

task is assigned to. Thus, the search space size is m^n. There 

are k particles in the swarm that form swarm (population) 

size; these particles are initialized randomly. 

B. Proposed Priority Assignment Algorithm 

To optimize Min-min algorithm [8], Priorities have been 

determined from Directed Acyclic Graph, DAG, and then 

assigned to the tasks in such way that the important task will 

be assigned to the processor that eventually leads to a better 

scheduling. Priority assignment algorithm flowchart is 

illustrated in Fig. 1. In this paper, real-time tasks are 

considered.  

C. The Proposed Modified PSO Approach 

The modified PSO approach, proposed in this paper, 

simply modifies the initialization step in the PSO procedure 

by assigning priorities for each task and then incorporating a 

Min-min solution (particle) in the randomly generated 

population. This approach gives the PSO algorithm a push to 

start from a good solution and then the PSO goes on trying to 

optimize the solution resulting in the Min-min solution in the 

worst case. Firstly, A cost function favoring makespan 

(maximum processor accumulative utilization) minimization 

is proposed. Then, a penalty is added to the infeasible 

solutions that exceed the processing capacity of any 

processor. In other words, the cost is represented as follows 

[3]: 
 

Cost=Max(Uj)+Penalty     for j=1, 2,…, m              (6) 
        

Penalty=Sum(Uj>1)      for j=1, 2,..., m                (7) 
 

Next, the cost function is developed to incorporate energy 

where the proposed PSO approach tries to find energy 

efficient solutions. This paper introduces an energy-aware 

cost function considering simplified energy model as 

follows: 
 

Cost=Sum(Uj^2)/m+Penalty  for j=1, 2, …, m          (8) 
 

When applying PSO, the parameters used are the swarm 

size k=100, No. of iterations=100, C1=C2=2 [5], and the 

inertia W=1 that, according to the PSO variant used, may be 

fixed or may decrease linearly until reaching 0 or it may be 

then restarted (re-excited) to 1 to decrease linearly again. 

When applying PSO, the parameters used are the swarm size 

k=100, No. of iterations=100, C1=C2=2 [5], and the inertia 

W=1 that, according to the PSO variant used, may be fixed or 

may decrease linearly until reaching 0 or it may be then 

restarted (re-excited) to 1 to decrease linearly again. 
 

 
Fig. 1. Priority assignment flowchart. 
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Fig. 2. A comparison of partitioning methods with light tasks partitioned 

upon 4 processors. 

 

 
Fig. 3. A comparison of partitioning methods with light tasks partitioned 

upon 10 processors. 

 

 
Fig. 4. A comparison among Min-min, PSO-vi, and PSO-m techniques with 

light tasks partitioned upon 4 processors. 

 

The approaches have been implemented using 

MATLAB
TM

. Utilization matrices have been uniformly 

generated of light tasks with utilization ranges from 0.05 to 

0.25 and medium tasks with utilization ranges from 0.25 to 

0.5. The implemented approaches are Min-min, Max-min, 

PSO with fixed inertia (PSO-fi), PSO with varied inertia 

(PSO-vi), PSO with re-excited inertia (PSOre), and our 

proposed Min-min based PSO approach (PSOm). With 

relatively small search spaces, all PSO variants show good 

results with reasonable number of iterations. But, when 

search spaces grow, so much iterations are needed to get good 

results using PSO approaches. PSO variants using variable 

inertia such as PSO-vi and PSO-re show better performance 

than PSO with fixed inertia (PSO-fi) with the same number of 

iterations and the same problem instances. Fig. 2 and Fig. 3 

show comparisons among Min-min, Max-min, and PSO 

variants with 200 iterations for light tasks scheduled on 4 and 

10 cores respectively. Our enhanced PSO gives better results 

with reasonable number of iterations. In the worst case, it is 

very close to Min-min performance if it could not optimize 

the solution. 

Fig. 4 and Fig. 5 show the performance of our proposed 

approach with 100 iterations and light tasks assigned to 4 and 

10 cores respectively. It is obvious that our proposed 

approach behaves so better when the search space grows. 

When medium tasks are used, the proposed approach behaves 

in the same way and shows better performance especially 

with large search spaces. Fig. 6 and Fig. 7 show the case 

when medium tasks are partitioned on 8 and 16 processors 

respectively. If per-core DVFS is considered, the introduced 

energy-aware cost function, Eq. (8), is taken into account. Fig. 

8 and Fig. 9 show the case of partitioning light tasks on 

per-core DVFS platforms of 4 cores. It is clear that using 

makespan cost function, Eq. (6), increases the feasibility 

(schedulability) of the task set more than using Eq. (8) as a 

cost function which is more energy efficient. 
 

 
Fig. 5. A comparison among Min-min, PSO-vi, and PSO-m techniques with 

light tasks partitioned upon 10 processors. 

 

 
Fig. 6. A comparison among Min-min, PSO-vi, and PSO-m techniques with 

medium tasks partitioned upon 8 processors. 

 

 
Fig. 7. A comparison among Min-min, PSO-vi, and PSO-m techniques with 

medium tasks partitioned upon 16 processors. 
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Fig. 8. A comparison among PSO-fi, PSO-vi, and PSO-m techniques with 

light tasks partitioned upon 4 processors. 

 

 
Fig. 9. A comparison among PSO-fi, PSO-vi, and PSO-m techniques with 

light tasks partitioned upon 10 processors. 

 

V. CONCLUSIONS 

This paper considered the problem of power-aware task 

partitioning on heterogeneous multiprocessor platforms. The 

paper proposed a modified PSO variant based on Min-min 

and priority assignment algorithms that outperformed its 

counterparts in less number of iterations for the same 

problem instance. Also, the energy-aware cost function is 

addressed in this paper and it differentiated between the 

full-chip and per-core DVFS processors. As a future work, 

any verified polynomial-time partitioning technique can be 

added as a particle to the population in the initialization step 

to give the PSO algorithm a forward push to get better 

solutions. 
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