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Abstract—Multivalued logic is an extension of Boolean 

algebra with high radix approaches and is preferable over 

conventional binary logic operations for reduction in 

interconnection cost, chip area both on-chip and between chips 

and high information handing capability. This paper includes 

the design of elementary combinational quaternary operators 

that have sufficient representative capability to efficiently 

implement in intricate quaternary arithmetic circuits. Design of 

several combinational logic circuits have been presented which 

can function individually and in logic blocks for designing 

further complex circuits resulting in a reduction of circuit 

complexity and better speed processing in integrated circuit 

technology. 

 
Index Terms—Cycle gate, max and min gate, multivalued 

logic, quaternary algebra.  

 

I. INTRODUCTION 

Binary logic has been predominant in embedded system 

and a fundamental for computer programming and 

mathematical logic due to its easy accessibility and 

widespread use in logic circuits. Operating with binary logic 

implies to controlling the real world with computers and that 

an alternative improved approach with a better usage of 

transmission path, storage and processing of large amount of 

information in digital signal processing even exist seems 

somewhat impossible. Yet, Moore’s law states that, the 

number of transistors on integrated circuits doubles 

approximately every two years. As this law has been by far 

proven accurate, it is high time we considered alternative 

approaches to reduce this tremendous positive rate of 

elements used in integrated circuits. It has been suggested that 

by increasing the processing speed, memory capacity, sensors 

or memory states, this significant rate can be inhibited to an 

exponential rate. But, due to the inherent limitation data 

representation system of only two distinct levels {0, 1}, 

binary logic impedes the scope for multiple states and lacks 

high speed and information handling capacity. On the other 

hand, multivalued number systems, such as ternary and 

quaternary systems with a radix more than ‘2’ (p>2) emerges 

with the immediate benefit of larger information handling and 

storage capacities. 

Multivalued logic system introduces new operators in 

addition to binary values {0, 1} and is a proposed extension of 

the idea that n valued logic can be used instead of two logical 

values (that is, true or false, logic high or low) where n>2 [1].  

Perhaps one of the most tangible immediate benefits of 

 
Manuscript received September 9, 2014; revised January 5, 2015. 

The  authors  were  with  the  Ahsanullah  University   of   Science   and 

Technology, Dhaka, Bangladesh (e-mail: asif.faiyaz@gmail.com).  

higher-radix approaches like quaternary logic lies in their 

potential for reduction of the wiring congestion and 

interconnection cost [2]. Using a single conductor to transmit 

three or more discrete voltage or current values allows for 

greater information content per wire and thus results in a 

circuit with reduced conductors and logic gates than the 

binary-valued counterpart. Furthermore modeling of many 

complex logic systems and associated algebras are possible 

due to the exponentially increasing number of operators with 

respect to the cardinality of the multiple logic values.  

Although multivalued logic particularly quaternary algebra 

is not as widespread as binary, it has gained much 

appreciation in recent years due to its higher information 

handling capacity of much more complex algorithms in 

emerging topics like optical and quantum computing [1]. That 

is why it is prerequisite to express its fundamental operators in 

terms of equations and logic diagram for further 

implementation in multiplex algorithms. In this paper, we 

have designed some important functions like max, min, 

mod-sum, mod-difference, successor, predecessor, 2
nd

 level 

successor or predecessor and 3
rd

 level successor and 

predecessor using earlier proposed logic functions and basic 

operators proposed in [3]-[6] which can be implemented 

subsequently in composite circuits. 

 

II. QUATERNARY ALGEBRA  

Multivalued logic (MVL) or nonbinary-valued system 

utilizes variables that can take on a discrete set of values with 

cardinality of n ≥ 3 and quaternary algebra which has been 

derived as propositional or quantum logic from MVL algebra 

is defined over four finite sets of logic values [1]. Hence, 

while multi valued logic deals with infinite number of values 

as discrete variables, quaternary algebra is based upon the 

discrete variables {0, 1, 2, 3} including the binary values {0, 

1}. Quaternary states {0, 1, 2, 3} with a set of operators and 

axioms are used to define quaternary algebra. Each of the 

quaternary states {0, 1, 2, 3} has its two bits binary 

equivalents 00 (absolute low), 01 (intermediate low), 10 

(intermediate high) and 11 (absolute high) and each of the 

quaternary bits is called ‘qudit’ [3], [7], when expressed in 

numbers. The logic values can also be indicated by two binary 

digits ‘a1’ and ‘a0’, respectively which is inscribed and 

packed together using the following notion A={a1, a0} where 

the term ‘2a1 + a0’ denotes the magnitude of the variable ‘A’ 

in decimal system [4]. Quaternary states are sub categorized 

into symmetrical and asymmetrical based upon their position 

of bits. If the bits of the binary equivalent of quaternary states 

interchange their position and still the quaternary states 

remain unchanged then they are known as symmetrical. 
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Absolute states (0, 3) are symmetrical as the change of bits in 

binary equivalent does not change the corresponding 

quaternary value. If the transposition of position of bits 

changes the corresponding binary value then they are known 

as asymmetrical. Intermediate states (1, 2) are asymmetrical 

as interchanging the binary equivalents changes the 

quaternary state 1 to 2 and vice versa [6]. 

Quaternary algebra is in congruence with binary logic in 

terms of the basic operators like OR, AND, BUFFER, BASIC 

INVERTER, XOR, BASIC NAND, BASIC NOR and BASIC 

XNOR and that is why the interfacing of binary to quaternary 

can easily be conducted by just using an encoder. So, 

quaternary algebra can be used as models for the initial design 

of logic circuits whether they are implemented with MVL 

signal levels or binary after being encoded. Again, using the 

mainstream fundamental operators, the functional operators 

which are analogous to binary logic can easily be derived and 

all the logic blocks of quaternary are compatible with binary 

logic design making it a paragon for dual purpose. 
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                    Fig. 1. Design of Min gate using basic gates.                                                        Fig. 2. Design of Max gate using basic gates. 

 

III. PROPOSED IDEA  

Just like Boolean algebra, it is necessary to provide an 

effective logic design and well-defined framework for 

expressing and manipulating functions in quaternary algebra. 

Combinational circuit is a vital element for any digital system. 

In many applications, that is why, it is imperative that the 

operators of the algebra have simple and efficient circuit 

implementations for reducing circuit complexity. Although 

functions like max, min, cycle gate (forward and reverse 

cycle), successor and predecessor, 2
nd

 level successor and 

predecessor have already been introduced [3], [4], yet, no 

specifications to the truth table, logic diagram and 

corresponding equations have been stated so far abating the 

process of further implementation of these functions in 

complex circuitry. The paper proposes the techniques for 

finding the truth table, logic diagram and the equation for 

some consequential functional operators like max, min, cycle 

gate (forward and reverse cycle), successor and predecessor, 

2
nd

 level successor and predecessor which can be further 

implemented to solve circuit complexity. Henceforth, our 

proposed quaternary logic designs can be integrated 

efficiently for designing some conventional circuits.  

A. Min and Max Gate 

Seeing in Fig. 1 and Fig. 2. The Min function is used to 

compare the minimum among the several literals [3]. A 

representation of a quaternary switching function that is 

analogous (but not identical) to the binary sum of minterms 

representation can be formulated using the Max function in 

place of the binary inclusive OR function and product terms 

may be formed using the Min function in place of the binary 

AND operation. But after obtaining the truth table of Min and 

comparing it with the corresponding truth table for AND 

function, it can be concluded that the Min function is similar 

to AND function with the exception for the particular case of 

inputs ‘1’ and ‘2’ or ‘2’ and ‘1’ [4] (see Table I). Similarly, 

the comparison between Max and OR operators also shows 

resemblance in their properties and output except when the 

inputs are ‘1’ and ‘2’ or ‘2’ and ‘1’ [4]. Many of the existing 

quaternary logic schemes have min and max as operators and 

these operators have already been realized physically [8]. But 

the lack of representation in logic design makes it difficult to 

implement these functions in complex circuits. So, we have 

proposed a new set of equations congruous with the 

established truth table along with their respective 

complementary logic design which are of their simplest form 

and are further verified using matlab. Min gate function can 

be represented by the following equation.  
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Clearly we can understand that while designing the logic 

diagram we cannot replace min function with AND gate rather 

we have to undergo additional changes to obtain the output for 

(1, 2) and (2, 1). For designing the logic diagram therefore we 

have utilized the concepts of special gates, different theorems 

and properties of quaternary algebra. Initially in order to just 

obtain (1, 2) and (2, 1) we have utilized the concept of bitswap 

and equity functions. We know, bitswap operator 

interchanges the asymmetric inputs keeping the symmetric 

unchanged and equity function provides the output ‘3’ for the 

similar inputs and rest ‘0’ [4]. So together we obtain ‘3’ for (0, 

0), (1, 2), (2, 1) (3, 3) and ‘0’ otherwise. In the very next step, 

we need to design a function which separates the inputs (0, 0) 

and (3, 3) from the other two sets. Observing the pattern, we 

have introduced XOR operator here which provides ‘0’ for 

similar inputs and ‘greater than 1’ for dissimilarity. Although 

after using this function, we have separated the desired 

functions yet we lose the output ‘3’ for inputs (1, 2) and (2, 1). 

So, in order to obtain this output we have utilized one of the 
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properties of quaternary algebra which is –  
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We have focused on the two outputs ‘3’ and ‘0’ for utilizing 

the property ‘a.3 = a’ and ‘a.0 = 0’ of AND gate. As a result, 

we have placed an AND gate at the next step in order to obtain 

an output ‘3’ for only inputs (1, 2) and (2, 1) and ‘0’ 

otherwise. We then place an inverter connected to an AND 

gate to ensure an output of ‘3’ for any combination of input 

apart from (1, 2) and (2, 1) for which it is ‘0’. After this very 

step we need to convert the output ‘0’ for inputs (1, 2) and (2, 

1) to ‘1’ keeping the rest unchanged by utilizing the property,  
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Placing it before the inverter we obtain the desired result 

which is then connected to an OR gate to provide the required 

output. The logic design of min function can be manipulated 

into different ways through different combinations of gates, 

yet we managed to ensure a novel design with minimum gates 

after going through different combinations.  

We can also observe the equations of Max gate derived 

from perceiving the similarity of this function with other basic 

functions and the truth table. 
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In case of max function similarly, while comparing with 

OR function we observe similarity except for (1, 2) and (2, 1). 

As a result we use the same procedure stated above to separate 

the contradictory functions from the rest and then using the 

properties of quaternary algebra to obtain the required result. 

 

TABLE I: TRUTH TABLE FOR MAX FUNCTION, MIN FUNCTION, AND 

FUNCTION AND OR FUNCTION 

Input Output 

B A AND MIN OR MAX 

0 0 0 0 0 0 

0 1 0 0 1 1 

0 2 0 0 2 2 

0 3 0 0 3 3 

1 0 0 0 1 1 

1 1 1 1 1 1 

1 2 0 1 3 2 

1 3 1 1 3 3 

2 0 0 0 2 2 

2 1 0 1 3 2 

2 2 2 2 2 2 

2 3 2 2 3 3 

3 0 0 0 3 3 

3 1 1 1 3 3 

3 2 2 2 3 3 

3 3 3 3 3 3 

B. Forward Cycle and Reverse Cycle Gate 
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Fig. 3. Design of Forward cycle gate using basic gates. 
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Fig. 4. Design of Reverse cycle gate using basic gates. 

 

TABLE II: TRUTH TABLE FOR FORWARD CYCLE FUNCTION, REVERSE CYCLE 

FUNCTION AND XOR FUNCTION 

Input Output 

B A XOR 
Forward 

Cycle 

Reverse 

Cycle 

0 0 0 0 0 

0 1 1 1 1 

0 2 2 2 2 

0 3 3 3 3 

1 0 1 1 3 

1 1 0 2 0 

1 2 3 3 1 

1 3 2 0 2 

2 0 2 2 2 

2 1 3 3 3 

2 2 0 0 0 

2 3 1 1 1 

3 0 3 3 1 

3 1 2 0 2 

3 2 1 1 3 

3 3 0 2 0 

 

Seeing in Fig. 3 and Fig. 4, Forward cycle or mod-sum and 

reverse cycle or mod-difference are cycle gates where the 

output varies taking the reference point as one input and 

varying with respect to the quaternary value of the other input 

[3]. In case of forward cycle gate, with respect to one 

reference point the movement of the input quaternary value is 

clockwise and in case of reverse gate it is anticlockwise. For 

example, for the two input values as 1 and 3, if the reference 

value is 1, then the output after moving in a clockwise 

direction by shifting twice becomes 0. On the contrary, for the 

reverse cycle gate the output after moving in an anticlockwise 

direction becomes 2. The following equation is derived and 

the logic diagram is further designed by observing the truth 
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table constructed by calculating the logical output and then 

verified using matlab. 

              Forward cycle (A, B) = 
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Observing the truth table of forward cycle (see Table II), 

we conclude the similarity between forward cycle and XOR 

gate except for inputs (1, 1), (1, 3), (3, 1) and (3, 3). As a 

result while designing the logic diagram apart from placing a 

XOR gate we need to redesign our circuit in order to obtain 

the required output for the exceptions. Observing the output 

we can speculate that the antonymous output varies from ‘0’ 

to ‘2’ and vice versa. Utilizing this understanding we have 

placed two BITSWAP gates in order to change the 

exceptional asymmetric input ‘1’ to ‘2’ and further placing an 

AND gate which provides an output (>=2) for the exceptional 

inputs and output (<=1) otherwise. After that, using an 

INVERTER and the following function,  
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We obtain an output of ‘2’ for the exceptional inputs and 

‘0’ otherwise. Then using just an XOR gate with this 

particular combination we attain the desired output. Similarly, 

the Reverse cycle gate equation being derived is: 
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Observing the truth table of the Reverse cycle gate and 

comparing the output with that of XOR, we have used 

different combinations and properties to obtain the 

corresponding logic diagram. 

C. Successor and Predecessor Gate 
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Fig. 5. Design of Successor gate using basic gates.   
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Fig. 6. Design of Predecessor gate using basic gates.   

 

Seeing in Fig. 5 and Fig. 6, While functions like forward 

and reverse cycle shows us the interdependence of the 

quaternary inputs, functions like successor and predecessor 

give us the desire output as per the number of times the input 

shifts being fixed beforehand [3]. Predecessor or 3
rd

 level 

successor gates give the preceding value or the output after 

the input shifts three times in the clockwise direction for the 

particular value of input. For example, for a particular input of 

1, we can obtain the precedent value 0 or by shifting the input 

three times in the clockwise direction. Similarly, using the 

successor or 3
rd

 level predecessor gate, we can obtain the 

succeeding value which is 2 for the particular above 

mentioned case. The logic diagrams are designed again by 

comparing the output with different properties of quaternary 

operators and applying different combinations of gates. 

Successor gate (A) = )2()1.((~  AA  

Predecessor gate (A) = AA )1.((~  

 

TABLE III: TRUTH TABLE FOR SUCCESSOR FUNCTION, PREDECESSOR FUNCTION, 2ND LEVEL SUCCESSOR OR 2ND LEVEL PREDECESSOR FUNCTION, 3RD LEVEL 

SUCCESSOR FUNCTION AND 3RD LEVEL PREDECESSOR FUNCTION 

Input Output 

A Successor Predecessor 2nd level successor or 2nd level predecessor 3rd level successor 3rd level predecessor 

0 1 3 2 3 1 

1 2 0 3 0 2 

2 3 1 0 1 3 

3 0 2 1 2 0 

 

D. 2
nd

 Level Successor or 2
nd 

Level Predecessor Gate 

Seeing Fig. 7, Just like Successor or Predecessor gate, 

using 2
nd

 level successor or 2
nd

 level predecessor gate, we can 

obtain the corresponding 2
nd

 preceding and succeeding values 

after the input being shifted twice. We can conclude that using 

different levels of successor and predecessor gates we can 

obtain any desired value at any position which can be of 

immense benefit while designing complex logic circuits. The 

equation for this particular case has been derived as follows:  

                 2
nd

 level successor gate = 

2
nd

 level predecessor gate = )2( A  
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Fig. 7. Design of 2nd Level Successor or 2nd Level Predecessor gate using 

basic gates.  

 

IV. FUTURE WORKS 

Although the corresponding equation and logic diagram 

derived for the functional operators can be easily interfaced 

and has been minimized using different combinations, further 

work has to be done to make it more compatible by deriving 

different theorems and properties as the central concept of 

functional completeness of quaternary algebra is still the 

underlying concept to be considered. The combinational 

circuits designed in this paper can be effectuated for 

designing further complex circuits like adder, multiplier, 

subtractor, multiplexer, comparator, flip-flops and other 

elementary sequential circuits. Many of the more recently 

approved algebras have been developed for the purpose of 

modeling MVL circuits based upon particular electronic 

components to be used as primitive circuit elements in their 

construction and the logic design of elementary functional 

operators brings us one step closer to physical implementation 

of quaternary circuits in the high performance 

microprocessor. 

 

V. CONCLUSION 

In this paper, we have constructed the logic design and 

respective equations of foundational functional operators and 

tested each derived equation using matlab. Despite the 

inconsistency of output of the fundamental operators in 

quaternary algebra, we have managed to formulate novel 

designs for relevant functions like max and min functions 

which are considered the framework of quaternary algebra 

because of their implementation as a set of max, min and 

equality operators which is sufficient enough to express any 

quaternary function algebraically. We have also depicted 

operators like predecessor and successor through their logic 

diagram which have historically been considered as distinct 

since they have direct circuit implementations and are 

particular cases of general cycle operation. Therefore, for the 

significant efficacy of these operators, new algebraic and 

logic design techniques have been developed in this paper 

which can be utilized in some future novel technology or 

implementation. Although binary logic can be professed as 

the pivot of controlling the embedded fundamental and digital 

system of modern times, yet quaternary algebra imposes some 

features which can provide immense benefit to the VLSI and 

quantum technology contributing to the design of novel 

electron devices like Carbon Nanotube Transistor, FinFET, 

G4-FET, Silicon Nanowire FET, etc. where quaternary logic 

is preferable rather than binary for fast processing. 
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