

Abstract—Multivalued logic is an extension of Boolean

algebra with high radix approaches and is preferable over

conventional binary logic operations for reduction in

interconnection cost, chip area both on-chip and between chips

and high information handing capability. This paper includes

the design of elementary combinational quaternary operators

that have sufficient representative capability to efficiently

implement in intricate quaternary arithmetic circuits. Design of

several combinational logic circuits have been presented which

can function individually and in logic blocks for designing

further complex circuits resulting in a reduction of circuit

complexity and better speed processing in integrated circuit

technology.

Index Terms—Cycle gate, max and min gate, multivalued

logic, quaternary algebra.

I. INTRODUCTION

Binary logic has been predominant in embedded system

and a fundamental for computer programming and

mathematical logic due to its easy accessibility and

widespread use in logic circuits. Operating with binary logic

implies to controlling the real world with computers and that

an alternative improved approach with a better usage of

transmission path, storage and processing of large amount of

information in digital signal processing even exist seems

somewhat impossible. Yet, Moore’s law states that, the

number of transistors on integrated circuits doubles

approximately every two years. As this law has been by far

proven accurate, it is high time we considered alternative

approaches to reduce this tremendous positive rate of

elements used in integrated circuits. It has been suggested that

by increasing the processing speed, memory capacity, sensors

or memory states, this significant rate can be inhibited to an

exponential rate. But, due to the inherent limitation data

representation system of only two distinct levels {0, 1},

binary logic impedes the scope for multiple states and lacks

high speed and information handling capacity. On the other

hand, multivalued number systems, such as ternary and

quaternary systems with a radix more than ‘2’ (p>2) emerges

with the immediate benefit of larger information handling and

storage capacities.

Multivalued logic system introduces new operators in

addition to binary values {0, 1} and is a proposed extension of

the idea that n valued logic can be used instead of two logical

values (that is, true or false, logic high or low) where n>2 [1].

Perhaps one of the most tangible immediate benefits of

Manuscript received September 9, 2014; revised January 5, 2015.

The authors were with the Ahsanullah University of Science and

Technology, Dhaka, Bangladesh (e-mail: asif.faiyaz@gmail.com).

higher-radix approaches like quaternary logic lies in their

potential for reduction of the wiring congestion and

interconnection cost [2]. Using a single conductor to transmit

three or more discrete voltage or current values allows for

greater information content per wire and thus results in a

circuit with reduced conductors and logic gates than the

binary-valued counterpart. Furthermore modeling of many

complex logic systems and associated algebras are possible

due to the exponentially increasing number of operators with

respect to the cardinality of the multiple logic values.

Although multivalued logic particularly quaternary algebra

is not as widespread as binary, it has gained much

appreciation in recent years due to its higher information

handling capacity of much more complex algorithms in

emerging topics like optical and quantum computing [1]. That

is why it is prerequisite to express its fundamental operators in

terms of equations and logic diagram for further

implementation in multiplex algorithms. In this paper, we

have designed some important functions like max, min,

mod-sum, mod-difference, successor, predecessor, 2
nd

 level

successor or predecessor and 3
rd

 level successor and

predecessor using earlier proposed logic functions and basic

operators proposed in [3]-[6] which can be implemented

subsequently in composite circuits.

II. QUATERNARY ALGEBRA

Multivalued logic (MVL) or nonbinary-valued system

utilizes variables that can take on a discrete set of values with

cardinality of n ≥ 3 and quaternary algebra which has been

derived as propositional or quantum logic from MVL algebra

is defined over four finite sets of logic values [1]. Hence,

while multi valued logic deals with infinite number of values

as discrete variables, quaternary algebra is based upon the

discrete variables {0, 1, 2, 3} including the binary values {0,

1}. Quaternary states {0, 1, 2, 3} with a set of operators and

axioms are used to define quaternary algebra. Each of the

quaternary states {0, 1, 2, 3} has its two bits binary

equivalents 00 (absolute low), 01 (intermediate low), 10

(intermediate high) and 11 (absolute high) and each of the

quaternary bits is called ‘qudit’ [3], [7], when expressed in

numbers. The logic values can also be indicated by two binary

digits ‘a1’ and ‘a0’, respectively which is inscribed and

packed together using the following notion A={a1, a0} where

the term ‘2a1 + a0’ denotes the magnitude of the variable ‘A’

in decimal system [4]. Quaternary states are sub categorized

into symmetrical and asymmetrical based upon their position

of bits. If the bits of the binary equivalent of quaternary states

interchange their position and still the quaternary states

remain unchanged then they are known as symmetrical.

Logic Design of Elementary Functional Operators in

Quaternary Algebra

Asif Faiyaz, Sarah Nahar Chowdhury, and Khandakar Mohammad Ishtiak

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

250DOI: 10.7763/IJCTE.2016.V8.1053

mailto:asif.faiyaz@gmail.com

Absolute states (0, 3) are symmetrical as the change of bits in

binary equivalent does not change the corresponding

quaternary value. If the transposition of position of bits

changes the corresponding binary value then they are known

as asymmetrical. Intermediate states (1, 2) are asymmetrical

as interchanging the binary equivalents changes the

quaternary state 1 to 2 and vice versa [6].

Quaternary algebra is in congruence with binary logic in

terms of the basic operators like OR, AND, BUFFER, BASIC

INVERTER, XOR, BASIC NAND, BASIC NOR and BASIC

XNOR and that is why the interfacing of binary to quaternary

can easily be conducted by just using an encoder. So,

quaternary algebra can be used as models for the initial design

of logic circuits whether they are implemented with MVL

signal levels or binary after being encoded. Again, using the

mainstream fundamental operators, the functional operators

which are analogous to binary logic can easily be derived and

all the logic blocks of quaternary are compatible with binary

logic design making it a paragon for dual purpose.

x=y ?
x

y

~a

b

F

~

1

min
a

b
F min

a

b
F

x=y ?
x

y

~a

b

F

~

1

min
a

b
F min

a

b
F

 Fig. 1. Design of Min gate using basic gates. Fig. 2. Design of Max gate using basic gates.

III. PROPOSED IDEA

Just like Boolean algebra, it is necessary to provide an

effective logic design and well-defined framework for

expressing and manipulating functions in quaternary algebra.

Combinational circuit is a vital element for any digital system.

In many applications, that is why, it is imperative that the

operators of the algebra have simple and efficient circuit

implementations for reducing circuit complexity. Although

functions like max, min, cycle gate (forward and reverse

cycle), successor and predecessor, 2
nd

 level successor and

predecessor have already been introduced [3], [4], yet, no

specifications to the truth table, logic diagram and

corresponding equations have been stated so far abating the

process of further implementation of these functions in

complex circuitry. The paper proposes the techniques for

finding the truth table, logic diagram and the equation for

some consequential functional operators like max, min, cycle

gate (forward and reverse cycle), successor and predecessor,

2
nd

 level successor and predecessor which can be further

implemented to solve circuit complexity. Henceforth, our

proposed quaternary logic designs can be integrated

efficiently for designing some conventional circuits.

A. Min and Max Gate

Seeing in Fig. 1 and Fig. 2. The Min function is used to

compare the minimum among the several literals [3]. A

representation of a quaternary switching function that is

analogous (but not identical) to the binary sum of minterms

representation can be formulated using the Max function in

place of the binary inclusive OR function and product terms

may be formed using the Min function in place of the binary

AND operation. But after obtaining the truth table of Min and

comparing it with the corresponding truth table for AND

function, it can be concluded that the Min function is similar

to AND function with the exception for the particular case of

inputs ‘1’ and ‘2’ or ‘2’ and ‘1’ [4] (see Table I). Similarly,

the comparison between Max and OR operators also shows

resemblance in their properties and output except when the

inputs are ‘1’ and ‘2’ or ‘2’ and ‘1’ [4]. Many of the existing

quaternary logic schemes have min and max as operators and

these operators have already been realized physically [8]. But

the lack of representation in logic design makes it difficult to

implement these functions in complex circuits. So, we have

proposed a new set of equations congruous with the

established truth table along with their respective

complementary logic design which are of their simplest form

and are further verified using matlab. Min gate function can

be represented by the following equation.

Min (A, B) =

BA.

1

;

;

otherwise

or

when

2

1

A

A

and

and

1

2

B

B

Clearly we can understand that while designing the logic

diagram we cannot replace min function with AND gate rather

we have to undergo additional changes to obtain the output for

(1, 2) and (2, 1). For designing the logic diagram therefore we

have utilized the concepts of special gates, different theorems

and properties of quaternary algebra. Initially in order to just

obtain (1, 2) and (2, 1) we have utilized the concept of bitswap

and equity functions. We know, bitswap operator

interchanges the asymmetric inputs keeping the symmetric

unchanged and equity function provides the output ‘3’ for the

similar inputs and rest ‘0’ [4]. So together we obtain ‘3’ for (0,

0), (1, 2), (2, 1) (3, 3) and ‘0’ otherwise. In the very next step,

we need to design a function which separates the inputs (0, 0)

and (3, 3) from the other two sets. Observing the pattern, we

have introduced XOR operator here which provides ‘0’ for

similar inputs and ‘greater than 1’ for dissimilarity. Although

after using this function, we have separated the desired

functions yet we lose the output ‘3’ for inputs (1, 2) and (2, 1).

So, in order to obtain this output we have utilized one of the

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

251

properties of quaternary algebra which is –

 aa~

0

3

;

;

0

0

a

a

We have focused on the two outputs ‘3’ and ‘0’ for utilizing

the property ‘a.3 = a’ and ‘a.0 = 0’ of AND gate. As a result,

we have placed an AND gate at the next step in order to obtain

an output ‘3’ for only inputs (1, 2) and (2, 1) and ‘0’

otherwise. We then place an inverter connected to an AND

gate to ensure an output of ‘3’ for any combination of input

apart from (1, 2) and (2, 1) for which it is ‘0’. After this very

step we need to convert the output ‘0’ for inputs (1, 2) and (2,

1) to ‘1’ keeping the rest unchanged by utilizing the property,

1.a

1

0

;

;

3

0

a

a

Placing it before the inverter we obtain the desired result

which is then connected to an OR gate to provide the required

output. The logic design of min function can be manipulated

into different ways through different combinations of gates,

yet we managed to ensure a novel design with minimum gates

after going through different combinations.

We can also observe the equations of Max gate derived

from perceiving the similarity of this function with other basic

functions and the truth table.

Max (A, B) =

 BA

2

;

;

otherwise

or

when

2

1

A

A

and

and

1

2

B

B

In case of max function similarly, while comparing with

OR function we observe similarity except for (1, 2) and (2, 1).

As a result we use the same procedure stated above to separate

the contradictory functions from the rest and then using the

properties of quaternary algebra to obtain the required result.

TABLE I: TRUTH TABLE FOR MAX FUNCTION, MIN FUNCTION, AND

FUNCTION AND OR FUNCTION

Input Output

B A AND MIN OR MAX

0 0 0 0 0 0

0 1 0 0 1 1

0 2 0 0 2 2

0 3 0 0 3 3

1 0 0 0 1 1

1 1 1 1 1 1

1 2 0 1 3 2

1 3 1 1 3 3

2 0 0 0 2 2

2 1 0 1 3 2

2 2 2 2 2 2

2 3 2 2 3 3

3 0 0 0 3 3

3 1 1 1 3 3

3 2 2 2 3 3

3 3 3 3 3 3

B. Forward Cycle and Reverse Cycle Gate

~

~

◊

^

a

b

F

a
b

a

b
F

Fig. 3. Design of Forward cycle gate using basic gates.

~

~

^

^

^

◊

a
b

F

a
b

a

b
F

Fig. 4. Design of Reverse cycle gate using basic gates.

TABLE II: TRUTH TABLE FOR FORWARD CYCLE FUNCTION, REVERSE CYCLE

FUNCTION AND XOR FUNCTION

Input Output

B A XOR
Forward

Cycle

Reverse

Cycle

0 0 0 0 0

0 1 1 1 1

0 2 2 2 2

0 3 3 3 3

1 0 1 1 3

1 1 0 2 0

1 2 3 3 1

1 3 2 0 2

2 0 2 2 2

2 1 3 3 3

2 2 0 0 0

2 3 1 1 1

3 0 3 3 1

3 1 2 0 2

3 2 1 1 3

3 3 0 2 0

Seeing in Fig. 3 and Fig. 4, Forward cycle or mod-sum and

reverse cycle or mod-difference are cycle gates where the

output varies taking the reference point as one input and

varying with respect to the quaternary value of the other input

[3]. In case of forward cycle gate, with respect to one

reference point the movement of the input quaternary value is

clockwise and in case of reverse gate it is anticlockwise. For

example, for the two input values as 1 and 3, if the reference

value is 1, then the output after moving in a clockwise

direction by shifting twice becomes 0. On the contrary, for the

reverse cycle gate the output after moving in an anticlockwise

direction becomes 2. The following equation is derived and

the logic diagram is further designed by observing the truth

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

252

table constructed by calculating the logical output and then

verified using matlab.

 Forward cycle (A, B) =

 BA

2

0

;

;

;

otherwise

or

when

or

when

3

1

3

1

BA

BA

A

A

and

and

1

3

B

B

Observing the truth table of forward cycle (see Table II),

we conclude the similarity between forward cycle and XOR

gate except for inputs (1, 1), (1, 3), (3, 1) and (3, 3). As a

result while designing the logic diagram apart from placing a

XOR gate we need to redesign our circuit in order to obtain

the required output for the exceptions. Observing the output

we can speculate that the antonymous output varies from ‘0’

to ‘2’ and vice versa. Utilizing this understanding we have

placed two BITSWAP gates in order to change the

exceptional asymmetric input ‘1’ to ‘2’ and further placing an

AND gate which provides an output (>=2) for the exceptional

inputs and output (<=1) otherwise. After that, using an

INVERTER and the following function,

aa ˆ'

2

0

;

;

2

1

a

a

We obtain an output of ‘2’ for the exceptional inputs and

‘0’ otherwise. Then using just an XOR gate with this

particular combination we attain the desired output. Similarly,

the Reverse cycle gate equation being derived is:

 Reverse cycle (A, B) =

 BA

3

1

;

;

;

otherwise

or

when

or

when

2

0

0

2

A

A

A

A

and

and

and

and

3

1

3

1

B

B

B

B

Observing the truth table of the Reverse cycle gate and

comparing the output with that of XOR, we have used

different combinations and properties to obtain the

corresponding logic diagram.

C. Successor and Predecessor Gate

F

a
3

a F a
1

a F aa F

~

a

1

2

Fig. 5. Design of Successor gate using basic gates.

a
1

a F a
3

a F aa F

~

a

1

F

Fig. 6. Design of Predecessor gate using basic gates.

Seeing in Fig. 5 and Fig. 6, While functions like forward

and reverse cycle shows us the interdependence of the

quaternary inputs, functions like successor and predecessor

give us the desire output as per the number of times the input

shifts being fixed beforehand [3]. Predecessor or 3
rd

 level

successor gates give the preceding value or the output after

the input shifts three times in the clockwise direction for the

particular value of input. For example, for a particular input of

1, we can obtain the precedent value 0 or by shifting the input

three times in the clockwise direction. Similarly, using the

successor or 3
rd

 level predecessor gate, we can obtain the

succeeding value which is 2 for the particular above

mentioned case. The logic diagrams are designed again by

comparing the output with different properties of quaternary

operators and applying different combinations of gates.

Successor gate (A) =)2()1.((~ AA

Predecessor gate (A) = AA)1.((~

TABLE III: TRUTH TABLE FOR SUCCESSOR FUNCTION, PREDECESSOR FUNCTION, 2ND LEVEL SUCCESSOR OR 2ND LEVEL PREDECESSOR FUNCTION, 3RD LEVEL

SUCCESSOR FUNCTION AND 3RD LEVEL PREDECESSOR FUNCTION

Input Output

A Successor Predecessor 2nd level successor or 2nd level predecessor 3rd level successor 3rd level predecessor

0 1 3 2 3 1

1 2 0 3 0 2

2 3 1 0 1 3

3 0 2 1 2 0

D. 2
nd

 Level Successor or 2
nd

Level Predecessor Gate

Seeing Fig. 7, Just like Successor or Predecessor gate,

using 2
nd

 level successor or 2
nd

 level predecessor gate, we can

obtain the corresponding 2
nd

 preceding and succeeding values

after the input being shifted twice. We can conclude that using

different levels of successor and predecessor gates we can

obtain any desired value at any position which can be of

immense benefit while designing complex logic circuits. The

equation for this particular case has been derived as follows:

 2
nd

 level successor gate =

2
nd

 level predecessor gate =)2(A

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

253

a
2

a F a
2

a F

a

2

F

Fig. 7. Design of 2nd Level Successor or 2nd Level Predecessor gate using

basic gates.

IV. FUTURE WORKS

Although the corresponding equation and logic diagram

derived for the functional operators can be easily interfaced

and has been minimized using different combinations, further

work has to be done to make it more compatible by deriving

different theorems and properties as the central concept of

functional completeness of quaternary algebra is still the

underlying concept to be considered. The combinational

circuits designed in this paper can be effectuated for

designing further complex circuits like adder, multiplier,

subtractor, multiplexer, comparator, flip-flops and other

elementary sequential circuits. Many of the more recently

approved algebras have been developed for the purpose of

modeling MVL circuits based upon particular electronic

components to be used as primitive circuit elements in their

construction and the logic design of elementary functional

operators brings us one step closer to physical implementation

of quaternary circuits in the high performance

microprocessor.

V. CONCLUSION

In this paper, we have constructed the logic design and

respective equations of foundational functional operators and

tested each derived equation using matlab. Despite the

inconsistency of output of the fundamental operators in

quaternary algebra, we have managed to formulate novel

designs for relevant functions like max and min functions

which are considered the framework of quaternary algebra

because of their implementation as a set of max, min and

equality operators which is sufficient enough to express any

quaternary function algebraically. We have also depicted

operators like predecessor and successor through their logic

diagram which have historically been considered as distinct

since they have direct circuit implementations and are

particular cases of general cycle operation. Therefore, for the

significant efficacy of these operators, new algebraic and

logic design techniques have been developed in this paper

which can be utilized in some future novel technology or

implementation. Although binary logic can be professed as

the pivot of controlling the embedded fundamental and digital

system of modern times, yet quaternary algebra imposes some

features which can provide immense benefit to the VLSI and

quantum technology contributing to the design of novel

electron devices like Carbon Nanotube Transistor, FinFET,

G4-FET, Silicon Nanowire FET, etc. where quaternary logic

is preferable rather than binary for fast processing.

REFERENCES

[1] S Hurst, “Multiple-valued logic — Its status and its future,” IEEE

Transactions on Computers, vol. C-33, no. 12, pp. 1160-1179, 1984.

[2] A. M. H. Khan, “Reversible realization of quaternary decoder,

multiplexer, and demultiplexer circuits,” Engineering Letters, vol. 15,

no. 2, pp. 203-207, 2007.

[3] D. M. Miller and M. A. Thorton, “Multiple valued logic: Concepts and

representations,” Synthesis Lectures on Digital Circuits and Systems,

Morgan & Claypool Publishers, 2007.

[4] I. Jahangir, A. Das, and M. Hasan, “Formulation and development of a

novel quaternary Algebra,” arXiv Preprint arXiv: 1108.5497, 2011.

[5] A. Das, I. Jahangir, M. Hasan, and S. Hossain, “On the design and

analysis of quaternary serial and parallel adders,” in Proc. IEEE

Region 10 Conference, 2010, p. 1691.

[6] I. Jahangir, N. M. D. Hasan, S. Islam, N. A. Siddique, and M. M.

Hasan, “Development of novel quaternary algebra with the design of

some useful logic blocks,” in Proc. 12th International Conference on

Computers and Information Technology, 2009, p. 107.

[7] Y. A. Gaidhani and N. K. Monica, “Design of some useful logic blocks

using quaternary Algebra,” in Proc. CEE 2011, India, 2011.

[8] V. Patel and K. S. Gurumurthy, “Design of high performance

quaternary adders,” International Journal of Computer Theory and

Engineering, vol. 2, no. 6, December 2010.

Asif Faiyaz is currently pursuing his bachelor degree

in electrical and electronic engineering from

Ahsanullah University of Science and Technology,

Dhaka, Bangladesh. His research interests include

signal processing, pattern recognition,

nanotechnology, quaternary logic, microwave

communication etc. He is currently a student member

of the Institute of Electrical and Electronics Engineers

(IEEE).

Sarah Nahar Chowdhury is an undergraduate

student in electrical and electronic engineering of

Ahsanullah University of Science and Technology,

Bangladesh. She is currently working as the secretary

of Engineering Students’ Association of Bangladesh

(ESAB). Her research interests include solar cells,

renewable energy, organic transistors, nanotechnology

and quaternary algebra. She is a student member of the

Institute of Electrical and Electronics Engineers

(IEEE) since 2012.

Khandakar Mohammad Ishtiak was born in

Bangladesh in 1986. He graduated from the Electrical

and Electronic Engineering Department of Ahsanullah

University of Science and Technology (AUST).

Currently he is working as an assistant professor of the

EEE Department in AUST. He is a member of the

Institute of Electrical and Electronics Engineers

(IEEE). His research interests include

nanotechnology, solar cells, quaternary algebra, signal processing and

analysis.

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

254

