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Abstract—In this paper, we introduce a new multiscale 2D 

feature detection and description method based on optimal O(1) 

bilateral filter feature (OBFF). Existing methods detect and 

describe features by analyzing the scale space generated by 

linear and nonlinear diffusion kernel function, like Gaussian 

scale space and anisotropic diffusion scale space. By using the 

anisotropic diffusion scale space, KAZE features achieve 

significant progress on the 2D feature detection by using the 

anisotropic diffusion scale space. It makes the blurring locally 

adaptive and retains better feature localization accuracy and 

distinctiveness than the SIFT method. Our method OBFF also 

generates the nonlinear scale space of image to detect the local 

feature. The optimal bilateral filter is advantage in object 

boundary preserving and antinoise ability and dramatically 

speed up feature detection in nonlinear scale space. We use the 

benchmark datasets to compare our method with 

state-of-the-art approaches. 

 

Index Terms—Bilateral filter, nonlinear scale space, feature 

detection, SIFT, binary descriptor.  

 

I. INTRODUCTION 

In last decade, scale-invariant feature transform (SIFT) [1] 

and speed up robust feature (SURF) [2] have been widely 

applied to many feature matching applications. Both methods 

make use of the Gaussian scale space (GSS). The SIFT 

construct the GSS in a pyramidal framework and the SURF 

approximating Gaussian derivatives by box filters. However, 

lots of details like object boundaries are blurred in the GSS. 

To overcome the drawback of GSS, some approaches have 

been proposed recently. These approaches choose the 

nonlinear diffusion scale space to extract local feature of 

image. The nonlinear diffusion scale space makes blur 

process adaptive to the local distribute of the image data. 

KAZE features were introduced by Alcantarilla et al. [3] and 

use Additive Operator Splitting (AOS) schemes [4] to 

approximate the Perona and Malik diffusion equation [5]. 

Repeatability and distinctiveness was increased compare 

with SIFT and SURF in this method due to the use of 

nonlinear diffusion scale space. Since AOS schemes require 

solving a large system of linear equations to obtain a solution, 

the computational complexity of KAZE is very higher than 

those approaches using GSS. To obtain low-computationally, 

Alcantarilla et al. [6] replace AOS schemes with 

mathematical framework named Fast Explicit Diffusion 
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(FED) [7] to approximate the nonlinear diffusion scale space. 

FED schemes are easy to implement and more accuray than 

the AOS schemes. In this approach, FED schemes were 

embedded in a pyramidal framework to detect and describe 

the image feature. They call this approach as 

Accelerated-KAZE (A-KAZE). Wang et al. [8] use the 

bilateral filter to approximate the Perona and Malik diffusion 

equation and the relation between PM equation and bilateral 

filter is analyzed [9]. 

Due to the limited computational resource of camera 

enabled mobile devices, new methods have been proposed to 

reduce computational complexity while keeping up the 

performance of methods such as SIFT and SURF. ORB [10] 

and BRISK [11] speed-up feature detection and description 

by combining modifications of the FAST corner detector [12] 

and binary descriptors based on BRIEF [13] with scale and 

rotation invariance. ORB and BRISK feature are much faster 

to compute than SIFT and SURF, while showing comparable 

performance. 

In order to obtain low-computational feature extraction, 

we take advantage of optimal O(1) bilateral filter to 

approximate the nonlinear scale space. To preserve low 

storage demand, we also use the Modified-Local Difference 

Binary (MLDB) descriptor [6] introduced by Alcantarilla et 

al. This descriptor overcomes the drawback of Local 

Difference Binary (LDB) descriptor and obtains rotation and 

scale invariant while exploiting gradient information from 

the nonlinear scale space in a very efficient way. 

 

II. RELATED WORK 

A. Nonlinear Scale Space 

To overcome the edge blurred in the GSS, the anisotropic 

diffusion filter has been introduced to preserve edges while 

smoothing details. The anisotropic diffusion filter can be 

written as follows: 

 ( ( , , ) ),
I

div c x y t I
t





  (1) 

where div  is the divergence operator, ∇ is the gradient 

operator, I is the image luminance. c(x,y,t) is the conductivity 

function which is the key to control the diffusion adaptive to 

the local image structure. Time parameter t is the scale 

parameter, and larger values lead to simpler image 

representations. In anisotropic diffusion the image gradient 

magnitude controls the diffusion. The conductivity function 

is defined as follow: 

( , , ) (| ( , , ) |),c x y t g I x y t                     (2) 
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where the function ∇I is the gradient of Gaussian smoothed 

version of the original image L. The equation (1) is also 

called Perona and Malik diffusion equation [5]. Perona and 

Malik described two different formations for the conductivity 

function g: 
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the parameter k is the constrast factor that determines witch 

edges have to be kept and which ones have to be smoothed. 

Since there are no analytical solution for the equation (1), we 

need to use numerical methods to approximate the 

differential equations. The explicit schemes are the simplest 

solution. But the computational complexity make them 

impractical to use in the feature detection stage. 

Alcantarilla et al. introduce Additive Operator Splitting 

(AOS) [4] and Fast Explicit Diffusion (FED) [6] schemes to 

accelerate the speed of nonlinear scale space generation. The 

AOS schemes are semi-implicit and efficient to be solved. 

However, AOS schemes need to solve large system of linear 

equation at each scale level. The FED schemes overcomes 

AOS’s drawback and achieve more efficient result. Both 

schemes need to discretize the equation (1) as follow: 
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where 
lA  is a matrix that encodes the image conductivities 

for each dimension,   is a constant time step in order to 

respect stability conditions. The AOS schemes generate the 

nonlinear scale space iteratively as follow: 
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where E is the identity matrix. The FED schemes are 

motivated form a decomposition of box filters in term of 

explicit schemes. The main idea of FED schemes is to 

perform M cycles of n explicit diffusion steps with varying 

step sizes j  as follow: 
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where 
max  is the maximal step size that holds the stability 

condition. The corresponding end time 
n  of one FED cycle 

is: 
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let 1,0i iI I   , a FED cycle with n variable step sizes j  is as 

follow: 

 
1, 1 1,( ( )) , 0,..., 1,i j i i j

jI E A L I j n             (8) 

during the whole FED cycle, the matrix ( )iA I  are kept 

constant. 

B. Bilateral Filter and Anisotropic Diffusion 

Bilateral filter uses both intensity and spatial distance to 

calculate the weight of the neighbor pixels. This filter is 

defined as: 

1
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where p and q are pixel location, pL  and pL  are intensity 

value of pixels, 
s

G  and G


 are spatial and intensity 

Gaussian kernels with standard deviations 
s  and   , pW  is 

the normalize factor. The total weights are combined with 

spatial weights. and intensity weights. 

The nonlinear scale space based on numerical 

approximation methods for PM equation is time consuming 

and unstable. Buades, Coll and Morel [14] have established 

the link existing between bilateral filtering and PM equation. 

They have proven that for small neighborhoods, bilateral 

filtering using a box function as spatial weight, 

asymptotically behaves as the Perona-Malik model. In a 

discrete setting, Durand and Dorsey [15] have shown that the 

bilateral filter, if constrained to the four neighbors of each 

pixel, corresponds to a discrete version of the Perona-Malik 

equation. Subsequently, Barash [9] used adaptive smoothing 

as a link between anisotropic diffusion and bilateral filtering, 

each of which can be viewed as a generalization of the 

former. 

The direct implementation of the standard bilateral filter 

requires 2( )sO   operations per pixel, where 
s  is the radius 

of the effective support of the spatial kernel. The 

computational complexity is too intensive for time-critical 

applications. Consequently, a plenty of studies on its 

simplification and acceleration have been proposed. To speed 

up the BF filter, we use the sparse approximation with fixed 

number of box method proposed by Pan et al. [16]. Let L be 

the radius of the spatial support of the given spatial kernel 
sK  

applied in the bilateral filter. Then all the candidate boxes 

together form a series
lB  , where l is the radius of the box 

lB  

and 0,1,2,...,l L . For arbitrary
sK , it can be approximated 

using the weighted sum of all the candidate boxes, which is 

formulated as follows: 
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For the symmetry and monotonicity of spatial kernel, it is 

possible to find a real positive series 
lk  that minimizes the 

following squared error: 
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where the spatial dependency is omitted for simplicity. 

When L is large equation, the computational cost will be 

unbearable for time-critical application. We limit the number 

of boxes used in the approximation should not be larger than 

a predefined number N. For any [0, ]l L , we align the center 

of the corresponding box with that of 
sK and pad it with 

zeroes up to the same size as
sK . Then the columns of each 
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padded box are concatenated to form a column vector 
lb . We 

then put these column vectors to form a matrix B of size 

( 1)S L  , where 2(2 1)S L   is the number of elements in 

sK . We concatenate the columns of 
sK  to form a column 

vector q. k is defined as a column vector containing all the 

coefficients
lk , the optimization problem given in (11) can be 

reformulated as: 

2

0
ˆ min , . . ,kk arg q Bk s t k N                    (12) 

where 
0k   is the 

0L  norm of the vector k, which denotes the 

number of non-zero elements in k. We use Batch- Orthogonal 

Matching Pursuit (B-OMP) algorithm to solve equation (12). 

After we obtain the radiuses and coefficients of the boxes, the 

optimal O(1) bilateral filter can be given as equation (13): 
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III. OPTIMAL BILATERAL FILTER FEATURE 

 

 
Fig. 1. Comparison of DoSS and DoNSS. 

 

A. Building Nonlinear Scale Space 

Similar to SIFT method, the original image is repeatly 

convolved with OBF to produce each interval image for each 

octave. The spatial Gaussian kernel is increased per interval 

and intensity Gaussian kernel is fixed. The nonlinear scale 

space can be defined as follow: 

( , ; ) ( , )* ( , ; , )i i s i i s rL x y k I x y OBF x y k        (14) 

where the ( , )iI x y  is the input image (original image is 

0( , )I x y  ), ( , ; , )i s rOBF x y k   is the OBF with two factor 
s  

and 
r , *  is the convolution operation, ( , ; )i i sL x y k  is the 

nonlinear scale space, 
ik  is the scale difference factor. Once 

a octave is built, the last image in the current octave is down 

sampled and used as the input image for the next octave. 

From Fig. 1, we can find that the nonlinear scale space can 

preserve more edges than the linear scale space from the 

result of the difference of scale space. 

B. Feature Detection 

To increase the detection accuracy, we computer the 

determinant of the Hessian for each of the filtered images Li 

in the nonlinear scale space. The Hessian of filtered images 

are normalized by the scale factor, i.e. , / 2
io

i norm ik k  and 

2

, , , , , ,( )i Hessian i norm i xx i yy i xy i xyL k L L L L            (15) 

For computing the second order derivatives, we use con- 

catenated Scharr filter with step size ,i normk . Scharr filters, as 

shown in Fig. 2, have better rotation invariance than other 

filters or central differences differentiation. First, we search 

for maxima of the detector response in spatial location. For 

each step, the detector responses which higher than the 

threshold and maxima in a window of 3 3  pixels will be 

preserved. Then, for each of the potential response, we check 

that the response is a maxima with respect to other keypoints 

from level 1i   and 1i  , respectively directly above and 

directly below in a window of size , ,i s i s   pixels. Finally, 

the 2D position of the keypoint is estimated with sub-pixel 

accuracy by fitting a 2D quadratic function to the determinant 

of the Hessian response in a 3 3  pixels neighbourhood and 

finding its maximum. 

 

 
Fig. 2. 3 3  Scharr filter template. 

 

 
Fig. 3. Detected feature points by Scharr filter. 

(a). Input image 

(b). Difference of Linear scale space 

0.8 3 .0( 2 )s  
 

(c). Difference of nonlinear scale space 

0.6, 0.8 32.0( )r s   
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Due to the edge preserving property of bilateral filter, we 

can extract more feature points on the edge of the image 

region. Fig. 3 has shown that on the edge of the sky and the 

landscape many keypoints have been extracted. The feature 

points on the edge of the image region will benefit the 3D 

reconstruction of low-textured building. 



  

C. Feature Description 

Binary descriptors which used in BRIEF, ORB and BRISK 

have widespread used since they make feature points be 

matched very efficiently. We use the Modified-Local 

Difference Binary (M-LDB) [6] descriptor which utilizes 

gradient and intensity information from the nonlinear scale 

space. Unlike LDB descriptor, M-LDB descriptor obtains 

rotation invariant by estimating the main orientation of the 

keypoint and the grid of LDB rotate accordingly. For the 

scale invariant, M-LDB subsamples the grids in steps by 

using the scale factor for the feature. M-LDB uses the 

derivatives computed in the feature detection step, reducing 

the number of operations required to construct the descriptor. 

The LDB descriptor was introduced in [17] and follows the 

same principle as BRIEF, but using binary tests between the 

averages of areas instead of single pixels for additional 

robustness. In addition to the intensity values, the mean of the 

horizontal and vertical derivatives in the areas being 

compared is used, resulting in 3 bits per comparison. LDB 

proposes using various grids of finer steps, dividing the patch 

in 2×2, 3×3, 4×4, etc. grids, as shown in Fig. 4(a). The 

averages of those subdivisions are very fast to compute using 

integral images if the descriptor is upright (not rotation 

invariant). 

 

 
Fig. 4. LDB and M-LDB binary tests between grid divisions of a keypoint. 

 

However, when considering the rotation of the keypoints 

integral images can not be used, and visiting all points in a 

rotated subdivision can be relatively expensive in 

computation time. Rotation invariance is obtained by 

estimating the main orientation of the keypoint as in KAZE, 

and the grid of LDB rotated accordingly. Instead of using the 

average of all pixels inside each subdivision of the grid, we 

subsample the grids in steps that are a function of the scale s 

of the feature. This approximation of the average performs 

well in our experiments. The scale-dependent sampling in 

turn makes the descriptor robust to changes in scale. This 

process is depicted in Fig. 4(b). M-LDB uses the derivatives 

computed in the feature detection step, reducing the number 

of operations required to construct the descriptor. 

Given that M-LDB computes an approximation of the 

average of the same areas in the intensity and gradient images, 

the Boolean values that result from the comparisons are not 

independent of each other. Reducing the size of the 

descriptor by choosing a random subset of the bits [18] or 

with a more elaborated method such as that used in [10] is 

expected to improve the results, or at the very least reduce the 

computational load without decreasing performance. 

 

IV. EXPERIMENTAL RESULTS 

In this section, we use the VLBenchmarks evaluation from 

[17] to evaluate the detector repeatability in the Oxford 

dataset and synthetic rotation and Gaussian noise 

experiments. For the latter case we use the Iguazu dataset 

introduced in [3]. The VLBenchmark reimplements the 

protocol introduced in [19] for local detectors evaluation. We 

compare the performance of OBFF with respect to BRISK, 

ORB, SURF, SIFT and A-KAZE. For BRISK, ORB, SURF 

and SIFT we used their OpenCV implementations, while for 

A-KAZE we use the original library provided by the authors. 

Table I shows average combined detection and description 

performance results considering the Matching Score (MS) 

and Recall (RC) as described in [20]. 

 
TABLE I: EVALUATION RESULT OF DESCRIPTORS 

 
 

Fig. 5 shows a timing evaluation of the combined detection 

and description considering 1000 features extracted from the 

fist image of the Graffiti dataset. This image has a resolution 

of 800 × 640 pixels. All timing results were obtained with an 

Intel Core i7-3770 CPU and 8G RAM. From Table I and Fig. 

1, we can see our method’s score is lower than A-KAZE but 

the time consumption is less than it. 
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Fig. 5. Time evaluation of image feature descriptors. 

 

V. CONCLUSION 

In this paper, a novel method OBFF has been presented for 

image feature detection and description. By using the 

Optimal O(1) bilateral filter the speed of constructing 

nonlinear scale space and accuracy of feature detection have 

been significantly improved. We also use the M-LDB 

descriptor to speed up the feature points match process. The 

experiment results show that our method need optimization 

to achieve higher performance in accuracy and speed.  
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