



Abstract—Hybrid cloud is a type of the general cloud

computing platform, that is composed of both public and

private cloud. Scheduling plays a key role in the efficient use of

hybrid cloud resources. In this paper, focus is on a scheduling

algorithm for hybrid cloud that tries to optimize both execution

time and cost. Execution time and cost are conflicting

objectives, i.e. when one is made better, the other becomes

worse off. Multiobjective evolutionary algorithm is used to find

the optimal schedule. The widely used scheduling

implementations seen in hybrid cloud try to optimize either

execution time or cost, but not both simultaneously. The

proposed algorithm is compared with the more widely used

scheduling optimization techniques and seen to have much

better performance.

Index Terms—Evolutionary optimization algorithms, hybrid

cloud, pareto-optimality, scheduling.

I. INTRODUCTION

Cloud computing is a paradigm that refers to buying

computer resources which could be infrastructure, software,

or services; and paying based on usage levels. Cloud service

providers (CSP) are equipped with large data centers. Users

request CSP for resources, and the CSP provides them from

their pool of resources. The user has to pay the CSP based

on the usage level. This is profitable for both users and CSPs.

Users save the cost of design, setup and maintenance of data

centers, while CSPs give access to resources to large number

of users, and thereby make profit. Users can also scale up

(i.e. increase resource usage) very easily, based on increase in

requirements. They need not equip themselves with resource

levels needed at peak times [1].

Virtualization is the back bone of cloud. For each user

request, a virtual machine is instantiated with the requested

resources in the server. The user application will run on this

virtual machine. Virtualization provides isolation and

integrity for applications of different users running on a

single cloud [1].

Hybrid cloud is a type of cloud computing infrastructure

that is composed of both public and private cloud. When

resources in private cloud are not sufficient, resources from

public cloud are taken on lease, to complete the execution of

Manuscript received August15, 2014; revised November 12, 2014.

Leena V. A. and Ajeena Beegom A. S. are with the College of

Engineering, Trivandrum, Kerala, India (e-mail: leena.jaleel@gmail.com,

ajeena@cet.ac.in).

Rajasree M. S. is with IIITM-K, Kerala, India (e-mail:

rajasree.ms@iiitmk.ac.in).

an application. Hence in hybrid cloud, the benefits of both

public cloud and private cloud can be utilized by an

application. Hybrid cloud has the advantages of optimal

resource provisioning, scalability and pay-as-you-use

benefits.

Scheduling is the process of mapping the jobs submitted,

to the resources available. A job is usually split into multiple

tasks. Hence scheduling can be redefined as mapping of tasks

to a selected group of resources. Scheduling plays an

important role in a cloud. Scheduling algorithms can be

designed to meet different application requirements such as

minimizing makespan, minimizing cost, fairness, reducing

energy consumption, minimizing response time and making

the system deadline aware. Based on the application

requirement, algorithms optimize any one of the above

requirements.

The different task scheduling algorithms, commonly used

in cloud to optimize any one of the aforementioned

requirements are opportunistic load balancing (OLB) [2],

minimum execution time (MET) [3], minimum completion

time (MCT), Min-min [4], Max-min heuristic [5], [6], and

heterogeneous earliest finish time (HFET). Even

metaheuristic search techniques [7]-[10] are widely

employed for scheduling.

But hybrid cloud is a system with a different set of needs

and requirements. In a hybrid cloud both the requirements,

cost and execution time are of paramount importance. For

applications in a hybrid cloud, cost is an issue; as usage of

public cloud incurs cost. But also user would want to get the

result as fast as possible. Hence in such cases, both cost and

execution time has to be optimized. The aforementioned

algorithms for scheduling in cloud optimize only a single

requirement. Hence it is not apt for usage in hybrid cloud.

In this work, the problem of developing a hybrid cloud

scheduler that maximizes performance (or minimizes

makespan) and minimizes cost is addressed. This is done by

determining whether tasks have to be scheduled to either

private cloud (internal cloud) or to the public cloud (external

cloud). Cost can be minimized by sending more jobs to the

private cloud. Execution time can be minimized by sending

more jobs to public cloud. Hence both cost and execution

time are conflicting objectives, as when one is made better;

other tends to be worse off. The idea is to choose the best

trade-off point between application completion time and cost.

Heuristic algorithms can be used to achieve this objective.

Genetic Algorithm Based Bi-Objective Task Scheduling in

Hybrid Cloud Platform

Leena V. A., Ajeena Beegom A. S., and Rajasree M. S., Member, IACSIT

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

7DOI: 10.7763/IJCTE.2016.V8.1012

The rest of the paper is organized as follows. Section II

describes the background of this work. Section III gives the

related work and Section IV gives the problem formulation.

Section V describes the proposed system. Sections VI and

VII give the implementation and result analysis respectively.

mailto:leena.jaleel@gmail.com

II. BACKGROUND

BoT (Bag of Tasks) applications are composed of a large

number of independent tasks. These tasks can be parallely

executed in independent machines. The massive parallelism

of BoT applications frequently overwhelms the capacity of

private clouds. This capacity limitation can be overcome with

the use of resources from the public cloud. The problems

associated with hybrid cloud are twofold. The first problem

is concerned with the number of objectives to be optimized

and the second one is related to the finding of a feasible

schedule.

In hybrid cloud, tasks have to be scheduled to either

external cloud (EC) or internal cloud(IC), based on the

scheduling objective being optimized. Most of the research

work in hybrid cloud optimizes a single scheduling objective,

typically makespan. Some studies consider more than one

criterion like cost, execution time or QoS while developing

scheduling techniques. Although multiple criteria have been

considered, their aim is to optimize a single objective while

all other criteria have been made constraints. For example

when the objective is to minimize execution time and cost, it

will be changed to minimizing cost while meeting application

deadline or minimizing execution time while meeting user’s

budget. This is done since, the complexity of hybrid cloud

scheduling problem increases as the number of objectives to

be optimized increases i.e. why mostly when there are two

objectives to be optimized, one is converted into a constraint.

Research into simultaneously optimizing objectives, that

may be conflicting with each other e.g., cost and execution

time, has not been done till date. But, this is quite an

important issue as a tradeoff between performance and cost

can be attained and used. So this work aims in providing a

feasible solution that can be used for optimizing such

objectives simultaneously in hybrid cloud.

For a given set of tasks, the problem of finding a feasible

schedule is in fact, a search problem. The structure of the

search space is basically a tree. The root of the tree is the

empty schedule. An intermediate vertex is a partial schedule

and a leaf is a complete schedule. All leaves will correspond

to feasible schedules. The goal of the scheduling algorithm is

to search for a leaf that meets our optimization constraints

[11].

When the above scheduling scenario is considered with

respect to a cloud computing environment, the number of

resources and tasks in consideration is very large. An optimal

algorithm, in the worst case, may make an exhaustive search

that is computationally intractable. In order to make the

algorithm computationally tractable even in the worst case,

a heuristic approach is better.

III. RELATED WORK

Hybrid cloud is a recent innovation of the cloud computing

infrastructure. So specific problems of hybrid cloud have not

been dealt much by the research community. One of the first

papers on hybrid cloud is by Mattess et al. [12]. It gives

details about Aneka, which is a middleware platform for

deploying and managing the execution of applications on

different clouds. The scheduling policies rely on a dynamic

pool of external resources hired from commercial providers

in order to meet peak demand requirements. To save hiring

costs, the hired resources are released when they are no

longer required.

Calheiros et al. [13] presents architecture for the dynamic

provisioning and scheduling of cloud resources, considering

the characteristics of the whole organization workload. They

also propose a novel approach for billing users for the

utilization of public cloud resources. The paper describes a

system with an external queue, deadline queue and a regular

queue. The jobs are chosen from each queue based on the

available resources.

The above two papers describe the basic hybrid cloud

architecture. The specific scheduling methodologies with re-

spect to hybrid cloud came in later papers. Kailasam et al.

[14] has proposed a scheduling methodology for scenarios,

where ordered throughput is needed. In their work, the

scheduler will determine the optimal number of resources

that must be provisioned on the external cloud. It will also

decide when and where and which jobs have to be burst to

maximize ordered throughput. Their algorithm schedules

computation intensive jobs to external cloud, as resources are

plentiful there. This can only be used in specialized

situations, where order of the output has to be preserved.

Zuo et al. [15] has proposed a method to solve deadline

con- strained task scheduling (DCTS) problem, with the

objective of maximizing the profit. Particle Swarm

Optimization (PSO) based scheduling approach is proposed

to solve this problem. However, standard PSO easily traps

into local optima. To overcome the disadvantage of standard

PSO, a self-adaptive learning PSO based scheduling

approach is proposed here.

The above papers describe the scheduling of BoT(Bag of

Tasks) applications. Workflow applications are different

from BoT in their characteristics. In a workflow, there is

dependency between different tasks. Therefore a workflow

scheduler results in a system with different specifications.

Senna et al. [16] proposed a strategy to schedule

workflows in hybrid cloud, in order to minimize costs and

meet deadlines. The initial schedule considers only the

private resources to check if they already satisfy the deadline.

If the deadline is not satisfied, the algorithm select tasks

considering start time as well as priority. The selected tasks

will be rescheduled considering the public cloud as well. The

algorithm repeats these steps, until the deadline is met or a

certain number of iterations are reached.

Thanavanich et al. [17] has proposed two energy-aware

scheduling heuristics, that take into consideration not only

makespan conservation, but also energy reduction. In this,

they have improved upon the already existing HEFT

(Heteroge- neous Earliest Finish Time) and the CPOP

(Critical Path on a Processor) algorithms.

Bittencourt et al. [18] has proposed HCOC algorithm. The

user stipulates a deadline D for the workflow, and the

proposed algorithm tries to optimize the monetary execution

costs, while maintaining the execution time lower than D.

IV. PROBLEM FORMULATION

A. Cloud Computing Model

In our model, the cloud computing system consists of

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

8

private and public cloud, hosted in datacenters. These

datacenters contain large number of virtual machines (VMs).

Each VM has a specific amount of processing power,

communication bandwidth, RAM, and storage associated

with it. Based on the capability of each VM, tasks are

allocated to each VM. The execution time of each task

depends on the capability of the VM to which it is allocated.

If VM1 has more processing power than VM2, then the same

task will be executed in lesser time by VM1 than VM2. There

is a cost associated with the usage of VMs. In the private

cloud, as it is owned by the organization itself, the cost of

usage is taken to be zero. But for the public cloud, there is a

usage cost, and this cost is directly proportional with the

capability of VM taken on lease.

B. System Model

Binary Integer Programming (BIP) is used for

mathematically formulating the problem. Consider that there

are C cloud providers, I instance type and N tasks for an

application. Here, Pim is the price for usage of the mth instance

of the ith cloud. Xjim is a state variable. Xjim=1, if the jth task is

assigned to the mth instance of the ith cloud, else 0. rjim is the

running time of jth task in the mth instance of the ith cloud. The

objective functions, cost (CT) and execution time (ET) are

defined as:

CT=
1 1 1

. .
N C I

im jim jim

j i m

P X r
  

 (1)

1 1 1

.
N C I

jim jim

j i m

ET X r
  

 (2)

Our aim is to minimize functions CT and ET

simultaneously subject to the constraints:

1 1

. , [1,]
N I

m jim c

j m

mem X mem i C
 

   (3)

1 1

. , [1,]
N I

m jim c

j m

cpu X cpu i C
 

   (4)

where memm is the memory available at each instance and,

memc is the memory available at a particular cloud, cpum is

the cpu resource of each instance and, cpuc is the cpu

resource available at particular cloud.

V. PROPOSED SYSTEM

A. Bi-Objective Optimization

There are some classical methods for optimization of

multiple objectives. First one is the method of objective

weighting. In this all the objective functions are combined to

get a single objective function,
1

. ()
N

i i
i

Z w f x


 where the

weights wi are fractional numbers (0≤wi≤1). Second one is

the method of distance functions, in which a decision vector

(ei) is used to get the single objective function Z,
1

1
[| () |] ,1

N
i i

ri
Z f x e r


     The third method is

min-max formulation, which attempts to minimize the

relative deviations from individual optimum. It is represented

as, minimize () max[()], 1,..jF x Z x j N  [19].

In the aforementioned methods, multiple objectives are

combined into a single objective. Single objective

optimization results in a single solution. While in these

cases, it would be better if the choice is given to the decision

maker as it cannot be said that only a single solution is

correct. Also these methods require prior information about

the optimum before optimization can be done. To overcome

these disadvantages, an evolutionary multi-objective

optimization algorithm, namely Nondominated Sorting

Genetic Algorithm II (NSGAII), where both objectives are

considered on an individual basis for reaching the final

solution, has been used.

Evolutionary optimization algorithms start with a

population of solutions. Usually the initial population

consists of randomly generated solutions. If some knowledge

about the characteristics preferred in the initial solution is

known, then it can be used to make the algorithm converge

faster.

In this work, the two objective functions, given in

equations (1) and (2) have to be optimized. Here, a variation

of GA is used. In GA, on the initial population, selection,

crossover and mutation operations are performed. For

selection, a fitness function is used. Solutions with higher

value for this fitness function will be selected, to be part of

the mating population.

During crossover, two solutions from the mating pool are

taken randomly and the information in the parent solutions

will be exchanged. Crossover is done with a crossover

probability. It denotes the proportion of the population taking

part in crossover. The new solutions obtained after crossover

will be a part of the new population along with the solutions

that were not selected for crossover.

After crossover, mutation is performed. Mutation involves

making small changes to the solution. It is performed with a

mutation probability. For example, if the mutation

probability is 1/m, then only one out of m solutions will be

changed. The mutated as well as unchanged solutions will

become a part of the modified population. All the above

operations will be performed until a termination criterion is

met. The termination criterion is usually based on the number

of iterations to be performed.

GA can ideally be used only for single objective

optimization. NSGAII is a variation of GA that uses a

concept called domination to optimize multiple objectives.

The domination between two solutions is defined as follows.

A solution x1 is said to dominate the other solution x2, if the

solution x1 is no worse than x2 in all objectives and the

solution x1 is strictly better than x2 in at least one objective

[19].

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

9

Fig. 1 is an example that shows how a nondominated set is

identified. It depicts two functions f1 and f2, to be optimized.

This means that simultaneously the value of f1 has to be

maximized while the value of f2 has to be minimized. Each

point represents the values of f1 and f2 at that point. Take each

pair of points and see whether one point dominates the other.

Fig. 1. Multiobjective optimization example.

As given in Algorithm1, the proposed system creates a

random initial population, P. In the tth generation, the child

population, Qt is created. The parent population and the child

population is combined to get Rt. The population is sorted

into fronts based on the domination principle using the

algorithm Nondomination-sort(). It assigns a rank to each

individual in the population, corresponding to its domination

level. The individuals in the first front are assigned rank 1

(the highest level of domination) and the ones in the second

front are assigned rank 2 and so on.

A new population, Pt+1 is created by adding the individuals

in each front. When a situation is reached such that all the

elements in a front cannot be added, the individuals in that

front are sorted in descending order based on its crowding

distance. Then the individuals with higher crowding distance

are added to Pt+1. To get the crowding distance for the

respective front, crowding-distance function is called. The

next step is to create a child population. For this, selection of

parents for crossover is on the basis of crowding distance and

rank. The ones with lesser rank are selected. If both

individuals under consideration have the same rank then the

one with higher crowding distance is selected. Crossover and

mutation is done on the selected population to get the

modified population.

The whole process is repeated a number of times. At the

end of it, the individuals in the first front forms the pareto

optimal set.

For selecting an individual from the pareto optimal set, the

average of the execution time for the set is taken. All the

individuals having the value of execution time below the

average is selected and from among those individuals the

most cost effective one is chosen.

In the algorithm of Nondomination-sort(), there are two

important state variables associated with each individual, p

1) Sp, a set of individuals that p dominates.

2) np, domination count - the number of individuals that

dominate p.

At first, F1 (first nondomination front) is found. For this,

each individual is compared with every other individual in

the population, to see if it dominates (domination is denoted

by the symbol <) the other individuals. Also values of the

state variables associated with each individual are updated.

For example, consider individual p, the values for Sp and np,

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

10

Get the set of all points not dominated by any of the other

points. This forms the nondominated set. Consider the 1st

point, it gets dominated by the 3rd point. Hence 1st point will

not be part of the nondominated set and so on. The

nondominated points in Fig. 1 are 3, 5, and 6 [20].

Multiple solutions are present in the nondominated set.

Since none of the solutions is better than any other in the

solution set, one of them can be chosen by considering the

need of the user and the characteristics of the application.

This means that problem specific knowledge can be used to

select the final result. This result is used for scheduling in the

cloud.

in comparison with all other individuals in the population is

found. If np is equal to zero after all comparisons it means that

none of the individuals dominate p.

All individuals with domination count equal to zero, is put

into the first front and assigned rank 1. To get the next front,

the same process can be repeated after discarding the

members of the first front. Instead, to reduce the number of

iterations another method is used. For each individual p in the

previous front, consider the elements in its Sp set (the

individuals being dominated by p) and reduce its domination

count by one. This is done since all elements of previous

fronts are discarded to identify the next front. The individuals

with domination count equal to zero, is put into the next front

The above procedure is repeated to get all fronts [21].

Crowding distance of the ith individual, denoted by I[i]dt

indicates how near an individual is to its neighbours.

Individuals with large crowding distance give a diverse

population.

In crowding-distance() algorithm, for each objective, the

elements in the front are sorted based on objective values.

Boundary points are assigned an infinite distance value.

Intermediate points are assigned values according to:

max min[] ([1]. [1].) / ()dt m mI i I i m I i m f f     (5)

where I [i]. m refers to the mth objective function value under

Consideration and
max

mf ,
min

mf are the maximum and

minimum values of the mth objective function.

B. Scheduling

A set of pareto-optimal points is generated through the

above mentioned multiobjective optimization algorithm. The

values of both objective functions (CT and ET) for these

points are also obtained. The selection of a single point is

guided by application specific knowledge. The schedule

corresponding to that point, gives the optimal mapping

between tasks and machines. According to this schedule, task

assignment to processors is done. This schedule determines

which of the tasks has to be assigned to the public cloud and

which all has to be assigned to private cloud. In the same way

all sets of tasks of an application is executed in hybrid cloud.

VI. IMPLEMENTATION

CloudSim is a toolkit (library) for simulation of cloud

computing scenarios. It provides basic classes for describing

data centers, virtual machines, applications, users,

computational resources, and policies for the management of

diverse parts of the system. These components are put

together to evaluate multiobjective optimization of

scheduling in hybrid cloud.

The experiments use 6 VMs. Two VMs are in the public

cloud and incur usage charges. Four VMs are part of the

private cloud and does not incur any charge. The VMs in the

private cloud have 200, 250, 300 and 350 MIPS processing

capability, while the ones in the public cloud have 750 and

1000 MIPS processing capability.

The application is split into task sets. Each task set

corresponds to sets of tasks that can be executed in parallel.

In this work, the task set is comprised of six tasks each.

Corresponding to each task set, a task schedule is generated,

by using multiobjective evolutionary optimization algorithm

NSGAII. The task schedules generated for all task sets are

combined to get the application schedule.

First, an initial population is randomly created. The

population will consist of potential solutions. Each potential

solution is a schedule of the task set under consideration.

Permutation encoding is used for representing the scheduling

problem. A schedule (1,5,0,3,2,4) means that the 1st task is

assigned to the 1st machine and 1st task is assigned to the 5th

machine and so on.

In the above algorithm, to accommodate the

multi-objective nature of the problem, the selection

procedure uses nondominated sorting as opposed to the

normal selection techniques used in GA. The rest of the

procedure is similar to GA. Two fitness values for each of the

potential solutions are calculated based on the precomputed

execution time and cost. Based on these fitness values,

nondominated sorting and ranking is done.

Individuals are selected based on rank and one point

crossover of the selected individuals is performed. This

procedure is repeated until the termination criteria are met.

The pareto- optimal schedule for the task set is obtained as

the result. The above procedure is repeated for all task sets in

the given application.

The parameters that are used in the algorithm are given in

Table I. The pareto-optimal points corresponding to feasible

task schedules are obtained as the result. From this a single

point is selected, by using application specific knowledge.

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

11

Corresponding to this point, a task schedule is obtained. The

task schedule maps tasks to processors. The task schedules

generated for all task sets are combined to get the application

schedule Based on the schedule application is executed in

CloudSim and makespan and cost for executing the

application in the cloud is estimated and analyzed.

TABLE I: PARAMETERS USED IN THE ALGORITHM

Parameters Value

Population Size 100

Number of Generations 100

Crossover Rate 0.95

Mutation Rate 0.2

VII. RESULTS AND DISCUSSION

This section presents the results obtained from our study.

The pareto-optimal solution obtained, is analyzed based on

the cost and execution time for different sets of tasks.

Fig. 2. Variation in execution time.

Fig. 3. Variation in cost.

The execution time of the schedule obtained after

bi-objective optimization is compared with the execution

time of the schedule obtained after cost optimization as seen

in Fig. 2. In the same way, pareto-optimal schedule is

compared with schedule obtained after optimization of

execution time in Fig. 3. This is done by taking the total

execution time and total cost in both single objective

optimization cases and comparing with the total execution

time and total cost obtained from the pareto optimal solution.

It is seen that this gives a middle ground between both

execution time optimization and cost optimization and can be

used for scheduling in the cloud.

Table II gives the average values of CT and ET for 16

applications, when different scheduling algorithms are used.

On an average, the execution time of an application is 29%

less if a pareto-optimal algorithm is used for scheduling

instead of a cost optimal scheduling algorithm. Also on an

average, the cost of executing an application is 26 % less if a

pareto-optimal algorithm is used for scheduling instead of an

execution time optimal scheduling algorithm.

In our experiment, the total execution time of the pareto-

optimal schedule is very near to that of the minimum possible

execution time (which is equivalent to single objective

optimization of execution time). And also pareto-optimal

schedule has much lesser usage charges when compared to

the schedule for single objective optimization of execution

time. So its overall efficiency is higher.

TABLE II: AVERAGE ET AND CT VALUES FOR DIFFERENT ALGORITHMS

Algorithm Execution Time Cost

Execution Time Optimal 6053 33961

Pareto Optimal 7112 25223

Cost Optimal 10047 17638

VIII. CONCLUSION

An application on arrival is split into multiple tasks. Using

the information from these tasks, scheduling of tasks on

different machines is done. Our primary contribution is the

proposal and implementation of an algorithm for the

simultaneous optimization of execution time and cost of

scheduling, in hybrid cloud. NSGAII algorithm is used for

the same. The implementation results show the feasibility of

such a scheduling strategy. Bi-objective optimization of

scheduling, gives lesser cost of usage than optimization

based on execution time. It also gives an execution time very

close to the execution time obtained in the optimization of

execution time alone. This gives a better choice to users. Now

users do not have to choose between the two extremes of

optimizing either on the basis of execution time or optimizing

on the basis of cost. It gives a tradeoff point between

application execution time and cost.

REFERENCES

[1] V. A Leena, B. A. S. Ajeena, and M. S. Rajasree, “Inter-cloud

scheduling technique using power of two choices,” in Proc. IEEE

International Conference on Computational Intelligence and

Computing Research(ICCIC), December 2013.

[2] S. Nagadevi, K. Satyapriya, and D. Malathy, “Economic cloud

schedulers for optimized task scheduling,” International Journal of

Advanced Engineering Technology, vol. IV, issue I, Jan.-March 2013.

[3] H. D. Kim and J. S. Kim, “An On-line scheduling algorithm for grid

computing systems,” in Proc. Second International Workshop on Grid

and Cooperative Computing, 2003.

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

12

[4] F. Wang, N. Helian, and G. Akanmu, “User-priority guide Min-Min

scheduling algorithm for load balncing in cloud computing,” in Proc.

National Conference on Parallel Computing Technologies, 2013.

[5] U. Bhoi and P. N. Ramanuj, “Enhanced max-min task scheduling

algorithm in cloud computing,” International Journal of Application or

Innovation in Engineering and Management, vol. 2, issue 4, April

2013.

[6] G. Ming and H. Li, “An improved algorithm based on max-min for

cloud task scheduling in recent advances in computer science and

information engineerin,” Lecture Notes in Electrical Engineering,

Springer, vol. 125, pp. 217-223, 2012.

[7] S. Bitam, “Bees life algorithm for job scheduling in cloud computing,”

in Proc. ICCIT, 2012.

[8] P. kumar and A. Verma, “Independent task scheduling in cloud

computing by improved genetic algorithm,” International Journal of

Advanced Research in Computer Science and Software Engineering,

vol. 2, issue 5, May 2012.

[9] X.-Q. Song, L. Gao, J.-P. Wang, “Job scheduling based on ant colony

optimization in cloud computing,” in Proc. International Conference

Computer Science and Service System (CSSS), June 2011, pp.

3309-3312.

[10] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P. Singh, Nitin, and R.

Rastogi, “Load balancing of nodes in cloud using ant colony

optimization,” in Proc. 14th International Conference on Modelling

and Simulation, 2012.

[11] W. Zhao and K. Ramamritham, “Simple and integrated heuristic

algorithms for scheduling tasks with time and resource constraints,”

Journal of Systems and Software, vol. 7, issue 3, pp. 195-205,

September 1987.

[12] M. Mattess, C. Vecchiola, S. K. Garg, and R. Buyya, “Cloud bursting:

Managing peak loads by leasing public cloud services,” Cloud

Computing: Methodology, Systems, and Applications, October 2011.

[13] R. N. Calheiros and R. Buyya, “Cost-effective provisioning and

scheduling of deadline constrained applications in hybrid clouds,” Web

Information Systems Engineering - WISE, 2012, pp. 171-184.

[14] S. Kailasam, N. Gnanasambandam, J. Dharanipragada, and N. Sharma,

“Optimizing ordered throughput using autonomic cloud bursting

schedulers,” IEEE Transactions on Software Engineering, 2012.

[15] X. Zuo, G. Zhang, and W. Tan, “Self-Adaptive Learning PSO-Based

Deadline Constrained Task Scheduling for Hybrid Iaas Cloud,” IEEE

Transactions on Automation Science and Engineering, 2013.

[16] L. F. Bittencourt, C. R. Senna, and E. R. M. Madeira, “Scheduling

service workflows for cost optimization in hybrid clouds,” in Proc.

International Conference on Network and Service Management

(CNSM), 2010.

[17] T. Thanavanich and P. Uthayopas, “Efficient energy aware task

scheduling for parallel workflow tasks on hybrids cloud environment,”

in Proc. International Computer Science and Engineering Conference

(ICSEC), 2013.

[18] L. F. Bittencourt and E. R. M. Madeira, “HCOC: A cost optimization

algorithm for workflow scheduling in hybrid clouds,” Journal of

Internet Services and Applications, Springer, vol. 2, issue 3, pp.

207-227, December 2011.

[19] N. Srinivas and K. Deb, “Multiobjective optimization using

nondominated sorting in genetic algorithms,” Journal of Evolutionary

Computation, vol. 2, no. 3, 1994.

[20] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms:

An Introduction, Indian Institute of Technology Kanpur, February

2011.

[21] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, April 2002.

Ajeena Beegom A. S. is an associate professor in

College of Engineering, Trivandrum, Kerala, India.

She received the bachelor degree in computer science

and engineering from University of Kerala in 1995 and

master degree from National Institute of Technology,

Tiruchirappalli, India in 2005. Her active research

topics include cloud computing and data mining.

Rajasree M. S. is the director of Indian Institute of

Information Technology and Management-Kerala

(IIITM-K), India. She received the bachelor degree in

computer science and engineering from National

Institute of Technology, Calicut. She completed her

master and PhD degrees from IIT-Madras. She is a

professor in computer science and engineering and has

worked in Government Engineering Colleges as a

lecturer, professor and principal. Her research interests

include distributed and object oriented software engineering, cloud

computing and pattern recognition. She has a good number of publications in

international conferences and journals and has also served in the

programme/technical committees of a large number of national/international

conferences.

Author’s formal

photo

Author’s formal

photo

Author’s formal

photo

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

13

Leena V. A. was born in Kerala, India in 1989. She is a

postgraduate student in the Computer Science

Department of College of Engineering, Trivandrum

since 2012. She received the bachelor degree in

computer science and engineering from Mahathma

Gandhi University in 2011. Her major fields of interest

include cloud computing, optimization techniques,

neural networks, fuzzy systems, and evolutionary

algorithms.

