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Abstract—Hybrid cloud is a type of the general cloud 

computing platform, that is composed of both public and 

private cloud. Scheduling plays a key role in the efficient use of 

hybrid cloud resources. In this paper, focus is on a scheduling 

algorithm for hybrid cloud that tries to optimize both execution 

time and cost. Execution time and cost are conflicting 

objectives, i.e. when one is made better, the other becomes 

worse off. Multiobjective evolutionary algorithm is used to find 

the optimal schedule. The widely used scheduling 

implementations seen in hybrid cloud try to optimize either 

execution time or cost, but not both simultaneously. The 

proposed algorithm is compared with the more widely used 

scheduling optimization techniques and seen to have much 

better performance. 

 

Index Terms—Evolutionary optimization algorithms, hybrid 

cloud, pareto-optimality, scheduling. 

 

I. INTRODUCTION 

Cloud computing is a paradigm that refers to buying 

computer resources which could be infrastructure, software, 

or services; and paying based on usage levels. Cloud service 

providers (CSP) are equipped with large data centers. Users 

request CSP for resources, and the CSP provides them from 

their pool of resources. The user has to pay the CSP based 

on the usage level. This is profitable for both users and CSPs. 

Users save the cost of design, setup and maintenance of data 

centers, while CSPs give access to resources to large number 

of users, and thereby make profit. Users can also scale up 

(i.e. increase resource usage) very easily, based on increase in 

requirements. They need not equip themselves with resource 

levels needed at peak times [1]. 

Virtualization is the back bone of cloud. For each user 

request, a virtual machine is instantiated with the requested 

resources in the server. The user application will run on this 

virtual machine. Virtualization provides isolation and 

integrity for applications of different users running on a 

single cloud [1]. 

Hybrid cloud is a type of cloud computing infrastructure 

that is composed of both public and private cloud. When 

resources in private cloud are not sufficient, resources from 

public cloud are taken on lease, to complete the execution of 
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an application. Hence in hybrid cloud, the benefits of both 

public cloud and private cloud can be utilized by an 

application. Hybrid cloud has the advantages of optimal 

resource provisioning, scalability and pay-as-you-use 

benefits. 

Scheduling is the process of mapping the jobs submitted, 

to the resources available. A job is usually split into multiple 

tasks. Hence scheduling can be redefined as mapping of tasks 

to a selected group of resources. Scheduling plays an 

important role in a cloud. Scheduling algorithms can be 

designed to meet different application requirements such as 

minimizing makespan, minimizing cost, fairness, reducing 

energy consumption, minimizing response time and making 

the system deadline aware. Based on the application 

requirement, algorithms optimize any one of the above 

requirements. 

The different task scheduling algorithms, commonly used 

in cloud to optimize any one of the aforementioned 

requirements are opportunistic load balancing (OLB) [2], 

minimum execution time (MET) [3], minimum completion 

time (MCT), Min-min [4], Max-min heuristic [5], [6], and 

heterogeneous earliest finish time (HFET). Even 

metaheuristic search techniques [7]-[10] are widely 

employed for scheduling. 

But hybrid cloud is a system with a different set of needs 

and requirements. In a hybrid cloud both the requirements, 

cost and execution time are of paramount importance. For 

applications in a hybrid cloud, cost is an issue; as usage of 

public cloud incurs cost. But also user would want to get the 

result as fast as possible. Hence in such cases, both cost and 

execution time has to be optimized. The aforementioned 

algorithms for scheduling in cloud optimize only a single 

requirement. Hence it is not apt for usage in hybrid cloud. 

In this work, the problem of developing a hybrid cloud 

scheduler that maximizes performance (or minimizes 

makespan) and minimizes cost is addressed. This is done by 

determining whether tasks have to be scheduled to either 

private cloud (internal cloud) or to the public cloud (external 

cloud). Cost can be minimized by sending more jobs to the 

private cloud. Execution time can be minimized by sending 

more jobs to public cloud. Hence both cost and execution 

time are conflicting objectives, as when one is made better; 

other tends to be worse off. The idea is to choose the best 

trade-off point between application completion time and cost. 

Heuristic algorithms can be used to achieve this objective. 
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The rest of the paper is organized as follows. Section II 

describes the background of this work. Section III gives the 

related work and Section IV gives the problem formulation. 

Section V describes the proposed system. Sections VI and 

VII give the implementation and result analysis respectively. 
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II. BACKGROUND 

BoT (Bag of Tasks) applications are composed of a large 

number of independent tasks. These tasks can be parallely 

executed in independent machines. The massive parallelism 

of BoT applications frequently overwhelms the capacity of 

private clouds. This capacity limitation can be overcome with 

the use of resources from the public cloud. The problems 

associated with hybrid cloud are twofold. The first problem 

is concerned with the number of objectives to be optimized 

and the second one is related to the finding of a feasible 

schedule. 

In hybrid cloud, tasks have to be scheduled to either 

external cloud (EC) or internal cloud(IC), based on the 

scheduling objective being optimized.  Most of the research 

work in hybrid cloud optimizes a single scheduling objective, 

typically makespan. Some studies consider more than one 

criterion like cost, execution time or QoS while developing 

scheduling techniques. Although multiple criteria have been 

considered, their aim is to optimize a single objective while 

all other criteria have been made constraints. For example 

when the objective is to minimize execution time and cost, it 

will be changed to minimizing cost while meeting application 

deadline or minimizing execution time while meeting user’s 

budget. This is done since, the complexity of hybrid cloud 

scheduling problem increases as the number of objectives to 

be optimized increases i.e. why mostly when there are two 

objectives to be optimized, one is converted into a constraint. 

Research into simultaneously optimizing objectives, that 

may be conflicting with each other e.g., cost and execution 

time, has not been done till date. But, this is quite an 

important issue as a tradeoff between performance and cost 

can be attained and used. So this work aims in providing a 

feasible solution that can be used for optimizing such 

objectives simultaneously in hybrid cloud. 

For a given set of tasks, the problem of finding a feasible 

schedule is in fact, a search problem. The structure of the 

search space is basically a tree. The root of the tree is the 

empty schedule. An intermediate vertex is a partial schedule 

and a leaf is a complete schedule. All leaves will correspond 

to feasible schedules. The goal of the scheduling algorithm is 

to search for a leaf that meets our optimization constraints 

[11]. 

When the above scheduling scenario is considered with 

respect to a cloud computing environment, the number of 

resources and tasks in consideration is very large. An optimal 

algorithm, in the worst case, may make an exhaustive search 

that is computationally intractable. In order to make the 

algorithm computationally tractable even in the worst case, 

a heuristic approach is better. 

 

III. RELATED WORK 

Hybrid cloud is a recent innovation of the cloud computing 

infrastructure. So specific problems of hybrid cloud have not 

been dealt much by the research community. One of the first 

papers on hybrid cloud is by Mattess et al. [12]. It gives 

details about Aneka, which is a middleware platform for 

deploying and managing the execution of applications on 

different clouds. The scheduling policies rely on a dynamic 

pool of external resources hired from commercial providers 

in order to meet peak demand requirements. To save hiring 

costs, the hired resources are released when they are no 

longer required. 

Calheiros et al. [13] presents architecture for the dynamic 

provisioning and scheduling of cloud resources, considering 

the characteristics of the whole organization workload. They 

also propose a novel approach for billing users for the 

utilization of public cloud resources. The paper describes a 

system with an external queue, deadline queue and a regular 

queue. The jobs are chosen from each queue based on the 

available resources. 

The above two papers describe the basic hybrid cloud 

architecture. The specific scheduling methodologies with re- 

spect to hybrid cloud came in later papers. Kailasam et al. 

[14] has proposed a scheduling methodology for scenarios, 

where ordered throughput is needed. In their work, the 

scheduler will determine the optimal number of resources 

that must be provisioned on the external cloud. It will also 

decide when and where and which jobs have to be burst to 

maximize ordered throughput. Their algorithm schedules 

computation intensive jobs to external cloud, as resources are 

plentiful there. This can only be used in specialized 

situations, where order of the output has to be preserved. 

Zuo et al. [15] has proposed a method to solve deadline 

con- strained task scheduling (DCTS) problem, with the 

objective of maximizing the profit. Particle Swarm 

Optimization (PSO) based scheduling approach is proposed 

to solve this problem. However, standard PSO easily traps 

into local optima. To overcome the disadvantage of standard 

PSO, a self-adaptive learning PSO based scheduling 

approach is proposed here. 

The above papers describe the scheduling of BoT(Bag of 

Tasks) applications. Workflow applications are different 

from BoT in their characteristics. In a workflow, there is 

dependency between different tasks. Therefore a workflow 

scheduler results in a system with different specifications. 

Senna et al. [16] proposed a strategy to schedule 

workflows in hybrid cloud, in order to minimize costs and 

meet deadlines. The initial schedule considers only the 

private resources to check if they already satisfy the deadline. 

If the deadline is not satisfied, the algorithm select tasks 

considering start time as well as priority. The selected tasks 

will be rescheduled considering the public cloud as well. The 

algorithm repeats these steps, until the deadline is met or a 

certain number of iterations are reached. 

Thanavanich et al. [17] has proposed two energy-aware 

scheduling heuristics, that take into consideration not only 

makespan conservation, but also energy reduction. In this, 

they have improved upon the already existing HEFT 

(Heteroge- neous Earliest Finish Time) and the CPOP 

(Critical Path on a Processor) algorithms. 

Bittencourt et al. [18] has proposed HCOC algorithm. The 

user stipulates a deadline D for the workflow, and the 

proposed algorithm tries to optimize the monetary execution 

costs, while maintaining the execution time lower than D. 

 

IV. PROBLEM FORMULATION 

A. Cloud Computing Model 

In our model, the cloud computing system consists of 
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private and public cloud, hosted in datacenters. These 

datacenters contain large number of virtual machines (VMs). 

Each VM has a specific amount of processing power, 

communication bandwidth, RAM, and storage associated 

with it. Based on the capability of each VM, tasks are 

allocated to each VM. The execution time of each task 

depends on the capability of the VM to which it is allocated. 

If VM1 has more processing power than VM2, then the same 

task will be executed in lesser time by VM1 than VM2. There 

is a cost associated with the usage of VMs. In the private 

cloud, as it is owned by the organization itself, the cost of 

usage is taken to be zero. But for the public cloud, there is a 

usage cost, and this cost is directly proportional with the 

capability of VM taken on lease. 

B. System Model 

Binary Integer Programming (BIP) is used for 

mathematically formulating the problem. Consider that there 

are C cloud providers, I instance type and N tasks for an 

application. Here, Pim is the price for usage of the mth instance 

of the ith cloud. Xjim is a state variable. Xjim=1, if the jth task is 

assigned to the mth instance of the ith cloud, else 0. rjim is the 

running time of jth task in the mth instance of the ith cloud. The 

objective functions, cost (CT) and execution time (ET) are 

defined as:      

 

CT=
1 1 1

. .
N C I

im jim jim

j i m

P X r
  

                        (1) 

 

1 1 1

.
N C I

jim jim

j i m

ET X r
  

                         (2) 

 

Our aim is to minimize functions CT and ET 

simultaneously subject to the constraints: 

1 1

. , [1, ]
N I

m jim c

j m

mem X mem i C
 

                     (3) 

 

1 1

. , [1, ]
N I

m jim c

j m

cpu X cpu i C
 

                  (4) 

 

where memm  is the memory available at each instance and, 

memc is the memory available at a particular cloud, cpum is 

the cpu resource of each instance and, cpuc is the cpu 

resource available at particular cloud. 

   

V. PROPOSED SYSTEM 

A. Bi-Objective Optimization 

There are some classical methods for optimization of 

multiple objectives. First one is the method of objective 

weighting. In this all the objective functions are combined to 

get a single objective function,
1

. ( )
N

i i
i

Z w f x


  where the 

weights wi are fractional numbers (0≤wi≤1). Second one is 

the method of distance functions, in which a decision vector 

(ei) is used to get the single objective function Z, 
1

1
[ | ( ) |] ,1

N
i i

ri
Z f x e r


     The third method is 

min-max formulation, which attempts to minimize the 

relative deviations from individual optimum. It is represented 

as, minimize ( ) max[ ( )], 1,..jF x Z x j N   [19]. 

In the aforementioned methods, multiple objectives are 

combined into a single objective. Single objective 

optimization results in a single solution.  While in these 

cases, it would be better if the choice is given to the decision 

maker as it cannot be said that only a single solution is 

correct. Also these methods require prior information about 

the optimum before optimization can be done. To overcome 

these disadvantages, an evolutionary multi-objective 

optimization algorithm, namely Nondominated Sorting 

Genetic Algorithm II (NSGAII), where both objectives are 

considered on an individual basis for reaching the final 

solution, has been used. 

Evolutionary optimization algorithms start with a 

population of solutions. Usually the initial population 

consists of randomly generated solutions. If some knowledge 

about the characteristics preferred in the initial solution is 

known, then it can be used to make the algorithm converge 

faster. 

In this work, the two objective functions, given in 

equations (1) and (2) have to be optimized. Here, a variation 

of GA is used. In GA, on the initial population, selection, 

crossover and mutation operations are performed. For 

selection, a fitness function is used. Solutions with higher 

value for this fitness function will be selected, to be part of 

the mating population. 

During crossover, two solutions from the mating pool are 

taken randomly and the information in the parent solutions 

will be exchanged. Crossover is done with a crossover 

probability. It denotes the proportion of the population taking 

part in crossover. The new solutions obtained after crossover 

will be a part of the new population along with the solutions 

that were not selected for crossover. 

After crossover, mutation is performed. Mutation involves 

making small changes to the solution. It is performed with a 

mutation probability. For example, if the mutation 

probability is 1/m, then only one out of m solutions will be 

changed. The mutated as well as unchanged solutions will 

become a part of the modified population. All the above 

operations will be performed until a termination criterion is 

met. The termination criterion is usually based on the number 

of iterations to be performed.  

GA can ideally be used only for single objective 

optimization. NSGAII is a variation of GA that uses a 

concept called domination to optimize multiple objectives. 

The domination between two solutions is defined as follows. 

A solution x1 is said to dominate the other solution x2, if the 

solution x1 is no worse than x2 in all objectives and the 

solution x1 is strictly better than x2 in at least one objective 

[19]. 
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Fig. 1 is an example that shows how a nondominated set is 

identified. It depicts two functions f1 and f2, to be optimized. 

This means that simultaneously the value of f1 has to be 

maximized while the value of f2 has to be minimized. Each 

point represents the values of f1 and f2 at that point. Take each 

pair of points and see whether one point dominates the other. 



  

 

 
Fig. 1. Multiobjective optimization example. 

 

As given in Algorithm1, the proposed system creates a 

random initial population, P. In the tth generation, the child 

population, Qt is created. The parent population and the child 

population is combined to get Rt. The population is sorted 

into fronts based on the domination principle using the 

algorithm Nondomination-sort(). It assigns a rank to each 

individual in the population, corresponding to its domination 

level. The individuals in the first front are assigned rank 1 

(the highest level of domination) and the ones in the second 

front are assigned rank 2 and so on. 

 

 
 

A new population, Pt+1 is created by adding the individuals 

in each front. When a situation is reached such that all the 

elements in a front cannot be added, the individuals in that 

front are sorted in descending order based on its crowding 

distance. Then the individuals with higher crowding distance 

are added to Pt+1. To get the crowding distance for the 

respective front, crowding-distance function is called. The 

next step is to create a child population. For this, selection of 

parents for crossover is on the basis of crowding distance and 

rank. The ones with lesser rank are selected. If both 

individuals under consideration have the same rank then the 

one with higher crowding distance is selected. Crossover and 

mutation is done on the selected population to get the 

modified population. 

The whole process is repeated a number of times. At the 

end of it, the individuals in the first front forms the pareto 

optimal set.  

For selecting an individual from the pareto optimal set, the 

average of the execution time for the set is taken. All the 

individuals having the value of execution time below the 

average is selected and from among those individuals the 

most cost effective one is chosen. 

 

 
 

In the algorithm of Nondomination-sort(), there are two 

important state variables associated with each individual, p 

1) Sp, a set of individuals that p dominates. 

2) np, domination count - the number of individuals that 

dominate p. 

At first, F1 (first nondomination front) is found. For this, 

each individual is compared with every other individual in 

the population, to see if it dominates (domination is denoted 

by the symbol <) the other individuals. Also values of the 

state variables associated with each individual are updated. 

For example, consider individual p, the values for Sp and np, 
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Get the set of all points not dominated by any of the other 

points. This forms the nondominated set. Consider the 1st 

point, it gets dominated by the 3rd point. Hence 1st point will 

not be part of the nondominated set and so on. The 

nondominated points in Fig. 1 are 3, 5, and 6 [20]. 

Multiple solutions are present in the nondominated set. 

Since none of the solutions is better than any other in the 

solution set, one of them can be chosen by considering the 

need of the user and the characteristics of the application. 

This means that problem specific knowledge can be used to 

select the final result. This result is used for scheduling in the 

cloud. 



  

in comparison with all other individuals in the population is 

found. If np is equal to zero after all comparisons it means that 

none of the individuals dominate p. 

All individuals with domination count equal to zero, is put 

into the first front and assigned rank 1. To get the next front, 

the same process can be repeated after discarding the 

members of the first front. Instead, to reduce the number of 

iterations another method is used. For each individual p in the 

previous front, consider the elements in its Sp set (the 

individuals being dominated by p) and reduce its domination 

count by one. This is done since all elements of previous 

fronts are discarded to identify the next front. The individuals 

with domination count equal to zero, is put into the next front 

The above procedure is repeated to get all fronts [21]. 

Crowding distance of the ith individual, denoted by I[i]dt 

indicates how near an individual is to its neighbours. 

Individuals with large crowding distance give a diverse 

population. 

 

 
 

In crowding-distance() algorithm, for each objective, the 

elements in the front are sorted based on objective values. 

Boundary points are assigned an infinite distance value.  

Intermediate points are assigned values according to: 

 
max min[ ] ( [ 1]. [ 1]. ) / ( )dt m mI i I i m I i m f f          (5) 

 

where I [i]. m refers to the mth objective function value under 

Consideration and
max

mf , 
min

mf  are the maximum and 

minimum values of the mth objective function. 

 

 

B. Scheduling 

A set of pareto-optimal points is generated through the 

above mentioned multiobjective optimization algorithm. The 

values of both objective functions (CT and ET) for these 

points are also obtained. The selection of a single point is 

guided by application specific knowledge. The schedule 

corresponding to that point, gives the optimal mapping 

between tasks and machines. According to this schedule, task 

assignment to processors is done. This schedule determines 

which of the tasks has to be assigned to the public cloud and 

which all has to be assigned to private cloud. In the same way 

all sets of tasks of an application is executed in hybrid cloud. 

 

VI. IMPLEMENTATION 

CloudSim is a toolkit (library) for simulation of cloud 

computing scenarios. It provides basic classes for describing 

data centers, virtual machines, applications, users, 

computational resources, and policies for the management of 

diverse parts of the system. These components are put 

together to evaluate multiobjective optimization of 

scheduling in hybrid cloud. 

The experiments use 6 VMs. Two VMs are in the public 

cloud and incur usage charges. Four VMs are part of the 

private cloud and does not incur any charge. The VMs in the 

private cloud have 200, 250, 300 and 350 MIPS processing 

capability, while the ones in the public cloud have 750 and 

1000 MIPS processing capability. 

The application is split into task sets. Each task set 

corresponds to sets of tasks that can be executed in parallel. 

In this work, the task set is comprised of six tasks each. 

Corresponding to each task set, a task schedule is generated, 

by using multiobjective evolutionary optimization algorithm 

NSGAII. The task schedules generated for all task sets are 

combined to get the application schedule. 

First, an initial population is randomly created. The 

population will consist of potential solutions. Each potential 

solution is a schedule of the task set under consideration. 

Permutation encoding is used for representing the scheduling 

problem. A schedule (1,5,0,3,2,4) means that the 1st task is 

assigned to the 1st machine and 1st   task is assigned to the 5th   

machine and so on. 

In the above algorithm, to accommodate the 

multi-objective nature of the problem, the selection 

procedure uses nondominated sorting as opposed to the 

normal selection techniques used in GA. The rest of the 

procedure is similar to GA. Two fitness values for each of the 

potential solutions are calculated based on the precomputed 

execution time and cost. Based on these fitness values, 

nondominated sorting and ranking is done. 

Individuals are selected based on rank and one point 

crossover of the selected individuals is performed. This 

procedure is repeated until the termination criteria are met. 

The pareto- optimal schedule for the task set is obtained as 

the result. The above procedure is repeated for all task sets in 

the given application. 

The parameters that are used in the algorithm are given in 

Table I. The pareto-optimal points corresponding to feasible 

task schedules are obtained as the result. From this a single 

point is selected, by using application specific knowledge. 
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Corresponding to this point, a task schedule is obtained. The 

task schedule maps tasks to processors. The task schedules 

generated for all task sets are combined to get the application 

schedule Based on the schedule application is executed in 

CloudSim and makespan and cost for executing the 

application in the cloud is estimated and analyzed. 

 
TABLE I: PARAMETERS USED IN THE ALGORITHM 

Parameters Value 

Population Size 100 

Number of Generations  100 

Crossover Rate 0.95 

Mutation Rate 0.2 

 

VII. RESULTS AND DISCUSSION 

This section presents the results obtained from our study. 

The pareto-optimal solution obtained, is analyzed based on 

the cost and execution time for different sets of tasks. 

 

 

Fig. 2. Variation in execution time. 

 

 
Fig. 3. Variation in cost. 

 

The execution time of the schedule obtained after 

bi-objective optimization is compared with the execution 

time of the schedule obtained after cost optimization as seen 

in Fig. 2. In the same way, pareto-optimal schedule is 

compared with schedule obtained after optimization of 

execution time in Fig. 3. This is done by taking the total 

execution time and total cost in both single objective 

optimization cases and comparing with the total execution 

time and total cost obtained from the pareto optimal solution. 

It is seen that this gives a middle ground between both 

execution time optimization and cost optimization and can be 

used for scheduling in the cloud. 

Table II gives the average values of CT and ET for 16 

applications, when different scheduling algorithms are used. 

On an average, the execution time of an application is 29% 

less if a pareto-optimal algorithm is used for scheduling 

instead of a cost optimal scheduling algorithm. Also on an 

average, the cost of executing an application is 26 % less if a 

pareto-optimal algorithm is used for scheduling instead of an 

execution time optimal scheduling algorithm. 

In our experiment, the total execution time of the pareto- 

optimal schedule is very near to that of the minimum possible 

execution time (which is equivalent to single objective 

optimization of execution time). And also pareto-optimal 

schedule has much lesser usage charges when compared to 

the schedule for single objective optimization of execution 

time. So its overall efficiency is higher. 
 

TABLE II: AVERAGE ET AND CT VALUES FOR DIFFERENT ALGORITHMS 

Algorithm Execution Time     Cost 

Execution Time Optimal      6053      33961 

Pareto Optimal      7112      25223 

Cost Optimal     10047     17638 

 

VIII. CONCLUSION 

An application on arrival is split into multiple tasks. Using 

the information from these tasks, scheduling of tasks on 

different machines is done. Our primary contribution is the 

proposal and implementation of an algorithm for the 

simultaneous optimization of execution time and cost of 

scheduling, in hybrid cloud. NSGAII algorithm is used for 

the same. The implementation results show the feasibility of 

such a scheduling strategy. Bi-objective optimization of 

scheduling, gives lesser cost of usage than optimization 

based on execution time. It also gives an execution time very 

close to the execution time obtained in the optimization of 

execution time alone. This gives a better choice to users. Now 

users do not have to choose between the two extremes of 

optimizing either on the basis of execution time or optimizing 

on the basis of cost. It gives a tradeoff point between 

application execution time and cost. 

REFERENCES 

[1] V. A Leena, B. A. S. Ajeena, and M. S. Rajasree, “Inter-cloud 

scheduling technique using power of two choices,” in Proc. IEEE 

International Conference on Computational Intelligence and 

Computing Research(ICCIC), December 2013. 

[2] S. Nagadevi, K. Satyapriya, and D. Malathy, “Economic cloud 

schedulers for optimized task scheduling,” International Journal of 

Advanced Engineering Technology, vol. IV, issue I, Jan.-March 2013. 

[3] H. D. Kim and J. S. Kim, “An On-line scheduling algorithm for grid 

computing systems,” in Proc. Second International Workshop on Grid 

and Cooperative Computing, 2003. 

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

12



  

[4] F. Wang, N. Helian, and G. Akanmu, “User-priority guide Min-Min 

scheduling algorithm for load balncing in cloud computing,” in Proc. 

National Conference on Parallel Computing Technologies, 2013. 

[5] U. Bhoi and P. N. Ramanuj, “Enhanced max-min task scheduling 

algorithm in cloud computing,” International Journal of Application or 

Innovation in Engineering and Management, vol. 2, issue 4, April 

2013. 

[6] G. Ming and H. Li, “An improved algorithm based on max-min for 

cloud task scheduling in recent advances in computer science and 

information engineerin,” Lecture Notes in Electrical Engineering, 

Springer, vol. 125, pp. 217-223, 2012. 

[7] S. Bitam, “Bees life algorithm for job scheduling in cloud computing,” 

in Proc. ICCIT, 2012. 

[8] P. kumar and A. Verma, “Independent task scheduling in cloud 

computing by improved genetic algorithm,” International Journal of 

Advanced Research in Computer Science and Software Engineering, 

vol. 2, issue 5, May 2012. 

[9] X.-Q. Song, L. Gao, J.-P. Wang, “Job scheduling based on ant colony 

optimization in cloud computing,” in Proc. International Conference 

Computer Science and Service System (CSSS), June 2011, pp. 

3309-3312. 

[10] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P. Singh, Nitin, and R. 

Rastogi, “Load balancing of nodes in cloud using ant colony 

optimization,” in Proc. 14th International Conference on Modelling 

and Simulation, 2012. 

[11] W. Zhao and K. Ramamritham, “Simple and integrated heuristic 

algorithms for scheduling tasks with time and resource constraints,” 

Journal of Systems and Software, vol. 7, issue 3, pp. 195-205, 

September 1987. 

[12] M. Mattess, C. Vecchiola, S. K. Garg, and R. Buyya, “Cloud bursting: 

Managing peak loads by leasing public cloud services,” Cloud 

Computing: Methodology, Systems, and Applications, October 2011. 

[13] R. N. Calheiros and R. Buyya, “Cost-effective provisioning and 

scheduling of deadline constrained applications in hybrid clouds,” Web 

Information Systems Engineering - WISE, 2012, pp. 171-184. 

[14] S. Kailasam, N. Gnanasambandam, J. Dharanipragada, and N. Sharma, 

“Optimizing ordered  throughput using autonomic cloud bursting 

schedulers,” IEEE Transactions on Software Engineering, 2012. 

[15] X. Zuo, G. Zhang, and W. Tan, “Self-Adaptive Learning PSO-Based 

Deadline Constrained Task Scheduling for Hybrid Iaas Cloud,” IEEE 

Transactions on Automation Science and Engineering, 2013. 

[16] L. F. Bittencourt, C. R. Senna, and E. R. M. Madeira, “Scheduling 

service workflows for cost optimization in hybrid clouds,” in Proc. 

International Conference on Network and Service Management 

(CNSM), 2010. 

[17] T. Thanavanich and P. Uthayopas, “Efficient energy aware task 

scheduling for parallel  workflow tasks on hybrids cloud environment,” 

in Proc. International Computer Science and Engineering Conference 

(ICSEC), 2013. 

[18] L. F. Bittencourt and E. R. M. Madeira, “HCOC: A cost optimization 

algorithm for workflow scheduling in hybrid clouds,” Journal of 

Internet Services and Applications, Springer, vol. 2, issue 3, pp. 

207-227, December 2011. 

[19] N. Srinivas and K. Deb, “Multiobjective optimization using 

nondominated sorting in genetic algorithms,” Journal of Evolutionary 

Computation, vol. 2, no. 3, 1994. 

[20] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms: 

An Introduction, Indian Institute of Technology Kanpur, February 

2011. 

[21] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist 

Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on 

Evolutionary Computation, vol. 6, no. 2, April 2002. 

 

 

 

 

Ajeena Beegom A. S. is an associate professor in 

College of Engineering, Trivandrum, Kerala, India. 

She received the bachelor degree in computer science 

and engineering from University of Kerala in 1995 and 

master degree from National Institute of Technology, 

Tiruchirappalli, India in 2005. Her active research 

topics include cloud computing and data mining. 

 

 

 

 

Rajasree M. S. is the director of Indian Institute of 

Information Technology and Management-Kerala 

(IIITM-K), India. She received the bachelor degree in 

computer science and engineering from National 

Institute of Technology, Calicut. She completed her 

master and PhD degrees from IIT-Madras. She is a 

professor in computer science and engineering and has 

worked in Government Engineering Colleges as a 

lecturer, professor and principal. Her research interests 

include distributed and object oriented software engineering, cloud 

computing and pattern recognition. She has a good number of publications in 

international conferences and journals and has also served in the 

programme/technical committees of a large number of national/international 

conferences. 

 

 

 

 
 

Author’s formal 

photo 

 
 

Author’s formal 

photo 

 
 

Author’s formal 

photo 

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

13

Leena V. A. was born in Kerala, India in 1989. She is a 

postgraduate student in the Computer Science 

Department of College of Engineering, Trivandrum 

since 2012. She received the bachelor degree in 

computer science and engineering from Mahathma 

Gandhi University in 2011. Her major fields of interest 

include cloud computing, optimization techniques, 

neural networks, fuzzy systems, and evolutionary 

algorithms. 


