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Abstract—Aggregation operators are essential in multi-
attribute decision-making, particularly for managing 
uncertainty and risk. Traditional methods, such as the Ordered 
Weighted Averaging (OWA) operator, typically address either 
probability-based weighting or uncertainty-based reordering, 
but rarely combine both within a unified framework. This paper 
proposes the Ordered Weighted Logarithmic Averaging 
Weighted Average (OWLAWA) operator, a novel approach that 
merges the benefits of weighted averaging and ordered 
reordering with a logarithmic transformation to better reflect 
decision-maker preferences under uncertainty. The theoretical 
properties of this operator including monotonicity, boundedness, 
and commutativity are formally established. A multi-attribute 
decision-making framework is then presented, integrating 
recognized expert weighting methods, including an entropy-
based approach, to enhance decision robustness. Through 
comparative analysis and a sustainability-focused case study 
involving 20 companies, results demonstrate that the proposed 
approach yields a controlled sub valuation effect, particularly 
beneficial in risk-sensitive or compliance-driven environments. 
These findings indicate a more adaptive and structured 
decision-making process relative to conventional operators, 
accommodating both structured probabilities and uncertain 
preferences. By unifying risk-based and uncertainty-based 
weighting within a logarithmic formulation, this operator offers 
a versatile and structured tool for applications in financial risk 
management, policy evaluation, and supply chain optimization. 
Future research may explore its integration with fuzzy systems 
and machine learning methods, further expanding its 
adaptability in complex decision scenarios. 

Keywords—logarithmic aggregation operators, OWA 
operator, weighted average, generalized mean, sustainability 
index 

I. INTRODUCTION

Information fusion techniques [1], including aggregation 
operators [2], have proven highly effective for modeling 
human-centric decision-making problems. These 
methodologies find extensive applications across diverse 
fields from econometrics and finance [3], environmental 
management [4], production and supply management [5] to 
sensors and pattern recognition [6]. Their ability to 
consolidate heterogeneous information sources into a unified 
decision value makes them particularly suitable for Multi-
Criteria Decision-Making (MCDM) contexts [7]. 

Yager [8] introduced the Ordered Weighted Averaging 
(OWA) operator. The characteristic reordering mechanism, 
which enables a parameterized family of operators between 
the minimum and maximum to be obtained, models decision-
maker attitudes, aiding decision-making especially in 

uncertain scenarios [9]. The OWA operator has led to a 
plethora of developments in decision-making, such as 
competitive economic behavior models [10], investment and 
financial group decision-making [11], multiperson decision-
making in health care [12], ranking of tourist destinations 
based on competitiveness indicators [13] and sustainable 
development modeling [14], among many others [15].  

Recent studies confirm the ongoing relevance of OWA-
based methods, including fuzzy measures with Choquet 
integrals [16], monotone fuzzy inference systems [17], fuzzy 
MADM with extended OWA weighting [18], Einstein-based 
fuzzy aggregators [19], and neutrosophic TOPSIS-OWA 
approaches [20]. Furthermore, OWA-based applications have 
recently been extended to sustainable decision support 
systems [21], fuzzy product recommendations [22], and 
dynamic group decision modeling with advanced fuzzy 
systems [23]. 

An interesting development in OWA models is the 
inclusion of the weighted average in the formulation of the 
OWA. The mechanism of the Ordered Weighted Averaging 
Weighted Average (OWAWA) operator [24, 25] integrates 
information that is bound to the information source using the 
Weighted Average (WA) and information that is bound to the 
reordering of the values using the OWA operator. This 
integration enables the treatment of information under risk 
and uncertainty in one formula, which is balanced by an 
integrated importance coefficient. This operator has been 
extended with several mathematical tools, such as Bonferroni 
means [26], Heronian means [27], D numbers and linguistic 
inputs [28], and hybrid intuitionistic fuzzy techniques [29], 
among others. 

Zhou and Chen [30] introduced logarithmic averaging 
operators. The Generalized Ordered Weighted Logarithmic 
Averaging (GOWLA) operators extend the decision-making 
toolset of information fusion techniques. The advantages of 
these operators, which are based on an optimal deviation 
technique, originate from their robust mathematical 
foundation, and a wide-ranging family of these operators 
have been introduced, e.g., the Pythagorean Fuzzy Induced 
Ordered Weighted Logarithmic Averaging Distance 
(PFIOWLAD) operator [31], Induced Ordered Weighted 
Logarithmic Averaging (IGOWLA) operators [32], 
Generalized Ordered Weighted Logarithmic Harmonic 
Averaging (GOWLHA) operators [33], Bonferroni weighted 
logarithmic averaging distance operator [34] and Generalized 
Linguistic Weighted Logarithm Averaging (GLWLA) 
operators [35]. 
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Motivated by these developments and by the identified gap 
in unifying weighted average mechanisms (risk-based) with 
OWA (uncertainty-based) through logarithmic 
transformations, this paper introduces the Ordered Weighted 
Logarithmic Averaging Weighted Average (OWLAWA) 
operator. We study its main properties and characteristics. 
Moreover, we propose a simulation-based technique for 
further characterizing and identifying the possible advantages 
of using the OWLAWA operator in a multicriteria decision-
making approach. Theoretical contributions are supported 
with simulation results that highlight OWLAWA’s behavior 
under diverse conditions, and we provide a comparative 
analysis with existing operators. Finally, an illustrative 
example is presented for the valuation of sustainable 
companies, a context strongly aligned with recent decision 
support applications that involve advanced aggregator 
models under uncertainty [21, 36]. 

The remainder of this article is structured as follows. 
Section II describes the foundations of the study. Section III 
introduces the proposed OWLAWA operator, its main 
characteristics, and its properties. Section IV describes a 
simulation-based technique for the characterization of the 
OWLAWA mechanism. Section V presents an illustrative 
example. Finally, Section VI presents the conclusions of this 
study. 

II. PRELIMINARIES 

In this section, we examine three operators that motivate 
the construction of the weighted OWLA operator, namely, 
the OWA operator, the logarithmic ordered weighted 
operator and the ordered weighted OWA operator. 

A. The Ordered Weighted Averaging Operator 

The OWA operator [8] provides a parameterized family of 
operators that range from the minimum to the maximum of 
the arguments. The OWA operator is designed to include 
criterion functions for constructing a global decision 
function [37] and can be defined as follows: 

Definition 1. An OWA operator of dimension n is a 
mapping OWA: Rn → R that includes a weighting vector w 
such that the sum of the weights is equal to 1 and 𝑤௝ ∈ [0,1]. 
The descending formulation of this averaging function is as 
follows: 

𝑂𝑊𝐴(𝑎ଵ, 𝑎ଶ, … , 𝑎௡) =  ෍ 𝑤௝𝑏௝

௡

௝ୀଵ

 (1) 

where bj is the jth largest of the ai. The arguments can also be 
ordered in an ascending direction, which depends on the 
attitude and the decision criteria that are chosen for the 
assessed problem [38]. The descending OWA operator yields 

the arithmetic mean when 𝑤௜ =
ଵ

௡
 for all i; when 𝑤 =

(1,0, … 0), the descending OWA yields the maximum; and 
when 𝑤 = (0,0, … 1) , the OWA operator returns the 
minimum [39]. The OWA operator is idempotent and 
monotonic, and it is bounded and commutative [8, 40]. 

B. The Generalized Ordered Weighted Logarithmic 
Averaging Operator (OWLA-GOWLA) 

A GOWLA operator is an extension of the Ordered 
Weighted Geometric Averaging (OWGA) operator that is 

based an optimal deviation model, which was introduced by 
Zhou et al. [30]. This operator is designed to assess group 
decision-making problems and is defined as follows: 

Definition 2. A GOWLA operator of length vector n is a 
mapping GOWLA: Ωn → Ω that has a characteristic 
weighting vector w such that ∑ 𝑤௝ = 1௡

௝ୀଵ  and 𝑤௝ ∈  [0,1] . 

The value of parameter 𝜆 ranges within (−∞, ∞), according 
to the following equation: 

 
𝐺𝑂𝑊𝐿𝐴(𝑎ଵ, 𝑎ଶ, … , 𝑎௡)

=  exp

⎩
⎨

⎧

ቌ෍ 𝑤௝൫ln𝑏௝൯
ఒ

௡

௝ୀଵ

ቍ

ଵ
ఒ

⎭
⎬

⎫

, 
(2) 

where, as in the descending OWA operator, the argument bj 
is the jth largest of the ai, which are in decreasing order. 

A special case of the GOWLA operator is when the 
parameter 𝜆 = 1 ; in this case, we formulate the ordered 
weighted logarithmic averaging (OWLA) operator [41], 
which is defined as follows: 

Definition 3. An OWLA operator of dimension n 
constitutes a mapping GOWLA: Ωn → Ω with an associated 
weighting vector of length n such that the sum of the weights 
is equal to 1 and each weight is between 0 and 1, as follows: 

𝑂𝑊𝐿𝐴(𝑎ଵ, 𝑎ଶ, … , 𝑎௡) =  exp ቐ෍ 𝑤௝൫ln𝑏௝൯

௡

௝ୀଵ

ቑ. (3) 

Following the convention, the arguments bj are simply 
ordered from the largest to the smallest of the ai. 

The GOWLA and OWLA operators have been proven to 
be monotonic, commutative, idempotent, and bounded, 
please see [30, 41]. Moreover, the ascending and descending 
GOWLA operators have been distinguished, and by 
considering diverse formulations of the weighting vector, the 
maximum, minimum, step, window, Olympic and  
S-GOWLA operators, among others, have been obtained [30]. 

C. The OWA Weighted Average Operator 

The Ordered Weighted Averaging Weighted Average 
(OWAWA) operator is a model that unifies the traditional 
weighted average and the OWA operator. The OWAWA and 
its induced modeling are introduced in [24, 25]. These 
formulations enable the assessment of decision-making-
based problems under uncertainty and of information under 
risk; the former are considered using the OWA approach, and 
the latter are considered using the weighted average as 
probabilistic input, as follows: 

Definition 4. An OWAWA operator of n dimensions is a 
mapping OWAWA: Rn → R that operates with a weighting 
W vector of dimension n such that the sum of the included 
weights equals 1 and 𝑤௝ ∈ [0,1]: 

𝑂𝑊𝐴𝑊𝐴(𝑎ଵ, 𝑎ଶ, … , 𝑎௡) =  ෍ 𝑣ො௝𝑏௝

௡

௝ୀଵ

. (4) 

Following the convention of the descending OWA 
operator, bj is the jth largest of the ai, and every ai is 
accompanied by a WA weight vi such that ∑ 𝑣௜ = 1௡

௝ୀଵ  and 

𝑣௜ ∈  [0,1] . 𝑣ො௝ = 𝛽𝑤௝ + (1 − 𝛽)𝑣௝ , where  𝛽 ∈ [0,1] 
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represents the importance of the WA and 𝑣௝ is the WA weight 
𝑣௜  that follows the reordering 𝑏௝ , which, in the convention 
that we follow, is the jth largest of the 𝑎௜ in decreasing order. 

Merigó [24, 25] further introduced a parallel formulation 
for the OWAWA operator that yields the same result as 
Eq. (4). However, the elements that affect the WA and the 
OWA are separated. According to the authors, this 
formulation does not unify the weighted average and the 
ordered weighted average models. This representation is 
defined as follows: 

Definition 5. The OWAWA operator of n dimensions is a 
mapping OWAWA: Rn → R with a weighing vector W with 
components that are between 0 and 1 such that the sum of its 
components is strictly 1. Additionally, a weighting vector V 
that follows the same conditions, namely, ∑ 𝑣௜ = 1௡

௝ୀଵ  and 

𝑣௜ ∈  [0,1], is included, this mapping is expressed as follows: 

𝑂𝑊𝐴𝑊𝐴(𝑎ଵ, 𝑎ଶ, … , 𝑎௡)

=  𝛽 ෍ 𝑤௝𝑏௝

௡

௝ୀଵ

+ (1 − 𝛽) ෍ 𝑣௜𝑎௜ ,

௡

௜ୀଵ

 

(5) 

where 𝛽 ∈ [0,1] represents the degree of importance of the 
WA and 𝑏௝ is the jth largest of the 𝑎௜. 

The OWAWA operator follows the OWA operator in 
being monotonic, commutative, bounded and 
idempotent [25], and it can be formulated as a descending 
OWAWA operator or an ascending OWAWA operator, 
depending on the reordering process of the arguments. These 
modifications would only affect the weighting vector W. 

III. THE OWLAWA OPERATOR 

Motivated by the advancements of Zhou and Chen [30] and 
Merigó [24, 25], this section presents the Ordered Weighted 
Logarithmic Averaging Weighted Average (OWLAWA) 
operator. The main advantage of this operator is the 
unification of the weighted average and the OWA operator 
using logarithmic averaging functions. Thus, we extend the 
current tools for decision-making problem assessment under 
uncertainty and probabilistic conditions. The OWLAWA 
operator is defined as follows: 

Definition 6. An OWLAWA operator of dimension 𝑛 is a 
mapping OWLAWA: Ω𝑛 × Ω𝑛 → Ω that has an associated 
weighting vector 𝑊 such that the sum of its components is 
equal to 1 and 𝑤𝑗 ∈ [0,1], which is expressed as follows: 

𝑂𝑊𝐿𝐴𝑊𝐴(𝑎ଵ, 𝑎ଶ, … , 𝑎௡) =  exp ෍ 𝑣ො൫ln𝑏௝൯

௡

௝ୀଵ

, (6) 

where bj is the jth largest of the ai and each argument ai has 
an associated weight (WA) vi such that the sum of its elements 
is equal to 1 and vi ∈ [0, 1]. Here, 𝑣ො = 𝛽𝑤௝ + (1 − 𝛽)𝑣௝, 𝛽 ∈ 
[0, 1] and vj is the weight (WA); vi is ordered according to bj, 
namely, according to the jth largest of the ai. 

The OWLAWA operator can also be separated into two 
sections: the part that strictly affects the OWLA operator and 
the WA. This formulation results in a more straightforward 
approach and is defined as follows: 

Definition 7. An OWLAWA operator is a mapping 
OWLAWA: Ω𝑛 × Ω𝑛 → Ω that includes an associated 
weighting vector 𝑊 such that ∑ 𝑤௝ = 1௡

௝ୀଵ  and 𝑤𝑗 ∈ [0,1] and 

a vector 𝑣௜  such that ∑ 𝑣௜ = 1௡
௝ୀଵ  and 𝑣௜ ∈ [0,1] , which is 

expressed as follows: 

𝑂𝑊𝐿𝐴𝑊𝐴(𝑎ଵ … 𝑎௡)

= exp ቐ𝛽 × ቌ෍ 𝑤௝൫ln𝑏௝൯

௡

௝ୀଵ

ቍ

+ (1 − 𝛽) × ൭෍ 𝑣௜(ln𝑎௜)

௡

௜ୀଵ

൱ቑ, 

(7) 

where bj is the jth largest ai in descending order. Both Eqs. (6) 
and (7) yield the same result. 

Let us briefly demonstrate the aggregation process using 
the OWLAWA operator. In this example, we utilize both 
definitions. 

Example 1. Consider arguments 𝑎௜ = (51, 26, 37, 42) to 
be introduced in the aggregation process, a weighting vector 
W of (0.2, 0.1, 0.3, 0.4 )  and a WA weighting vector V of 
(0.5, 0.3, 0.1, 0.1). Suppose the importance degree of the WA 
is 60%, namely, that of the OWLA aggregation is 40%. Here, 
calculate the associated weighting vectors for Eq. (6): 

𝑣ොଵ = 0.4 × 0.2 + 0.6 × 0.5 = 0.38, 
𝑣ොଶ = 0.4 × 0.1 + 0.6 × 0.1 = 0.10, 
𝑣ොଷ = 0.4 × 0.3 + 0.6 × 0.1 = 0.18, 
𝑣ොସ = 0.4 × 0.4 + 0.6 × 0.3 = 0.34. 

Next, by Eq. (6), we obtain: 

𝑂𝑊𝐿𝐴𝑊𝐴 = exp{0.38 × (ln51) + 0.1 × (ln42)
+ 0.18 × (ln37) + 0.34 × (ln26)}

= 37.55 

In this case, we opt to calculate the OWLAWA operator 
with Eq. (7): 

𝑂𝑊𝐿𝐴𝑊𝐴 = exp൛0.4 

× {0.2 × (ln51) + 0.1 × (ln42)

+ 0.3 × (ln37) + 0.4 × (ln26)}

+ 0.6 
× {0.5 × ln(51) + 0.3 × ln(26)

+ 0.1 × (ln 37) + 0.1 × ln(42)}ൟ

=  37.55.  

The OWLAWA operator shares the properties of 
monotonicity, boundedness and commutativity with the 
OWAWA [24] and OWLA [30, 41] operators. Let us briefly 
explore these properties with the following theorems. 

Theorem 1 (Monotonicity). Suppose f is an OWLAWA 
operator. If 𝑎௜ ≥ 𝑔௜ for all 𝑖 ∈ {1, 2, … , 𝑛}, then: 

𝑓(𝑎ଵ, 𝑎ଶ, … , 𝑎௡) ≥  𝑓(𝑔ଵ, 𝑔ଶ, … , 𝑔௡). (8) 

The proof is straightforward and, thus, is omitted. 
Theorem 2 (Boundedness). Let f be an OWLAWA 

operator. If max௜ 𝑎௜ = 𝑎௠௔௫  and min௜  𝑎௜ = 𝑎௠௜௡, then: 

𝑎௠௜௡ ≤ 𝑓(𝑎ଵ, 𝑎ଶ, … , 𝑎௡) ≤ 𝑎௠௔௫ , (9) 

considering 
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𝑓(𝑎ଵ, 𝑎ଶ, … , 𝑎௡) = exp ෍ 𝑣ො௝൫ln𝑏௝൯

௡

௝ୀଵ

, (10) 

When max௜  𝑎௜ = 𝑎௠௔௫ , then 𝑏௝ ≤ 𝑎௠௔௫  for every 𝑗 . 
Therefore, 

𝑓(𝑎ଵ, 𝑎ଶ, … , 𝑎௡) = exp ෍ 𝑣ො௝(ln𝑏௝)

௡

௝ୀଵ

= 𝑎௠௔௫ . (11) 

Similarly, 𝑓(𝑎ଵ, 𝑎ଶ, … , 𝑎ଷ) ≥ 𝑎௠௜௡. 

𝑎௠௜௡ ≤ 𝑓(𝑎ଵ, 𝑎ଶ, … , 𝑎ଷ) ≤ 𝑎௠௔௫ , (12) 

This proof is completed by assigning full importance to the 
OWLA. As this might not always be the case, we explore the 
following: 

Theorem 4 (Semi boundary conditions). Here, we define f 
as an OWLAWA operator. Then, 

exp ൝𝛽 × 𝑎௠௜௡ + (1 − 𝛽) × ෍ 𝑤௜(ln𝑎௜)

௡

௜ୀଵ

ൡ

≤ 𝑓(𝑎ଵ, 𝑎ଶ, … , 𝑎௡)

≤ exp ൝𝛽 × 𝑎௠௔௫ 

+ (1 − 𝛽) × ෍ 𝑤௜(ln𝑎௜)

௡

௜ୀଵ

ൡ, 

(13) 

where, in the case of 𝛽 = 1 , the traditional boundary 
conditions are satisfied. In addition, from the OWLAWA 
perspective, we have: 

exp ቐ𝛽 × 𝑎௠௜௡ + (1 − 𝛽) × ෍ 𝑤௝(ln𝑏௝)

௡

௝ୀଵ

ቑ

≤ 𝑓(𝑎ଵ, 𝑎ଶ, … , 𝑎௡)

≤ exp ቐ𝛽 × 𝑎௠௔௫ 

+ (1 − 𝛽) × ෍ 𝑤௝(ln𝑏௝)

௡

௝ୀଵ

ቑ, 

(14) 

The proof follows similarly to the previous case. 
Theorem 5 (Commutativity). Suppose f is an OWLAWA 

operator, where (𝑐ଵ, 𝑐ଶ, … , 𝑐௡)  corresponds to any 
permutation of the arguments 𝑎௜ , namely, (𝑎ଵ, 𝑎ଶ, … , 𝑎௡) . 
Since (𝑐ଵ, 𝑐ଶ, … , 𝑐௡) is a permutation of (𝑎ଵ, 𝑎ଶ, … , 𝑎௡), 𝑏௝ ≥

𝑑௝ for all 𝑗. Hence, 

𝑓(𝑎ଵ, 𝑎ଶ, … , 𝑎௡) ≥  𝑓(𝑐ଵ, 𝑐ଶ, … , 𝑐௡). (15) 

The proof is straightforward. 
The OWLAWA operator can be regarded as a unification 

of the weighted average and the logarithmic aggregation 
operators. This model can also be constructed under similar 
approaches, e.g., the weighted OWA operator [42], which 
enables the aggregation of a set under two weighting vectors 
and, hence, the weighting of the reliability of the data inputs, 
namely, weighted average inputs, and their values according 
to their relative positions or the OWA of other values. 
Another formulation can be obtained if we consider the 

Hybrid Weighted Averaging (HWA) operator [43], which 
was designed to combine the advantages of the weighted 
arithmetic averaging and OWA operators using a balancing 
coefficient. With the premise of immediate probabilities for 
decision-making on a set of alternatives, we can also 
construct a different formulation of the OWLAWA operator, 
in this case following [44–46]. Here, we could consider that 
the perception of the possible scenarios can be influenced by 
the associated payoffs and the outcome of a decision. Since 
we can extend the immediate probabilities to a weighted 
average, we could use the immediate weighted average for 
unification of the OWLA operators. Finally, we also consider 
a method that is based on importance weights [47], which is 
an approach that involves the transformation of scores into an 
effective value according to their respective importance, 
similar to the weighted average inclusion of immediate 
probabilities. 

Interesting cases are constructed when analyzing the 
components of the OWLAWA operator. These formulations 
also provide a general landscape of the applications of these 
operators. 

Remark 1. For the importance coefficient 𝛽, we observe 
the following: 

If 𝛽 = 0, we obtain the weighted average. 
If 𝛽 = 1, we construct the OWLA operator. 
If 𝛽 is increased, more importance is given to the OWLA 

operator; correspondingly, if it is decreased, more importance 
is given to the WA. 

Remark 2. For the W-associated weighting vector, we also 
obtain interesting results: 

In the case that 𝛽 = 1, 𝑤ଵ = 1 and 𝑤௝ = 0, for every 𝑗, we 
obtain max{𝑎௜}. 

If 𝛽 = 1, 𝑤௡ = 1 and 𝑤௝ = 0, for every 𝑗 ≠ 𝑛, we obtain 
min{𝑎௜}. 

For 𝛽 = 0 , 𝑤ଵ = 1  and 𝑤௝ = 0  and for all 𝑗 , min{𝑎௜}  is 
obtained. 

For 𝛽 = 0, 𝑤௡ = 1 and 𝑤௝ = 0, for all 𝑗 ≠ 𝑛, max{𝑎௜} is 
obtained. 

The Olympic OWLAWA operator is obtained when 𝑤ଵ =

𝑤௡ = 0 and 𝑤௝ =
ଵ

(௡ିଶ)
. 

For a general perspective, when 𝑤௞ = 1 and 𝑤௝ = 0 for 
every 𝑗 ≠ 𝑘, we obtain the step-OWLAWA operator. 

Remark 3. A weighted logarithmic averaging operator can 

also be obtained when 𝑤௝ =
ଵ

௡
 for all 𝑗. Here, we obtain this 

formulation as follows: 

𝑊𝐿𝐴(𝑎ଵ, 𝑎ଶ, … , 𝑎௡)

=
1

𝑛
𝛽 ෍ 𝑎௜

௡

௜ୀଵ

+ (1 − 𝛽) ෍ 𝑣௜𝑎௜

௡

௜ୀଵ

. 

(16) 

In the case of 𝑣௜ =
ଵ

௡
 for every 𝑖 , an ordered logarithm 

average is obtained: 

𝑂𝑊𝐿𝐴(𝑎ଵ, 𝑎ଶ, … , 𝑎௡)

= 𝛽 ෍ 𝑤௝𝑏௝

௡

௜ୀଵ

+
(1 − 𝛽)

𝑛
෍ 𝑎௜

௡

௜ୀଵ

. 
(17) 
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Several other formulations can also be constructed 
following [24, 30, 40, 48] for the associated weighting 
vectors W and V, along with the representation of the 
combinations when applying the importance coefficient 𝛽. 

IV. CHARACTERIZATION OF THE BEHAVIOR OF THE

OWLAWA OPERATOR 

The behavior of the OWLAWA operator can be further 
characterized using simulation techniques. In this exercise, 
we compare the OWA, OWAWA, OWLA and OWLAWA 
operators. The same initial conditions are used for each 
operator, and the results are plotted to further characterize the 
behavior of the proposed OWLAWA operator. 

A total of 1000 iterations are run to represent the 
characteristic behaviors of the operators. The initial 
conditions of the test are presented in Table 1. 

Table 1. Initial conditions for the characterization of the behavior of the 
OWLAWA operator 

Element Initial condition 
Iterations n = 1000 
Arguments 𝑎௜ = (11, 52, 46, 27, 88) 
Importance 
coefficient 

𝛽 = 0.3 

Weighting vector W 
∑ 𝑤௝

௡
௝ୀଵ

𝑛
= (0.124, 0.126, 0.249, 0.252, 0.249) 

Weighting vector V 
∑ 𝑣௜

௡
௜ୀଵ

𝑛
= (0.353, 0.347, 0.100, 0.099, 0.101) 

As the iterations proceed for the simulation of the OWA 
weights, Table 1 presents the average value of each weighting 
vector.  

Fig. 1. Description of the weights 𝑣௜ and 𝑤௝. 

The complete dataset for weights 𝑤௝  and 𝑣௜ is presented in 
the appendix of this paper. We observe that the weighting 
vector W is pessimistic, as weights 𝑤ଷିହ  are heavier than 
𝑤ଵ,ଶ, while in weighting vector V, the first two weights are 
heavier. Fig. 1 shows the distributions of the iterated weights. 

Using Eqs. (1), (3), (4), and (6), the traditional weighted 
average for the arguments and the initial conditions that are 
presented in Table 1, we compute the WA, OWA, OWLA, 
OWAWA and OWLAWA operators for each iteration. The 
results are shown in Fig. 2. The aim is to characterize the 
behavior of each operator and, with the resulting differences, 

observe possible phenomena and scenarios where the 
application of the OWLAWA operator can be useful. The 
importance coefficient is 𝛽 = 0.3 ; thus, we give higher 
importance to the WA than to the OWLA aggregation. 

Fig. 2. WA, OWA, OWLA, OWAWA and OWLAWA results for n = 1000 
iterations. 

The results show that for the total number of iterations, the 
operators behave similarly; however, due to the characteristic 
mathematical composition of each operator, the results vary. 
The OWA and the OWLA operators behave similarly, as do 
the OWAWA and the OWLAWA operators, namely, the 
logarithmic operators undervalue the general score compared 
to the nonlogarithmic operators. Additionally, when using 
weighted averaging OWA operators, the distribution of the 
values is wider. This is easily observed in Fig. 1, in which 
histogram of the scores is presented. This shows that the 
values of each of the nonweighted operators are within a 
narrower range whereas those of each of the weighted 
operators are distributed over a wider range. 

This exercise is not exhaustive, as the initial conditions can 
have a plethora of compositions. Nonetheless, the 
characteristic behavior of the logarithmic operators is 
interesting to analyze, as the undervaluing of the scores and, 
for the weighted averaging OWLA operators, the wider 
distribution of the results can be used for decision-making 
applications in which these characteristics are required. 

V. ILLUSTRATIVE EXAMPLE

The characteristic properties of the proposed OWLAWA 
operator make it interesting for a wide-ranging set of 
applications, e.g., in statistics, engineering, soft computing, 
business, management and financial decision-making; for a 
comprehensive discussion of areas in which aggregation 
operators have proven to be effective [2]. 

In this paper, we focus on a multicriteria decision-making 
application for the appraisal of sustainable companies. The 
objective is to quantify the efforts that some businesses 
employ for sustainable actions. This quantification enables 
the ranking and indexing of companies that are considered 
sustainable. The OWLAWA operator is suitable for this 
application, as the characteristic undervaluing of the 
aggregation score can be used for a rigorous approach. 
Additionally, the integrated WA mechanism enables an 
assessment of the given data, which were obtained 
probabilistically. For this illustrative example, we focus on 
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the assessment of experts in the field of sustainability, whose 
valuations of each business are aggregated to yield a grade or 
rating of the assessed company. This approach is especially 
relevant when the available information is characterized by 
uncertainty. 

The application of the OWLAWA operator requires an 
initial set of arguments and valuations for the aggregation to 
enable effective decision-making. The application of a 
multicriteria decision-making approach using the proposed 
operator is described by the following steps: 

Step 1. First, a set of 𝐶 = {𝑐ଵ, 𝑐ଶ, … , 𝑐௠} finite alternatives 
must be defined; in our case, these are companies. For these, 
a set 𝑆 = {𝑠ଵ, 𝑠ଶ, … , 𝑠௡}  of limited states or attributes of 
sustainability are used to construct a payoff matrix (𝑎௛௜)௠×௡. 
In this case, we define a limited set of experts 𝐸 =

൛𝑒ଵ, 𝑒ଶ, … , 𝑒௣ൟ  and a weighting vector 𝑋 = ൛𝑥ଵ, 𝑥ଶ, … , 𝑥௣ൟ 
such that the sum of the weights is equal to 1 and 𝑥௞ ∈ [0,1]. 
The weighting vector X corresponds to the experts’ influence 
in the aggregation process. The experts’ opinions should be 
in the range of 𝑦௥ ∈ [1, 100]  for 𝑟 = 1,2, … 𝑝 . For each 

expert, a valuation matrix ൫𝑎௛௜
(௞)

൯
௠×௡

 is required.

A. Expert Weight Determination via the Entropy Method

To enhance the robustness and objectivity of the proposed
decision-making model, we introduce an entropy-based 
approach for determining the weights assigned to expert 
opinions [49]. This method complements the initial 
subjective weight assignment (based on expertise and field 
relevance) and is well-suited to contexts involving 
uncertainty and heterogeneous judgments conditions under 
which OWLAWA is particularly effective. 

The Entropy Method [50] has been widely adopted in 
multi-attribute decision-making (MADM) models to evaluate 
the degree of information provided by each source [51]. 
Experts whose assessments vary little across alternatives are 
considered to convey less useful information and are thus 
assigned lower weights. Conversely, experts whose 
evaluations show higher variability contribute more to the 
decision-making process and are given higher importance. 

Let 𝑥௜௝  be the score assigned by expert 𝑒௝ to alternative 𝑎௜, 
and the normalized value is: 

𝑟௜௝ =
𝑥௜௝

∑ 𝑥௜௝
௠
௜ୀଵ

. (18) 

Then, the entropy 𝐸௝ for each expert is calculated as: 

𝐸௝ = −𝑘 ෍ 𝑟௜௝

௠

௜ୀଵ

⋅ 𝑙𝑛൫𝑟௜௝൯, (19) 

where 

𝑘 =
1

𝑙𝑛(𝑚)
. (20) 

The divergence degree is: 

𝑑௝ =  1 − 𝐸௝ , (21) 

Finally, the normalized weight 𝑤௝   of expert 𝑒௝ is: 

𝑤௝ =
𝑑௝

∑ 𝑑௝
௡
௝ୀଵ

. (22) 

This approach yields a reproducible and mathematically 
grounded vector of expert weights that can be integrated into 
the OWLAWA operator. In this study, we retain the initially 
defined weights (0.5, 0.3, 0.2) based on domain knowledge, 
but the entropy-based weighting is presented here as a 
generalizable alternative for future applications of the model. 

Fig. 3. Flowchart of the OWLAWA-based multi-attribute decision-making 
model. 

Fig. 3 presents a flowchart representation of the proposed 
multi-attribute decision-making model using the OWLAWA 
operator.  

The process begins by defining a set of alternatives and 
sustainability attributes, followed by the collection of 
evaluations from multiple experts. The expert weights are 
then assigned either subjectively (based on experience and 
relevance) or objectively through the Entropy Method. These 
inputs form a collective payoff matrix, which is then 
aggregated using the OWLAWA operator to compute a 
sustainability score for each alternative. The final step 
involves comparing the results to a predefined threshold or 
performing a ranking to identify sustainable companies. 

Step 2. Define the weighting vector 𝑉෠ = 𝑊 + (1 − 𝛽)𝑉, 
which expresses the characteristic approach of the 
OWLAWA operator. The importance coefficient 𝛽 
corresponds to the uncertainty of the retrieved data, and the 
selection depends on the analyzed phenomena. Additionally, 
𝑊 =  (𝑤ଵ, 𝑤ଶ, … , 𝑤ଷ) satisfies ∑ 𝑤௝

௡
௝ୀଵ = 1 and 𝑤௝ ∈ [0, 1], 

and 𝑉 =  (𝑣ଵ, 𝑣ଶ, … , 𝑣ଷ)  satisfies ∑ 𝑣௜
௡
௝ୀଵ = 1  and 𝑣௜ ∈

[0, 1]. 
Step 3. Aggregate the valuations of the set of experts E 

with the weighting vector X and establish a collective payoff 
(𝑎௛௜)௠×௡, where 𝑎௛௜ = ∑ 𝑥௞𝑎௛௜

௞௣
௞ୀଵ . 

Step 4. Calculate Eq. (6) to obtain the OWLAWA operator. 
Many formulations can be constructed depending on the 
families and particular cases of the operator. 

Step 5. Establish a parameter Q that defines the minimum 
score for being considered a sustainable company. In this case, 
𝑄 ∈ [0, 100] is defined by decision-makers, and it should be 
designed to assess the conditions of the environment, e.g., the 
industry, number of workers, and regional conditions. Every 
company 𝐶  such that 𝑂𝑊𝐿𝐴𝑊𝐴௡ ≥ 𝑄  is indexed in the 
sustainable company category. 

Step 6. Decision-making approach. We compare the 
results with those of other formulations, operators, and 
families of the OWLAWA operator to categorize and rank the 
evaluated companies. 
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B. Numerical Example

Let us illustrate the proposed decision-making approach
with a numerical example. The exercise focuses on the 
application of the OWLAWA operator to a series of 
companies for which sustainable actions must be quantified 
for the creation of a sustainability index of companies. This 
index enables the categorization, hierarchical ordering and 
ranking of the evaluated companies; moreover, the results of 
the evaluation can be used to develop public and economic 
policies and incentives. The following steps are implemented: 

Step 1. For the large industrial manufacturing sector of a 
city, let us evaluate a set of 20 companies; thus, 𝐶 =
{𝑐ଵ, 𝑐ଶ, … , 𝑐ଶ଴}. These companies will be ranked in terms of 
sustainable practices in the following areas: 

S1: Economic performance  
S2: Market share 
S3: Unfair competition 
S4: Supplies 
S5: Energy consumption management 
S6: Water consumption 
S7: Environmental impact management 
S8: Gas emissions 
S9: Labor relations 
S10: Community impact 
The evaluation is carried out by three experts 𝐸 =

{𝑒ଵ, 𝑒ଶ, 𝑒ଷ}, whose opinions will be expressed in the range of 
1 to 100, where 1 is the lowest possible score and 100 is the 
maximum possible score. The expert opinion weighting 
vector X is set to (0.5, 0.3, 0.2), which corresponds to their 
experience and fields of expertise. Table 2 presents the 
collective aggregated opinions of the three experts. 

Step 2. The decision-makers require an OWLA weighting 
vector W = (0.0954, 0.1155, 0.1407, 0.0087, 0.0634, 0.1085, 
0.1218, 0.1188, 0.1127, 0.1143), a WA weighting vector V = 
(0.0416, 0.1465, 0.1061, 0.1291, 0.0186, 0.0888, 0.1428, 
0.0285, 0.1484, 0.1495) and a coefficient of importance 𝛽 =
30%. Thus, the WA is assigned a weight of 70% and the 
OWLA a weight of 30%. 

Step 3. With this information, we calculate the expert 
payoff matrix. Table 2 shows the results of the valuations; the 
individual valuations of the experts are presented in the 
appendix of this paper. 

To evaluate the applicability of the proposed operator, we 
conducted a comparative analysis involving four classical 
aggregation methods—WA, OWA, OWLA, and OWAWA—
alongside OWLAWA. The outcomes are summarized in 
Table 3 and visually represented in Figs. 4 and 5, highlighting 
their distinctive behaviors. 

Step 4. The collective payoff matrix and the initial 
information enable the construction of diverse aggregations. 
For this case, we calculate the WA, the OWA, OWLA, 
OWAWA and OWLAWA operators. Table 3 presents the 
aggregated results for each company. 

Step 5. Due to the characteristics of the industry, regional 
practices, and experts’ opinions, a threshold of 𝑄 = 68 is set. 

Therefore, considering the OWLAWA operator, the 
companies that are indexed as sustainable are as follows: 
Sustainable companies = {c₁, c₇, c₉, c₁₃, c₁₆, c₂₀}. 

Table 2. Collective payoff matrix 
Company S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

C1 91.6 91.6 86.9 88.9 85.3 78.3 87.9 85.4 79.1 87.9 
C2 56.3 76.8 56 71.7 56.3 58.3 66 67.9 61.6 67.1 
C3 60.1 49.5 72 56.8 62.7 70.3 45.8 76 73.7 70.5 
C4 69.4 72 66.2 55.9 70.8 55.4 68.9 65.8 61.7 60.8 
C5 39.1 51.9 23 44.4 41.4 31.4 37.5 58.9 25.7 35.9 
C6 61.2 71.2 70.1 79.5 63 54.1 74 59.6 67.3 49.7 
C7 86.2 89.3 90.8 95.2 89.3 77.7 85.7 83.8 77.3 91.2 
C8 76.3 74.3 76.2 55.4 64.5 65.8 62.9 66.9 61.2 56.3 
C9 78 78.8 90 91 81.5 90.3 76.6 88.3 85.3 89.7 

C10 72.2 77.1 66.1 70.3 56.6 52.9 62.8 55 57 68.5 
C11 76.8 54.6 67.1 69.4 70.9 43.5 62.2 50.3 57.1 54.5 
C12 70.7 54.3 67.7 69.2 60.3 67.8 55 68.1 66.4 65.3 
C13 65.5 67.2 71.9 65.6 66.1 61.3 62.9 65.9 69.1 64.8 
C14 77.5 68.2 61.6 57.3 79.5 52.8 74.3 60.1 58.1 67.6 
C15 32.6 52.9 30.2 44.9 27.5 39.7 55.5 27.5 30.6 41.1 
C16 74.3 79.5 93.2 78.6 94.9 72.3 91.8 83 85.6 82.6 
C17 43.4 49.1 42.3 25.8 47.3 30.4 27.4 47.5 44.9 44.8 
C18 49.7 70.2 62.9 67.8 58 63.7 49.8 69.7 60.1 59.1 
C19 67.3 80.5 63.1 65.9 74.2 88.8 53.5 65.2 67.6 77.1 
C20 89.4 84.1 77.1 91 86.4 86.9 78.8 76.5 82.9 87.7 

Table 3. Comparative aggregation results using WA, OWA, OWLA, 
OWAWA, and OWLAWA 

Company WA OWA OWLA OWAWA OWLAWA 
C1 81.53 81.16 81.02 81.42 81.27 
C2 65.77 65.32 64.97 65.64 65.28 
C3 63.46 64.28 63.67 63.71 63.04 
C4 65.70 64.48 64.25 65.34 65.13 
C5 31.78 32.92 31.73 32.12 30.83 
C6 68.23 68.52 68.04 68.32 67.81 
C7 83.36 84.41 84.29 83.68 83.59 
C8 69.24 66.34 65.32 68.37 67.51 
C9 84.67 84.97 84.74 84.76 84.56 

C10 63.65 63.43 63.27 63.58 63.41 
C11 69.09 66.64 66.02 68.36 67.75 
C12 67.32 64.54 64.14 66.49 66.11 
C13 70.87 69.15 68.95 70.36 70.19 
C14 65.04 62.93 62.65 64.41 64.11 
C15 36.04 33.32 30.79 35.22 32.58 
C16 85.37 86.06 85.92 85.58 85.43 
C17 40.48 38.80 37.17 39.97 38.30 
C18 64.48 60.74 59.96 63.35 62.58 
C19 62.99 64.47 63.64 63.43 62.59 
C20 85.90 83.74 83.44 85.25 84.97 

Fig. 4 shows a graphical representation of the valuation of 
each company. The general undervaluing of the aggregation 
score by the OWLAWA operator has an impact on the 
sustainable company index, specifically for 𝑐଺, 𝑐଼, and 𝑐ଵଵ . 
Fig. 5 more closely examines 𝑐଺, 𝑐଼, and 𝑐ଵଵ . Here, we 
observe that the undervaluing of the aggregation score by the 
OWLAWA operator results in the exclusion of 3 companies 
that are included in the index when evaluated by the 
OWAWA operator. This undervaluing acts as a rigorous 
approach for the decision-making process, and in some cases, 
this characteristic can be of interest in the selection and 
application of this operator. 
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Fig. 4. Graphical representation of the results. 

Fig. 5. In depth observation of the evaluation of 𝑐଺, 𝑐଼, and 𝑐ଵଵ. 

These findings suggest that the OWLAWA operator may 
be particularly suitable for conservative applications where 
the underestimation of performance acts as a safeguard—
such as sustainability compliance, risk assessment, or 
regulatory filtering. Moreover, the decision-making approach 
differs among the selected operators, namely, the result of 
each operator is different. The proposed application is 
interesting when multicriteria decision-making is required for 
the assessment of elements that have information under risk 
and uncertainty and when a rigorous approach is desired and 
a threshold is set. Other approaches can also be applied, for 
example, a ranking of the companies based on the selected 
operators or a similar strategy. The selected decision-making 
approach follows the conditions of the studied phenomena. 

VI. CONCLUSION

The objective of this paper was the proposal of the ordered 
weighted logarithmic averaging weighted average 
(OWLAWA) operator. The characteristic design of this 
operator enables the treatment of information under 
uncertainty and risk in one formulation. The OWLAWA 
operator is based on the optimal deviation model, which was 
developed by Zhou and Chen [30], and shares its main 
properties. We explored some of the main characteristics and 
families of the OWLAWA operator and described various 
particular cases and compositions when analyzing the 
weighting vector W. 

We also further explored the characteristic design of the 
OWLAWA operator using simulation techniques. The 
exercise included a total of 1000 simulations of aggregations 
with similar initial conditions for the WA, OWA, OWLA and 
OWLAWA operators. The results show that the logarithmic 
averaging operators undervalue the aggregation score in 
general, and the weighted average values are spread over a 
wide range for the operators that include this feature. These 
observed characteristics will be interesting to further explore 
in future research. 

We also presented an illustrative example of a multicriteria 
decision-making problem using the features of the 
OWLAWA operator. In the example, companies’ efforts for 
sustainability were evaluated. Three experts assigned scores 
to the companies, and if the aggregation score of a company 
surpassed an established threshold, the company was indexed 
as a sustainable company. The observed features of the 
OWLAWA operator are desirable because the logarithmic 
operators generally undervalue the aggregation score, which 
can be used as a rigorous criterion. The results show that 
when using the OWLAWA operator, 6 companies were 
indexed as sustainable. In contrast, when the OWAWA 
operator was used for this assessment, a total of 9 companies 
were indexed, namely, the use of the OWLAWA operator 
resulted in the aggregation of fewer indexed companies. 

The main objective of the OWLAWA operator is the 
combination of risk and uncertain information into a single 
formulation using an importance coefficient and logarithmic 
averaging operators. Since the proposal of the GOWLA 
operators, many developments and applications have been 
reported. Therefore, the proposal of an extended toolset for 
decision-making processes is of interest, as the real-world 
challenges continue to increase in complexity. 

From a theoretical standpoint, OWLAWA extends 
traditional aggregation models by providing a framework that 
simultaneously handles both probabilistic and uncertain 
information. This dual-layered approach contributes to 
decision science by allowing for more flexible information 
fusion, adapting to different decision-maker risk attitudes. 
Furthermore, logarithmic transformation introduces a 
controlled sub valuation effect, which is particularly useful 
for conservative decision environments. Compared to 
existing OWA-based operators, OWLAWA ensures that 
aggregation results account for both structured probabilities 
and uncertain preferences in a mathematically coherent way. 

The OWLAWA operator has strong potential for 
application in diverse decision-making domains. Beyond 
sustainability assessment, where it was demonstrated in this 
study, it can be extended to financial risk analysis, supply 
chain optimization, healthcare prioritization, and policy-
making under uncertainty. One of its key advantages is the 
ability to incorporate expert judgments dynamically through 
adaptive weighting methods and entropy-based approaches, 
thereby enhancing decision robustness in complex scenarios. 
Additionally, OWLAWA provides an adaptable framework 
for multi-criteria decision analysis, allowing fine-tuned 
control over aggregation processes depending on the nature 
of the available data. 

This study provides a solid foundation for the application 
of the OWLAWA operator; however, several avenues remain 
open for further exploration. The simulation-based 
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characterization employed here offers controlled insights, yet 
future studies could enrich these findings by incorporating 
real-world datasets with more diverse uncertainty profiles. 
The sustainability case study illustrates the operator’s utility 
in practice, but additional applications in domains such as 
finance, healthcare, or policy analysis would help validate its 
broader adaptability. The current model assumes consistent 
expert judgments; extending the framework to address 
conflicting or fuzzy expert input could enhance its robustness. 
Lastly, although our comparative analysis involved five well-
established operators under the same conditions, exploring 
OWLAWA’s performance across other decision-making 
scenarios could further demonstrate its versatility and 
strength. 
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