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Abstract—Aggregation operators are essential in multi-
attribute  decision-making, particularly for managing
uncertainty and risk. Traditional methods, such as the Ordered
Weighted Averaging (OWA) operator, typically address either
probability-based weighting or uncertainty-based reordering,
but rarely combine both within a unified framework. This paper
proposes the Ordered Weighted Logarithmic Averaging
Weighted Average (OWLAWA) operator, a novel approach that
merges the benefits of weighted averaging and ordered
reordering with a logarithmic transformation to better reflect
decision-maker preferences under uncertainty. The theoretical
properties of this operator including monotonicity, boundedness,
and commutativity are formally established. A multi-attribute
decision-making framework is then presented, integrating
recognized expert weighting methods, including an entropy-
based approach, to enhance decision robustness. Through
comparative analysis and a sustainability-focused case study
involving 20 companies, results demonstrate that the proposed
approach yields a controlled sub valuation effect, particularly
beneficial in risk-sensitive or compliance-driven environments.
These findings indicate a more adaptive and structured
decision-making process relative to conventional operators,
accommodating both structured probabilities and uncertain
preferences. By unifying risk-based and uncertainty-based
weighting within a logarithmic formulation, this operator offers
a versatile and structured tool for applications in financial risk
management, policy evaluation, and supply chain optimization.
Future research may explore its integration with fuzzy systems
and machine learning methods, further expanding its
adaptability in complex decision scenarios.

Keywords—logarithmic  aggregation operators, OWA
operator, weighted average, generalized mean, sustainability
index

I INTRODUCTION

Information fusion techniques [1], including aggregation
operators [2], have proven highly effective for modeling
human-centric decision-making problems. These
methodologies find extensive applications across diverse
fields from econometrics and finance [3], environmental
management [4], production and supply management [5] to
sensors and pattern recognition [6]. Their ability to
consolidate heterogeneous information sources into a unified
decision value makes them particularly suitable for Multi-
Criteria Decision-Making (MCDM) contexts [7].

Yager [8] introduced the Ordered Weighted Averaging
(OWA) operator. The characteristic reordering mechanism,
which enables a parameterized family of operators between
the minimum and maximum to be obtained, models decision-
maker attitudes, aiding decision-making especially in
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uncertain scenarios [9]. The OWA operator has led to a
plethora of developments in decision-making, such as
competitive economic behavior models [10], investment and
financial group decision-making [11], multiperson decision-
making in health care [12], ranking of tourist destinations
based on competitiveness indicators [13] and sustainable
development modeling [14], among many others [15].

Recent studies confirm the ongoing relevance of OWA-
based methods, including fuzzy measures with Choquet
integrals [16], monotone fuzzy inference systems [17], fuzzy
MADM with extended OWA weighting [18], Einstein-based
fuzzy aggregators [19], and neutrosophic TOPSIS-OWA
approaches [20]. Furthermore, OWA-based applications have
recently been extended to sustainable decision support
systems [21], fuzzy product recommendations [22], and
dynamic group decision modeling with advanced fuzzy
systems [23].

An interesting development in OWA models is the
inclusion of the weighted average in the formulation of the
OWA. The mechanism of the Ordered Weighted Averaging
Weighted Average (OWAWA) operator [24, 25] integrates
information that is bound to the information source using the
Weighted Average (WA) and information that is bound to the
reordering of the values using the OWA operator. This
integration enables the treatment of information under risk
and uncertainty in one formula, which is balanced by an
integrated importance coefficient. This operator has been
extended with several mathematical tools, such as Bonferroni
means [26], Heronian means [27], D numbers and linguistic
inputs [28], and hybrid intuitionistic fuzzy techniques [29],
among others.

Zhou and Chen [30] introduced logarithmic averaging
operators. The Generalized Ordered Weighted Logarithmic
Averaging (GOWLA) operators extend the decision-making
toolset of information fusion techniques. The advantages of
these operators, which are based on an optimal deviation
technique, originate from their robust mathematical
foundation, and a wide-ranging family of these operators
have been introduced, e.g., the Pythagorean Fuzzy Induced
Ordered Weighted Logarithmic Averaging Distance
(PFIOWLAD) operator [31], Induced Ordered Weighted
Logarithmic  Averaging (IGOWLA) operators [32],
Generalized Ordered Weighted Logarithmic Harmonic
Averaging (GOWLHA) operators [33], Bonferroni weighted
logarithmic averaging distance operator [34] and Generalized
Linguistic Weighted Logarithm Averaging (GLWLA)
operators [35].
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Motivated by these developments and by the identified gap
in unifying weighted average mechanisms (risk-based) with
OWA (uncertainty-based) through logarithmic
transformations, this paper introduces the Ordered Weighted
Logarithmic Averaging Weighted Average (OWLAWA)
operator. We study its main properties and characteristics.
Moreover, we propose a simulation-based technique for
further characterizing and identifying the possible advantages
of using the OWLAWA operator in a multicriteria decision-
making approach. Theoretical contributions are supported
with simulation results that highlight OWLAWA’s behavior
under diverse conditions, and we provide a comparative
analysis with existing operators. Finally, an illustrative
example is presented for the valuation of sustainable
companies, a context strongly aligned with recent decision
support applications that involve advanced aggregator
models under uncertainty [21, 36].

The remainder of this article is structured as follows.
Section II describes the foundations of the study. Section III
introduces the proposed OWLAWA operator, its main
characteristics, and its properties. Section IV describes a
simulation-based technique for the characterization of the
OWLAWA mechanism. Section V presents an illustrative
example. Finally, Section VI presents the conclusions of this
study.

II. PRELIMINARIES

In this section, we examine three operators that motivate
the construction of the weighted OWLA operator, namely,
the OWA operator, the logarithmic ordered weighted
operator and the ordered weighted OWA operator.

A.  The Ordered Weighted Averaging Operator

The OWA operator [8] provides a parameterized family of
operators that range from the minimum to the maximum of
the arguments. The OWA operator is designed to include
criterion functions for constructing a global decision
function [37] and can be defined as follows:

Definition 1. An OWA operator of dimension n is a
mapping OWA: R" — R that includes a weighting vector w
such that the sum of the weights is equal to 1 and w; € [0,1].
The descending formulation of this averaging function is as
follows:

n
OWA(all aZI"'IaTl) = ZW]b] (1)
j=1

where b; is the jth largest of the a;. The arguments can also be
ordered in an ascending direction, which depends on the
attitude and the decision criteria that are chosen for the
assessed problem [38]. The descending OWA operator yields

the arithmetic mean when w; =% for all i; when w =
(1,0, ...0), the descending OWA yields the maximum; and
when w = (0,0,..1) , the OWA operator returns the

minimum [39]. The OWA operator is idempotent and
monotonic, and it is bounded and commutative [8, 40].

B.  The Generalized Ordered Weighted Logarithmic
Averaging Operator (OWLA-GOWLA)

A GOWLA operator is an extension of the Ordered
Weighted Geometric Averaging (OWGA) operator that is
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based an optimal deviation model, which was introduced by
Zhou et al. [30]. This operator is designed to assess group
decision-making problems and is defined as follows:

Definition 2. A GOWLA operator of length vector # is a
mapping GOWLA: Q" — Q that has a characteristic
weighting vector w such that }7_; w; = 1 and w; € [0,1].
The value of parameter A ranges within (—oo, ), according
to the following equation:

GOWLA(a4,ay, ..., a,)

n A

= exp z w; (lnbj)/1 , @)

j=1

where, as in the descending OWA operator, the argument b,
is the jth largest of the a;, which are in decreasing order.

A special case of the GOWLA operator is when the
parameter A = 1; in this case, we formulate the ordered
weighted logarithmic averaging (OWLA) operator [41],
which is defined as follows:

Definition 3. An OWLA operator of dimension n
constitutes a mapping GOWLA: Q" — Q with an associated
weighting vector of length 7 such that the sum of the weights
is equal to 1 and each weight is between 0 and 1, as follows:

n

OWLA(ay,a,, ...,a,) = exp ij(lnbj) . 3)
=1

Following the convention, the arguments b; are simply
ordered from the largest to the smallest of the a;.

The GOWLA and OWLA operators have been proven to
be monotonic, commutative, idempotent, and bounded,
please see [30, 41]. Moreover, the ascending and descending
GOWLA operators have been distinguished, and by
considering diverse formulations of the weighting vector, the
maximum, minimum, step, window, Olympic and
S-GOWLA operators, among others, have been obtained [30].

C. The OWA Weighted Average Operator

The Ordered Weighted Averaging Weighted Average
(OWAWA) operator is a model that unifies the traditional
weighted average and the OWA operator. The OWAWA and
its induced modeling are introduced in [24, 25]. These
formulations enable the assessment of decision-making-
based problems under uncertainty and of information under
risk; the former are considered using the OWA approach, and
the latter are considered using the weighted average as
probabilistic input, as follows:

Definition 4. An OWAWA operator of n dimensions is a
mapping OWAWA: R” — R that operates with a weighting
W vector of dimension n such that the sum of the included
weights equals 1 and w; € [0,1]:

n
OWAWA(ay, ay, ..., ay) = Z o,b;. )
j=1

Following the convention of the descending OWA
operator, b; is the jth largest of the a;, and every a; is
accompanied by a WA weight v; such that }.7_; v; = 1 and
v; € [0,1] b, =pw;+ (1 —p)y; , where p€[0,1]
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represents the importance of the WA and v; is the WA weight
v; that follows the reordering b;, which, in the convention
that we follow, is the jth largest of the a; in decreasing order.

Merigé [24, 25] further introduced a parallel formulation
for the OWAWA operator that yields the same result as
Eq. (4). However, the elements that affect the WA and the
OWA are separated. According to the authors, this
formulation does not unify the weighted average and the
ordered weighted average models. This representation is
defined as follows:

Definition 5. The OWAWA operator of n dimensions is a
mapping OWAWA: R” — R with a weighing vector ¥ with
components that are between 0 and 1 such that the sum of its
components is strictly 1. Additionally, a weighting vector V'
that follows the same conditions, namely, }7_; v; = 1 and
v; € [0,1], is included, this mapping is expressed as follows:

OWAWA(a,, ay, ..., a,)

Z i0j 5)

]
+A-p)) v,

L

where B € [0,1] represents the degree of importance of the
WA and bj is the jth largest of the a;.

The OWAWA operator follows the OWA operator in
being  monotonic, commutative,  bounded  and
idempotent [25], and it can be formulated as a descending
OWAWA operator or an ascending OWAWA operator,
depending on the reordering process of the arguments. These
modifications would only affect the weighting vector W.

III. THE OWLAWA OPERATOR

Motivated by the advancements of Zhou and Chen [30] and
Merig6 [24, 25], this section presents the Ordered Weighted
Logarithmic Averaging Weighted Average (OWLAWA)
operator. The main advantage of this operator is the
unification of the weighted average and the OWA operator
using logarithmic averaging functions. Thus, we extend the
current tools for decision-making problem assessment under
uncertainty and probabilistic conditions. The OWLAWA
operator is defined as follows:

Definition 6. An OWLAWA operator of dimension n is a
mapping OWLAWA: Q" x On — Q that has an associated
weighting vector W such that the sum of its components is
equal to 1 and w; € [0,1], which is expressed as follows:

OWLAWA(ay, ay, ..., y) = €Xp Z ?(Inby), (6)
j=1

where b; is the jth largest of the a; and each argument a; has
an associated weight (WA) v; such that the sum of its elements
is equal to 1 and v; € [0, 1]. Here, D = Bw; + (1 — B)v;, B €
[0, 1] and vj is the weight (WA); v; is ordered according to b,
namely, according to the jth largest of the a:.

The OWLAWA operator can also be separated into two
sections: the part that strictly affects the OWLA operator and
the WA. This formulation results in a more straightforward
approach and is defined as follows:

Definition 7. An OWLAWA operator is a mapping
OWLAWA: Qr x Qr — Q that includes an associated
weighting vector W such that }.7_; w; = 1 and w; € [0,1] and
a vector v; such that }7_; v; =1 and v; € [0,1], which is
expressed as follows:

OWLAWA(a; ... ay)

n

=exp{f X ij(lnbj)

j=1 (7

+A-p)x (Z vianai)) :

i=1

where b; is the jth largest a; in descending order. Both Egs. (6)
and (7) yield the same result.

Let us briefly demonstrate the aggregation process using
the OWLAWA operator. In this example, we utilize both
definitions.

Example 1. Consider arguments a; = (51, 26,37,42) to
be introduced in the aggregation process, a weighting vector
W of (0.2,0.1,0.3,0.4) and a WA weighting vector V of
(0.5,0.3,0.1,0.1). Suppose the importance degree of the WA
is 60%, namely, that of the OWLA aggregation is 40%. Here,
calculate the associated weighting vectors for Eq. (6):

1 =04 x0.2+0.6 x05=0.38,
» =04 x01+06 x0.1=0.10,
3=04 x03+0.6 x0.1=0.18,
v, =04 x04+ 0.6 x 0.3 =0.34.

) DD D

Next, by Eq. (6), we obtain:

OWLAWA = exp{0.38 X (In51) + 0.1 x (In42)
+0.18 x (In37) + 0.34 x (In26)}
= 37.55

In this case, we opt to calculate the OWLAWA operator
with Eq. (7):

OWLAWA = exp{0.4
x {0.2 x (In51) + 0.1 x (In42)
+ 0.3 x (In37) + 0.4 x (In26)}
+0.6
x {0.5 xIn(51) + 0.3 X In(26)
+0.1 x (In37) + 0.1 x In(42)}}
= 37.55.

The OWLAWA operator shares the properties of
monotonicity, boundedness and commutativity with the
OWAWA [24] and OWLA [30, 41] operators. Let us briefly
explore these properties with the following theorems.

Theorem 1 (Monotonicity). Suppose f'is an OWLAWA
operator. If a; = g; forall i € {1,2, ...,n}, then:

f(all Az ey an) = f(.gll 92, ""gn)' (8)

The proof is straightforward and, thus, is omitted.
Theorem 2 (Boundedness). Let f be an OWLAWA
operator. If max; a; = a4, and min; a; = apy;p, then:

Amin < f(all Az ey an) < Amax» (9)

considering
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f(al' a2' "" an) = eXp Z ﬁ](lnb])’ (10)

Jj=1

When max; a@; = Gax » then bj < apq, for every j.
Therefore,

n
f(ay,az, ..,a,) = expz D;(Inb;) = Ay (11)
=1

Similarly, f(ay, ay, ..., a3) = Apin-

(12)

This proof is completed by assigning full importance to the
OWLA. As this might not always be the case, we explore the
following:

Theorem 4 (Semi boundary conditions). Here, we define f°
as an OWLAWA operator. Then,

Amin < f(al' Az, ey a3) < Amax»

exp {ﬂ X Qi + (1= ) x ) wy(Ina)
i=1

< f(as,az, ..., a,)

< exp {ﬁ X Aax (13)

+A=-px Y wi(lnai)},
i=1

where, in the case of f =1, the traditional boundary
conditions are satisfied. In addition, from the OWLAWA
perspective, we have:

expi B X apmin + (1 —B) X Z w;(Inb;)
=1

< f(as,az, ..., a,)

< exp B X Gmax (14

+(1-p)x zwj(lnbj) ,

j=1

The proof follows similarly to the previous case.

Theorem 5 (Commutativity). Suppose fis an OWLAWA
operator, where (cy,Cy,...,C,) corresponds to any
permutation of the arguments a;, namely, (aq,a,, ..., a,).
Since (cy, €3, ..., €) is a permutation of (aq, ay, ..., ay), bj =
d; for all j. Hence,

f(apaz' ""a‘n) = f(cl'CZ'

The proof is straightforward.

The OWLAWA operator can be regarded as a unification
of the weighted average and the logarithmic aggregation
operators. This model can also be constructed under similar
approaches, e.g., the weighted OWA operator [42], which
enables the aggregation of a set under two weighting vectors
and, hence, the weighting of the reliability of the data inputs,
namely, weighted average inputs, and their values according
to their relative positions or the OWA of other values.
Another formulation can be obtained if we consider the

(15)

,Cn)-
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Hybrid Weighted Averaging (HWA) operator [43], which
was designed to combine the advantages of the weighted
arithmetic averaging and OWA operators using a balancing
coefficient. With the premise of immediate probabilities for
decision-making on a set of alternatives, we can also
construct a different formulation of the OWLAWA operator,
in this case following [44—46]. Here, we could consider that
the perception of the possible scenarios can be influenced by
the associated payoffs and the outcome of a decision. Since
we can extend the immediate probabilities to a weighted
average, we could use the immediate weighted average for
unification of the OWLA operators. Finally, we also consider
a method that is based on importance weights [47], which is
an approach that involves the transformation of scores into an
effective value according to their respective importance,
similar to the weighted average inclusion of immediate
probabilities.

Interesting cases are constructed when analyzing the
components of the OWLAWA operator. These formulations
also provide a general landscape of the applications of these
operators.

Remark 1. For the importance coefficient 5, we observe
the following:

If B = 0, we obtain the weighted average.

If = 1, we construct the OWLA operator.

If B is increased, more importance is given to the OWLA
operator; correspondingly, if it is decreased, more importance
is given to the WA.

Remark 2. For the W-associated weighting vector, we also
obtain interesting results:

In the case that § = 1, w; = 1 and w; = 0, for every j, we
obtain max{a;}.

Ifp =1, w, =1andw; = 0, for every j # n, we obtain
min{a;}.

For f =0, w; =1 and w; = 0 and for all j, min{a;} is
obtained.

For § =0, w, =1 and w; = 0, for all j # n, max{a;} is
obtained.

The Olympic OWLAWA operator is obtained when w; =
1

(n-2)
For a general perspective, when w, = 1 and w; = 0 for
every j # k, we obtain the step-OWLAWA operator.
Remark 3. A weighted logarithmic averaging operator can

wy, =0andw; =

also be obtained when w; = %for all j. Here, we obtain this
formulation as follows:

WLA(aq,ay, ..., a,)

=%3Zn:ai

i=1
+(1- ,B)Z v;a;.

L

(16)

1 : .
In the case of v; = - for every i, an ordered logarithm

average is obtained:

OWLA(a,,ay, ..., a,)

Zﬁiwjbj+(1;3)iai. an
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Several other formulations can also be constructed
following [24, 30, 40, 48] for the associated weighting
vectors W and V, along with the representation of the
combinations when applying the importance coefficient 5.

IV. CHARACTERIZATION OF THE BEHAVIOR OF THE
OWLAWA OPERATOR

The behavior of the OWLAWA operator can be further
characterized using simulation techniques. In this exercise,
we compare the OWA, OWAWA, OWLA and OWLAWA
operators. The same initial conditions are used for each
operator, and the results are plotted to further characterize the
behavior of the proposed OWLAWA operator.

A total of 1000 iterations are run to represent the
characteristic behaviors of the operators. The initial
conditions of the test are presented in Table 1.

Table 1. Initial conditions for the characterization of the behavior of the

OWLAWA operator
Element Initial condition
Iterations n=1000
Arguments a; = (11,52,46,27,88)
Importance _
coefficient p=03
o
Weighting vector W n
= (0.124,0.126,0.249,0.252,0.249)
n
L r;
Weighting vector V 221 — (0.353,0.347,0.100,0.099,0.101)

As the iterations proceed for the simulation of the OWA
weights, Table 1 presents the average value of each weighting
vector.

Weight

04
Weight value

Weight

AR AR RSNk e
R RIS SN A

25

005 015 020 0,

Weight value

010 030 040

Fig. 1. Description of the weights v; and w;.

The complete dataset for weights w; and v; is presented in
the appendix of this paper. We observe that the weighting
vector W is pessimistic, as weights w;_g are heavier than
w, », while in weighting vector ¥, the first two weights are
heavier. Fig. 1 shows the distributions of the iterated weights.

Using Egs. (1), (3), (4), and (6), the traditional weighted
average for the arguments and the initial conditions that are
presented in Table 1, we compute the WA, OWA, OWLA,
OWAWA and OWLAWA operators for each iteration. The
results are shown in Fig. 2. The aim is to characterize the
behavior of each operator and, with the resulting differences,
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observe possible phenomena and scenarios where the
application of the OWLAWA operator can be useful. The
importance coefficient is f = 0.3; thus, we give higher
importance to the WA than to the OWLA aggregation.

Box Plot

:%%f

WA

Violin Plot

*¢¢$

OWAWA

Value

owA OWLA OWAWA  OWLAWA WA owA OWLA OWLAWA

Histogram

Strip Plot

Value

i8

OWLAWA

WA

owa OWLA OWAWA

Fig. 2. WA, OWA, OWLA, OWAWA and OWLAWA results for n = 1000
iterations.

The results show that for the total number of iterations, the
operators behave similarly; however, due to the characteristic
mathematical composition of each operator, the results vary.
The OWA and the OWLA operators behave similarly, as do
the OWAWA and the OWLAWA operators, namely, the
logarithmic operators undervalue the general score compared
to the nonlogarithmic operators. Additionally, when using
weighted averaging OWA operators, the distribution of the
values is wider. This is easily observed in Fig. 1, in which
histogram of the scores is presented. This shows that the
values of each of the nonweighted operators are within a
narrower range whereas those of each of the weighted
operators are distributed over a wider range.

This exercise is not exhaustive, as the initial conditions can
have a plethora of compositions. Nonetheless, the
characteristic behavior of the logarithmic operators is
interesting to analyze, as the undervaluing of the scores and,
for the weighted averaging OWLA operators, the wider
distribution of the results can be used for decision-making
applications in which these characteristics are required.

V.ILLUSTRATIVE EXAMPLE

The characteristic properties of the proposed OWLAWA
operator make it interesting for a wide-ranging set of
applications, e.g., in statistics, engineering, soft computing,
business, management and financial decision-making; for a
comprehensive discussion of areas in which aggregation
operators have proven to be effective [2].

In this paper, we focus on a multicriteria decision-making
application for the appraisal of sustainable companies. The
objective is to quantify the efforts that some businesses
employ for sustainable actions. This quantification enables
the ranking and indexing of companies that are considered
sustainable. The OWLAWA operator is suitable for this
application, as the characteristic undervaluing of the
aggregation score can be used for a rigorous approach.
Additionally, the integrated WA mechanism enables an
assessment of the given data, which were obtained
probabilistically. For this illustrative example, we focus on
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the assessment of experts in the field of sustainability, whose
valuations of each business are aggregated to yield a grade or
rating of the assessed company. This approach is especially
relevant when the available information is characterized by
uncertainty.

The application of the OWLAWA operator requires an
initial set of arguments and valuations for the aggregation to
enable effective decision-making. The application of a
multicriteria decision-making approach using the proposed
operator is described by the following steps:

Step 1. First, a set of C = {c;, ¢y, ..., ¢, } finite alternatives
must be defined; in our case, these are companies. For these,
a set S ={s;,sy,..,5,} of limited states or attributes of
sustainability are used to construct a payoff matrix (an;)mxn-
In this case, we define a limited set of experts E =
{el, e, ...,ep} and a weighting vector X = {xl,xz, ...,xp}
such that the sum of the weights is equal to 1 and x; € [0,1].
The weighting vector X corresponds to the experts’ influence
in the aggregation process. The experts’ opinions should be
in the range of y, € [1,100] for r = 1,2,...p. For each

expert, a valuation matrix (a}(llf))mxn is required.

A. Expert Weight Determination via the Entropy Method

To enhance the robustness and objectivity of the proposed
decision-making model, we introduce an entropy-based
approach for determining the weights assigned to expert
opinions [49]. This method complements the initial
subjective weight assignment (based on expertise and field
relevance) and is well-suited to contexts involving
uncertainty and heterogeneous judgments conditions under
which OWLAWA is particularly effective.

The Entropy Method [50] has been widely adopted in
multi-attribute decision-making (MADM) models to evaluate
the degree of information provided by each source [51].
Experts whose assessments vary little across alternatives are
considered to convey less useful information and are thus
assigned lower weights. Conversely, experts whose
evaluations show higher variability contribute more to the
decision-making process and are given higher importance.

Let x;; be the score assigned by expert ¢; to alternative a;,
and the normalized value is:

oo M s
DT (%)
Then, the entropy E; for each expert is calculated as:
m
E] =—k Zrij . ln(rl-j), (19)
i=1
where
k= ! 20
" In(m)’ (20)
The divergence degree is:
di=1-E, (21)
Finally, the normalized weight w; of expert g; is:
5 (22)
w; = .
! ;'1:1 d
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This approach yields a reproducible and mathematically
grounded vector of expert weights that can be integrated into
the OWLAWA operator. In this study, we retain the initially
defined weights (0.5, 0.3, 0.2) based on domain knowledge,
but the entropy-based weighting is presented here as a
generalizable alternative for future applications of the model.

Define

Alternatives and —> ConstmctﬁPayoff
Criteria Matrix
v v
Collect Expert Apply OWLAWA

Evaluations Aggregation

v ¥
Determine Expert
Weights Compute Score
(Subjective / and Rank
Entropy Method)

Fig. 3. Flowchart of the OWLAWA-based multi-attribute decision-making
model.

Fig. 3 presents a flowchart representation of the proposed
multi-attribute decision-making model using the OWLAWA
operator.

The process begins by defining a set of alternatives and
sustainability attributes, followed by the collection of
evaluations from multiple experts. The expert weights are
then assigned either subjectively (based on experience and
relevance) or objectively through the Entropy Method. These
inputs form a collective payoff matrix, which is then
aggregated using the OWLAWA operator to compute a
sustainability score for each alternative. The final step
involves comparing the results to a predefined threshold or
performing a ranking to identify sustainable companies.

Step 2. Define the weighting vector V. = W + (1 — B)V,
which expresses the characteristic approach of the
OWLAWA operator. The importance coefficient f
corresponds to the uncertainty of the retrieved data, and the
selection depends on the analyzed phenomena. Additionally,
W = (wq,w,, ..., ws) satisfies Z}l:l w; = 1 and w; € [0,1],

n —
jzlvi =1 and Vi €

and V = (vq,v,,..,03) satisfies
[0,1].

Step 3. Aggregate the valuations of the set of experts £
with the weighting vector X and establish a collective payoff
(ahi)mxna where ap; = ZZ:l xkallii-

Step 4. Calculate Eq. (6) to obtain the OWLAWA operator.
Many formulations can be constructed depending on the
families and particular cases of the operator.

Step 5. Establish a parameter Q that defines the minimum
score for being considered a sustainable company. In this case,
Q € [0,100] is defined by decision-makers, and it should be
designed to assess the conditions of the environment, e.g., the
industry, number of workers, and regional conditions. Every
company C such that OWLAWA, = Q is indexed in the
sustainable company category.

Step 6. Decision-making approach. We compare the
results with those of other formulations, operators, and
families of the OWLAWA operator to categorize and rank the
evaluated companies.
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B.  Numerical Example

Let us illustrate the proposed decision-making approach
with a numerical example. The exercise focuses on the
application of the OWLAWA operator to a series of
companies for which sustainable actions must be quantified
for the creation of a sustainability index of companies. This
index enables the categorization, hierarchical ordering and
ranking of the evaluated companies; moreover, the results of
the evaluation can be used to develop public and economic
policies and incentives. The following steps are implemented:

Step 1. For the large industrial manufacturing sector of a
city, let us evaluate a set of 20 companies; thus, C =
{c1, ¢z, ..., C20}. These companies will be ranked in terms of
sustainable practices in the following areas:

S1: Economic performance

S2: Market share

S3: Unfair competition

S4: Supplies

S5: Energy consumption management

S6: Water consumption

S7: Environmental impact management

S8: Gas emissions

S9: Labor relations

S10: Community impact

The evaluation is carried out by three experts E =
{e1, e,, e5}, whose opinions will be expressed in the range of
1 to 100, where 1 is the lowest possible score and 100 is the
maximum possible score. The expert opinion weighting
vector X is set to (0.5, 0.3, 0.2), which corresponds to their
experience and fields of expertise. Table 2 presents the
collective aggregated opinions of the three experts.

Step 2. The decision-makers require an OWLA weighting
vector W = (0.0954, 0.1155, 0.1407, 0.0087, 0.0634, 0.1085,
0.1218,0.1188,0.1127,0.1143), a WA weighting vector V' =
(0.0416, 0.1465, 0.1061, 0.1291, 0.0186, 0.0888, 0.1428,
0.0285, 0.1484, 0.1495) and a coefficient of importance § =
30%. Thus, the WA is assigned a weight of 70% and the
OWLA a weight of 30%.

Step 3. With this information, we calculate the expert
payoff matrix. Table 2 shows the results of the valuations; the
individual valuations of the experts are presented in the
appendix of this paper.

To evaluate the applicability of the proposed operator, we
conducted a comparative analysis involving four classical
aggregation methods—WA, OWA, OWLA, and OWAWA—
alongside OWLAWA. The outcomes are summarized in
Table 3 and visually represented in Figs. 4 and 5, highlighting
their distinctive behaviors.

Step 4. The collective payoff matrix and the initial
information enable the construction of diverse aggregations.
For this case, we calculate the WA, the OWA, OWLA,
OWAWA and OWLAWA operators. Table 3 presents the
aggregated results for each company.

Step 5. Due to the characteristics of the industry, regional
practices, and experts’ opinions, a threshold of Q = 68 is set.

Therefore, considering the OWLAWA operator, the
companies that are indexed as sustainable are as follows:
Sustainable companies = {ci, ¢7, ¢, €13, Ci6, C20}.

Table 2. Collective payoft matrix

Company S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Cl 91.6 91.6 869 889 853 783 879 854 79.1 879
C2 563 76.8 56 71.7 563 583 66 679 61.6 67.1
C3 60.1 495 72 56.8 62.7 703 458 76 73.7 705
C4 694 72 662 559 708 554 689 658 61.7 60.8
Cs5 39.1 519 23 444 414 314 375 589 257 359
Cé 612 712 70.1 795 63 541 74 596 673 49.7
C7 86.2 893 90.8 952 893 77.7 857 838 773 912
C8 763 743 762 554 645 658 629 669 612 563
C9 78 788 90 91 815 903 76.6 883 853 89.7
Cl10 722 771 66.1 703 56.6 529 628 55 57 685
Cl1 76.8 54.6 67.1 69.4 709 435 622 503 57.1 545
Cl2 70.7 543 67.7 69.2 603 67.8 55 68.1 664 653
C13 655 672 719 656 66.1 613 629 659 69.1 64.8
Cl4 775 682 61.6 573 79.5 528 743 60.1 58.1 67.6
C15 326 529 302 449 275 39.7 555 275 30.6 41.1
Clé6 743 79.5 932 786 949 723 91.8 83 856 826
C17 434 49.1 423 258 473 304 274 475 449 448
Cl18 49.7 702 629 67.8 58 63.7 49.8 69.7 60.1 59.1
C19 67.3 80.5 63.1 659 742 888 535 652 67.6 77.1
C20 894 84.1 77.1 91 864 869 788 765 829 87.7

Table 3. Comparative aggregation results using WA, OWA, OWLA,
OWAWA, and OWLAWA

Company WA OWA OWLA OWAWA OWLAWA
Cl 81.53 81.16 81.02 81.42 81.27
C2 65.77 65.32 64.97 65.64 65.28
C3 63.46 64.28 63.67 63.71 63.04
C4 65.70 64.48 64.25 65.34 65.13
Cs 31.78 32.92 31.73 32.12 30.83
C6 68.23 68.52 68.04 68.32 67.81
C7 83.36 84.41 84.29 83.68 83.59
C8 69.24 66.34 65.32 68.37 67.51
9 84.67 84.97 84.74 84.76 84.56
C10 63.65 63.43 63.27 63.58 63.41
Cl1 69.09 66.64 66.02 68.36 67.75
C12 67.32 64.54 64.14 66.49 66.11
C13 70.87 69.15 68.95 70.36 70.19
Cl4 65.04 62.93 62.65 64.41 64.11
Cl15 36.04 33.32 30.79 3522 32.58
Cleé 85.37 86.06 85.92 85.58 85.43
C17 40.48 38.80 37.17 39.97 38.30
C18 64.48 60.74 59.96 63.35 62.58
C19 62.99 64.47 63.64 63.43 62.59
C20 85.90 83.74 83.44 85.25 84.97

Fig. 4 shows a graphical representation of the valuation of
each company. The general undervaluing of the aggregation
score by the OWLAWA operator has an impact on the
sustainable company index, specifically for cg, cg,and c;;.
Fig. 5 more closely examines cg, cg,and ¢;; . Here, we
observe that the undervaluing of the aggregation score by the
OWLAWA operator results in the exclusion of 3 companies
that are included in the index when evaluated by the
OWAWA operator. This undervaluing acts as a rigorous
approach for the decision-making process, and in some cases,
this characteristic can be of interest in the selection and
application of this operator.
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Fig. 5. In depth observation of the evaluation of ¢, cg, and c¢y.

These findings suggest that the OWLAWA operator may
be particularly suitable for conservative applications where
the underestimation of performance acts as a safeguard—
such as sustainability compliance, risk assessment, or
regulatory filtering. Moreover, the decision-making approach
differs among the selected operators, namely, the result of
each operator is different. The proposed application is
interesting when multicriteria decision-making is required for
the assessment of elements that have information under risk
and uncertainty and when a rigorous approach is desired and
a threshold is set. Other approaches can also be applied, for
example, a ranking of the companies based on the selected
operators or a similar strategy. The selected decision-making
approach follows the conditions of the studied phenomena.

VI CONCLUSION

The objective of this paper was the proposal of the ordered
weighted logarithmic averaging weighted average
(OWLAWA) operator. The characteristic design of this
operator enables the treatment of information under
uncertainty and risk in one formulation. The OWLAWA
operator is based on the optimal deviation model, which was
developed by Zhou and Chen [30], and shares its main
properties. We explored some of the main characteristics and
families of the OWLAWA operator and described various
particular cases and compositions when analyzing the
weighting vector .
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We also further explored the characteristic design of the
OWLAWA operator using simulation techniques. The
exercise included a total of 1000 simulations of aggregations
with similar initial conditions for the WA, OWA, OWLA and
OWLAWA operators. The results show that the logarithmic
averaging operators undervalue the aggregation score in
general, and the weighted average values are spread over a
wide range for the operators that include this feature. These
observed characteristics will be interesting to further explore
in future research.

We also presented an illustrative example of a multicriteria
decision-making problem using the features of the
OWLAWA operator. In the example, companies’ efforts for
sustainability were evaluated. Three experts assigned scores
to the companies, and if the aggregation score of a company
surpassed an established threshold, the company was indexed
as a sustainable company. The observed features of the
OWLAWA operator are desirable because the logarithmic
operators generally undervalue the aggregation score, which
can be used as a rigorous criterion. The results show that
when using the OWLAWA operator, 6 companies were
indexed as sustainable. In contrast, when the OWAWA
operator was used for this assessment, a total of 9 companies
were indexed, namely, the use of the OWLAWA operator
resulted in the aggregation of fewer indexed companies.

The main objective of the OWLAWA operator is the
combination of risk and uncertain information into a single
formulation using an importance coefficient and logarithmic
averaging operators. Since the proposal of the GOWLA
operators, many developments and applications have been
reported. Therefore, the proposal of an extended toolset for
decision-making processes is of interest, as the real-world
challenges continue to increase in complexity.

From a theoretical standpoint, OWLAWA extends
traditional aggregation models by providing a framework that
simultaneously handles both probabilistic and uncertain
information. This dual-layered approach contributes to
decision science by allowing for more flexible information
fusion, adapting to different decision-maker risk attitudes.
Furthermore, logarithmic transformation introduces a
controlled sub valuation effect, which is particularly useful
for conservative decision environments. Compared to
existing OWA-based operators, OWLAWA ensures that
aggregation results account for both structured probabilities
and uncertain preferences in a mathematically coherent way.

The OWLAWA operator has strong potential for
application in diverse decision-making domains. Beyond
sustainability assessment, where it was demonstrated in this
study, it can be extended to financial risk analysis, supply
chain optimization, healthcare prioritization, and policy-
making under uncertainty. One of its key advantages is the
ability to incorporate expert judgments dynamically through
adaptive weighting methods and entropy-based approaches,
thereby enhancing decision robustness in complex scenarios.
Additionally, OWLAWA provides an adaptable framework
for multi-criteria decision analysis, allowing fine-tuned
control over aggregation processes depending on the nature
of the available data.

This study provides a solid foundation for the application
of the OWLAWA operator; however, several avenues remain
open for further exploration. The simulation-based
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characterization employed here offers controlled insights, yet
future studies could enrich these findings by incorporating
real-world datasets with more diverse uncertainty profiles.
The sustainability case study illustrates the operator’s utility
in practice, but additional applications in domains such as
finance, healthcare, or policy analysis would help validate its
broader adaptability. The current model assumes consistent
expert judgments; extending the framework to address
conflicting or fuzzy expert input could enhance its robustness.
Lastly, although our comparative analysis involved five well-
established operators under the same conditions, exploring
OWLAWA'’s performance across other decision-making
scenarios could further demonstrate its versatility and
strength.
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