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Abstract—Machine learning in financial Time Series 
Forecasting (TSF) has a clear application in investment, where 
predicting stock price movements can inform investment 
strategies. The Transformer model has emerged as a powerful 
tool for this purpose, yet significant research gaps remain. 
Existing studies often focus on a set of stocks without modeling 
stock behavior within specific sectors. Notably, there is a lack of 
research on the Consumer Cyclicals (CC) industry, which 
includes sectors such as automotive, housing, entertainment, 
and retail. These industries are highly sensitive to economic 
conditions, making them crucial for understanding broader 
economic impacts on stock behavior. Furthermore, we observe 
that many existing works neglect broader economic contexts, 
which is particularly important for CC analysis due to its 
sensitivity to economic trends. Additionally, previous studies on 
financial Transformer models typically use model tokens as 
feature vectors of multiple variates at a single timestep. This 
approach may not adequately capture the important 
relationships between dataset variates for long-term economic 
trends. To this end, we present the first study on financial TSF 
for the CC sector along with economic data. To support the 
research, we propose the first public benchmark dataset for the 
CC sector, consisting of traditional stock price time series, 
technical indicators, and temporal data, enriched with economic 
indicators. Next, we introduce an alternative tokenization 
approach to enhance the model’s ability to capture long-term 
trends by preserving information about nonlinear dependencies 
between dataset variates. We hypothesize that this approach 
helps capture long-term signals more effectively. Through a 
comprehensive data ablation study and benchmark testing, we 
demonstrate that incorporating economic indicators improves 
the accuracy of longer-term predictions for the CC sector, and 
the new tokenization method enhances the performance of 
Transformer models. The dataset and code are made publicly 
available at: https://github.com/KasperKrawczyk/econtrans 
_dataset 
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I. INTRODUCTION 

Accurately predicting stock market behavior offers clear 
benefits for maximizing returns [1]. For nearly a century, the 
finance industry has used statistical methods for this 
purpose [2]. Financial forecasting, especially Time Series 
Forecasting (TSF), has grown to manage risk, maximize 
profits, and minimize losses [3]. Consequently, stock market 
movement forecasting is an important research focus due to 
its potential to boost profitability for both institutional and 
private traders [4–7]. 

The research on financial forecasting, using both 
traditional statistical techniques and machine learning, is 
extensive and rapidly expanding. The earliest statistical 

model for meteorological forecasting [2, 8] evolved into the 
Autoregressive Moving Average (ARMA) and Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH) 
models [9]. Advances in computer hardware later enabled 
machine learning to dominate the field [10], with techniques 
like Random Forest [11], Long Short-Term Memory 
(LSTM) [12, 13], and Bi-directional Long Short-Term 
Memory (BiLSTM) networks [14]. Recently, the 
Transformer architecture [15] has gained attention, with 
efforts to enhance its forecasting abilities using specialized 
layers [16], recurrent network layers [17], and graph 
networks [18]. 

Despite recent progress, we observe research gaps and 
limitations in the literature. First, most research focuses on 
generalizing predictions to exchange-based indices 
(aggregating entire stock markets) [16, 19, 20] and general 
stock classification problems [21–23]. The issue of time 
series datasets limited to price values of one or a few 
stocks [23–26], or exchange-based indices [16, 20, 21], is 
corroborated by several surveys [27–29]. Further, many study 
focus on the use of price signals datasets are often insufficient 
to exhaustively model stocks in some sectors and  
industries [28, 30, 31]. 

Notably, to our knowledge, there has not been an attempt 
to model the dynamics of the luxury and retail sector, known 
as Consumer Cyclicals (CC) [1, 28, 32]. Forecasting the CC 
industry is crucial for several reasons. 1) CC stocks often 
offer a stable yet profitable investment option, providing a 
degree of safety while yielding more than treasury  
bonds [1, 33]. 2) The performance of the CC industry can 
serve as a barometer for broader economic health, since 
consumer spending on luxury and retail goods often reflects 
economic confidence. 3) Although forecasting broader 
macroeconomic trends is challenging [28], predicting the 
future movements of CC industry stocks could improve 
policymaking for government institutions [34, 35]. 
Understanding future trends in this sector can help craft 
policies that support economic stability and growth. 4) 
Further insights from the CC industry can impact various 
downstream applications, including marketing strategies, 
supply chain management, and financial planning for 
businesses within the sector. 

However, we further observe that datasets used in the 
research often exclude the wider economic context and use 
only historical stock price data, index data [14, 25], social 
media data [36], or price data transformed using statistical 
techniques [11]. The omission of economic indicators in the 
existing datasets makes it arguably difficult to gain insights 
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into CC stocks’ behaviour, which tends to be influenced by 
the trends of the wider economy the CC companies are 
situated in [31]. The lack of forecasting research for CC 
industry, and the limited use of economic indicators prompt 
us the ask the question, Could we improve CC stocks 
performance forecasting with Transformers by adding 
economic and temporal context? 

The second limitation concerns how existing Transformers 
conceptualize time series tokens for financial forecasting. 
Typically, a time series token is a vector of continuous 
variable observations at one timestep [16–18, 20, 21, 23–26, 
37–41]. These vectors are used in forecasting models to 
predict future timesteps by exploring the interaction between 
other timesteps. However, this approach may overlook the 
interplay of temporal patterns in feature variates (e.g., 
financial price signals, technical indicators, economic 
indicators). Longer-term temporal patterns are often critical 
for financial forecasting, especially in the CC industry against 
economic data. This leads us to the second research question 
Could we improve Transformer’s performance in financial 
time series forecasting tasks by directly tokenising feature 
variates (e.g., economic indicators) instead of existing multi-
variate timesteps? By using feature variates as tokens, we can 
model correlation between temporal feature interactions in a 
holistic way rather than interactions between local feature 
timesteps. This would reveal trends and offer better predictive 
capabilities that were previously overlooked. 

To summarize our contributions: 
To our knowledge, this is the first study to model the CC 

industry and consider using financial and economic data to 
enhance forecasting. 

(1) We create a novel economic-financial time series 
dataset comprises of 120 CC industry companies, 
including cruise operators, golf equipment 
manufacturers and kitchenware resellers. It includes 
economic and financial indicators, to provide insights 
from both economic context and market price signals. 
The dataset will be publicly accessible as a benchmark 
for community benefit [1, 31–32, 42–44]. 

(2) We propose a simple but new feature variate 
tokenization for the Transformer architecture to better 
leverage the temporal pattern in data and model 
interplay between feature variates (e.g., financial, 
technical, economic indicators). 

(3) We compare the model’s performance against 
baseline models and conduct an ablation study on the 
novel dataset through a series of experiments. The 
results show that the use of economic indicators and 
the new feature variate tokenization shows promising 
results. 

In the following, Section II surveys relevant TSF literature. 
Section III discusses the concept of the Consumer Cyclicals 
industry. Section IV outlines the creation of the experimental 
dataset. Section V describes our tokenization adaptation to 
the Transformer model. Section VI gives an overview of our 
experimental setup and evaluation measures. Section VII 
presents and discusses our findings. Section VIII concludes 
this paper. 

II. RELATED WORK 

A. Time Series Forecasting 

Time Series Forecasting (TSF) methods originated in 1927 
with the introduction of an auto-regressive model [2]. The 
ARMA method, introduced in 1931, and ARMA/GARCH, 
introduced in 1982, have been significant contributions to the 
field [8, 9]. However, these models have encountered 
difficulties with nonlinear time series [45]. To address this, 
classic ML techniques such as SVM and Adaptive Boosting 
have been employed [10]. These models can handle 
multivariate datasets, but they face challenges with out-of-
sample data prediction. Deep Learning (DL) models, due to 
their ability to approximate nonlinear dependencies, have 
shown promise in this area [46]. Recent notable works based 
on the transformer architecture include the LogSparse 
Transformer, which breaks the Self-Attention quadratic 
memory bottleneck [47], and the Sepformer, which utilizes 
discrete wavelet transforms for feature extraction [48]. 

B. Financial Time Series Forecasting Methods 

Traditional ML and LSTM-based Techniques: The use of 
machine learning techniques in TSF has a long history. 

For instance, Manojlović et al. [11] introduced the use of 
the Random Forest algorithm for classifying the movement 
of the Croatian Stock Exchange Index (CROBEX) index and 
four companies on the Zagreb Stock Exchange in 2015. This 
was based on 12 technical indicators derived from their Open-
High-Low-Close (OHLC) and volume values. Since 2018, 
Long Short-Term Memory (LSTM) networks have been 
widely used in TSF tasks. Wu et al. [49] introduced the 
LSTM model for stock trend classification, trained on text 
corpus and price signals. Liang et al. [36] proposed an LSTM 
model trained on a mixed corpus of news items and technical 
indicators derived from 262 companies’ OHLC values to 
classify multi-horizon market trends. Dai et al. [14] proposed 
a Bi-directional LSTM model with an attention mechanism 
for predicting future values of the Shanghai Securities 
Composite Index. Xu et al. [12] introduced another LSTM 
model with a denoising attention mechanism, trained on the 
StockNet dataset for multi-horizon classification.  
Shen et al. [22] proposed a Gated Recurrent Unit network, 
trained on a dataset of three general indices’ time series, for 
multi-step future trend classification. Tsang et al. [23] 
proposed a new LSTM model and a dataset including two 
economic variates—the USD exchange rate and the interbank 
offered interest rate. 

Transformer-Based Techniques: Recently, several 
Transformer architectures for financial TSF tasks have been 
proposed. Malibari et al. [25] was the first to explore this 
architecture in the financial TSF context, adapting the Vision 
Transformer by treating training sequences as flattened 
patches. Both Wang et al. [20] and Juairiah et al. [24] 
investigated the performance of the original Transformer 
architecture, training their models on four exchange-based 
indices and Microsoft Corporation’s stock prices, 
respectively. Ramos-Perez et al. [16] presented the Multi-
Transformer architecture, which uses bagging to pick random 
subsets from the training set and incorporates GARCH-based 
methods in the Transformer modules for next day volatility 
forecasting of the S&P 500. Zeng et al. [21] enhanced the 
Transformer with a Convolutional Neural Network (CNN) 
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module for minute-by-minute stock classification.  
Wang et al. [18] performs one-day-ahead best stock selection 
and incorporates a graph module and an LSTM module in 
addition to a Transformer module. 

Despite these advancements, the original Transformer, 
designed for Natural Language Processing (NLP) purposes, 
may not be well-suited to model the time dependencies and 
nonlinear complex dependencies of time series [47]. As  
Li et al. [47] demonstrated, the self-attention computation 
often becomes context-agnostic and fails to differentiate 
between anomalies and seasonality. Chen et al. [28] observed 
that multiple-feature Transformer models lose some of the 
complex dependencies between features. Recent efforts have 
been made to adapt this for TSF. Notably, Cai et al. [50] 
designed the Auto-Correlation mechanism to conduct 
seasonality discovery as part of the learning process. 
Yahoo_fin [51] attempted to model periodic seasonality for 
traffic prediction by extracting features from timestamps.  
Fan et al. [47] proposed a Convolutional SelfAttention 
module to convert patches of inputs into query-key pairs. 
However, the loss of information about nonlinear 
dependencies between features is still a recognized issue with 
Transformers [27, 28]. 

We hypothesize that using feature timesteps as tokens in 
traditional transformers may be one of the issues. To address 
this, we propose using feature variate as a token. This allows 
the transformer to explicitly learn the nonlinear dependency 
of temporal patterns in a holistic way. This approach could 
improve forecasting, especially for CC, which is sensitive to 
economic and other indicators. 

C. Financial Time Series Forecasting Dataset 

Within the literature, the use of time series data beyond the 
Open-High-Low-Close (OHLC), volume and indices data has 
seen limited exploration. These include text corpus [49], 
news items [36], USD exchange rate and the interbank 
offered interest rate [23]. For Transformer-based models, we 
have observed that only two studies have used non-OHLC 
and volume values time series data. Li et al. [41] employed 
the StockNet dataset for a one-day-ahead price prediction 
task, integrating a Transformer with an LSTM network to 
model temporal dependencies. Lim et al. [17] extracted data 
from 31 companies from the OMI dataset and used a GRN 
network to reduce data noise, leveraging the recurrence 
relation. 

Moreover, the incorporation of temporal data into input 
sequences has been somewhat overlooked in financial TSF. 
To our understanding, only Muhammad et al. have attempted 
to embed time features in their input sequences while using a 
Transformer model for stock price prediction tasks [26]. They 
used a dataset of 8 companies’ stocks, confined to the finance 
and insurance industries, to train the model for a multi-
horizon prediction regression task. The model was fed the 
standard OHLC and volume data, supplemented with the 
encoded time, representing an intriguing contribution in 
terms of addressing the challenge of time embedding. 

To our knowledge, limited studies have incorporated 
information about the broader economic context or 
specialized their datasets to focus on specific sectors. This 
paper represents the first attempt to consider additional 
economic context for the CC sector forecasting and to 

propose and curate a benchmark dataset for this purpose. Our 
novel tokenization approach offers a new avenue to explicitly 
incorporate temporal dependencies into the transformer 
model. 

III. THE CONSUMER CYCLICALS INDUSTRY 

In finance, an industry refers to a group of companies 
engaged in similar business activities [42]. For example, the 
technology sector, which involves manufacturing electronics, 
creating software, and providing information technology 
services, includes companies like Meta and Alphabet Inc. 
Another example is the cyclical sector [1], also known as the 
Consumer Cyclicals (CC) sector [32], which encompasses 
companies that depend on personal discretionary spending. 
This spending involves money used by individuals on non-
essential goods and services, such as household durables (e.g., 
appliances and furniture) [31], leisure products, and luxury 
goods [43, 44]. The CC industry is particularly sensitive to 
broader economic conditions because they directly impact the 
level of discretionary spending [31]. This sensitivity is 
referred to as cyclicality, describing the extent to which an 
industry’s output fluctuates in response to economic changes. 
As a result, the CC industry is expected to exhibit cyclical 
behavior due to regular economic shifts [1, 31]. 

IV. DATASET 

A. Dataset Overview 

In this project, we propose a dataset that consists of 
assembled time series data for 120 CC companies, such as 
Carnival Corp (cruise operator), Topgolf Callaway Brands 
Corp (golf equipment manufacturer) and Williams Sonoma, 
Inc. (kitchenware and home furnishings reseller). The 
discussion that follows focuses on a specific company, 
denoted as c, for which we aim to assemble the dataset S. Let 
d represent the target length of the dataset in timesteps, which 
are days in our study, and let [𝜏0, 𝜏𝑑] denote the timeframe 
of the target time series. The target dataset is composed of 
five facets, represented as 𝑓 ∈  𝑆 =  {𝐹, 𝐸, 𝑇, 𝐶, 𝑉} : 
Financial Indicators 𝐹 , Economic Indicators 𝐸 , Temporal 
features 𝑇 , Stock close price values 𝐶 , and Stock volume 
values 𝑉 (see summary in Table 1). 

 
Table 1. Summary of dataset facets 

Symbol Dataset facet description 

F 26 variates (financial indicators) 

E 16 variates (economic indicators) 

T 6 variates (temporal features) 

C 1 variate (closing price) 

V 1 variate (volume values) 

 

1) Price and volume signal (𝐶, 𝑉) 

For each of the stock, we store the stock closing price C 
and stock volume V. C and V contain a single variate each. 

2) Financial indicators (𝐹ଵ, . . . , 𝐹ଶ଺) 

We source our stock data from Yahoo Finance (YF) [32], 
using the yahoo fin library [52]. YF divides the CC industry 
into 21 subindustries, which is relevant for matching a 
company’s data with relevant economic indicators. At the 
time of sourcing, there are 360 publicly traded companies in 
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the sector whose data is available via YF [32]. Our approach 
is to select the K top-performing companies representing each 
subindustry within the CC industry or all the companies from 
the subindustry if there are fewer than K. This is to ensure as 
fair a representation for each industry as possible. Thus, each 
company’s time series contains the OHLC and volume values 
for the given trading day, the adjusted close value for that day 
(which we discard, due to its high correlation with the close 
value), and the date timestamp of that trading day. Given an 
OHLC and volume values time series, we obtain a set of 
standard financial indicators temporal features 𝐹ଵ, . . . , 𝐹ଶ଺ . 
Examples include Accumulation/Distribution Line, Average 
True Range, Moving Average Convergence Divergence 
(MACD) etc. The full set of features and their default 
parameters are summarized in Table A1. 

3) Economic indicators (𝐸ଵ, . . . , 𝐸ଵ଺) 

The Consumer Cyclicals (CC) sector is highly sensitive to 
economic conditions. Given that our stock data focuses on 
U.S.-traded companies, we are particularly interested in the 
country’s economic context. Inspired by relevant  
literature [1, 32], we identified key indicators [34, 44, 53, 54] 
to enrich our dataset: Consumer Confidence Index (CCI), 
Corporate Debt as a percentage of GDP, Gross Domestic 
Product (GDP), Personal Income and Outlays, Personal 
Saving Rate, Retail Sales, and Unemployment Rate. 

The CCI reflects consumer sentiment and spending 
intentions, significantly impacting demand in the CC  
sector [1, 34]. Corporate Debt as a percentage of Gross 
Domestic Product (GDP) provides insights into corporate 
financial health and investment strategies [32]. GDP serves 
as a broad measure of economic health, correlating with 
consumer spending and business investment [1, 32]. Personal 
Income and Outlays indicate consumer spending capacity, 
while the Personal Saving Rate highlights financial resilience. 
Retail Sales data reveals consumer spending trends, and the 
Unemployment Rate reflects labor market conditions 
affecting disposable income and confidence [1, 52, 53]. By 
incorporating these indicators, we aim to better analyze the 
relationship between economic conditions and stock 
performance in the CC sector. 

The works indicated above enabled us to identify the 
institutions that collect and produce the relevant time series. 
Multiple US institutions maintain Application Programming 
Interface (API) endpoints, and we were able to access all but 
one indicator directly from the US sources; we accessed the 
Consumer Confidence Index time series through the 
(Organisation for Economic Co-operation and Development) 
OECD API. Table A2 summarizes these data sources. Each 
indicator for the timespan [𝜏0, 𝜏𝑑]  is fetched from the 
relevant API for further processing to finally become a variate 
in E. These economic indicators, denoted 𝐸ଵ, . . . , 𝐸ଵ଺ , are 
summarized in Table A3. 

4) Temporal features (𝑇ଵ, . . . , 𝑇଺) 

We also hypothesize that the times of year may have 
contributions towards the CC sectors. For example, holiday 
time during summer, Christmas time during winter. We also 
collect the relative Day, Month, Quarter of the year 𝑇ଵ, . . . , 𝑇଺ 
as temporal features (see Table A4). 

B. Data Processing & Feature Selection 

 
Fig. 1. Data pipeline. 

 
Our processing pipeline (Fig. 1) sources, merges, and 

upsamples the relevant data facets to a format with regular 
intervals. Precisely, we define each feature vector 𝑥௜ of the 
format: 

⟨𝐹ଵ,௜ , . . . , 𝐹ଶ଺,௜, 𝐸ଵ,௜ , . . . , 𝐸ଵ଺,௜ , 𝑇ଵ,௜, . . . , 𝑇଺,௜ , 𝐶௜, 𝑉௜⟩ 

where 𝑖 is a timestep such that 𝑖 ∈  [𝜏0, 𝜏𝑑]. 

C. Creating Training and Testing Pairs  

Define 𝑤  as the number of timesteps in the lookback 
window that constitute the training sequence, and 𝑝 as the 
prediction length in timesteps. Training our predictive model 
involves creating pairs of input sequences (sequences of 
feature vectors) and corresponding ground truth sequences. 
Each pair, termed a “training tuple”, denoted as u, comprises 
an input sequence (spanning 𝑤 days starting on day 𝑖) and the 
corresponding ground truth sequence (spanning from day 𝑖 +
𝑤 + 1  to 𝑖 +  𝑤 + 𝑝 + 1). The ground truth sequence is a 
sequence because we are typically predicting multiple feature 
variates, not just a single one, and we need to compare our 
model’s predictions against this sequence of actual outcomes 
to assess its performance accurately. With the sliding window 
approach, each new input and its corresponding predicted 
sequence overlap with the previous one by shifting forward 
one timestep. This method ensures that every sequence shares 
a portion of its data with the previous one, maintaining 
continuity across the entire time span of interest (Fig. 2). 

 

 
Fig. 2. The overlapping windows technique. 

 

1) Data processing steps 

Data processing and dataset assembly for a company of 
interest defined as c form a pipeline described below. It 
involves four major steps, which we outline below: 

(1) OHLC and volume values of c are sourced from 
Yahoo Finance [52] as a time series of 5 variates for 
the interval (𝜏0, 𝜏𝑑). 

(2) Technical indicators are calculated for each timestep 
in the sourced OHLC and volume time series using the 
TALib library [55]. After this, Open-High-Low (OHL) 
values are discarded due to a high correlation with the 
closing price. The technical indicators form facet 𝐹, 
and the retained close price values and volume values 
form facets 𝐶 and 𝑉, respectively. 

(3) Economic indicators to form variates 𝑣 ∈  𝐸  are 
sourced from APIs listed in Table A2. 

(4) 𝑣 ∈  𝐸 are upsampled to a daily frequency using the 
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2nd order polynomial interpolation to cover the 
interval [𝜏0, 𝜏𝑑]. 

(5) {𝐹, 𝐶, 𝑉} and {𝐸} are merged to form {𝐹, 𝐸, 𝐶, 𝑉}. 
(6) Temporal features⟨𝑇ଵ,௜ , . . . , 𝑇଺,௜⟩ are derived from each 

timestep’s timestamp and merged with {𝐹, 𝐸, 𝐶, 𝑉} to 
form {𝐹, 𝐸, 𝑇, 𝐶, 𝑉}. 

(7) Post-merging, each item in {𝐹, 𝐸, 𝑇, 𝐶, 𝑉} consists of 
timesteps in the range [𝜏0, 𝜏𝑑] , enriched with 16 
technical indicators, 26 economic indicators, closing 
prices, and timestamps. These are then sequenced as 
follows:  

(i) {𝐹, 𝐸, 𝑇, 𝐶, 𝑉}  is segmented into overlapping 
windows of 𝑤 days, each segment starting the day 
after its predecessor’s first day. 

(ii) For each window starting on day 𝑖 and ending on 
𝑖 +  𝑤, a training tuple 𝑢 is generated as follows: 

𝑢 = {𝐹, 𝐸, 𝑇, 𝐶, 𝑉}௜,௜ା௪ , {𝐹, 𝐸, 𝑇, 𝐶, 𝑉}௜ା௪ାଵ,௜ା௪ା௣ାଵ  

where p is the prediction length in days. 
(iii) The tuples are partitioned into training, validation, 

and test sets. 

V. METHODOLOGY 

The Transformer model [15] is a deep learning architecture 
often used for Natural Language Processing (NLP). It relies 
on a mechanism called self-attention to process input data. 
Tokens are the basic units of input data, typically words or 
subwords in NLP. The self-attention mechanism allows the 
model to weigh the importance of different tokens in a 
sequence, enabling it to capture relationships between tokens 
regardless of their position. The Transformer consists of an 
encoder that processes the input sequence and a decoder that 
generates the output sequence. 

In the context of financial time series forecasting, the 
traditional Transformer approach treats each timestep in a 
time series as a separate input token. This means the model 
learns the temporal relationships between these timesteps. 
For example, Jiang et al. [27] and Chen et al. [28] follow this 
approach. Lim et al. [56] discuss the use of temporal 
embeddings to enhance the original tokenization approach by 
attaching temporal tokens representing an aggregate of 
temporal features per multiple time series features. Zeng et  
al. [57] demonstrate the effectiveness of using an Encoder-
only Transformer for time series forecasting. Muhammad et 
al. [26] and Lim et al. [17] explore the idea of generating 
temporal features and using them as tokens. However, these 
existing approaches have certain limitations. Adding 
temporal tokens, as done by Muhammad et al. [26] and Lim 
et al. [17], increases the complexity of the model. It requires 
additional steps to generate and integrate these tokens, 
complicating the model architecture and training process. 
Additionally, while these methods capture temporal 
dependencies, they might not fully leverage the interactions 
between different feature variates in the dataset, focusing 
more on the temporal patterns. 

Our contribution diverges from these traditional methods 
by proposing a new way to handle tokenization in the 
Transformer model. Instead of treating each timestep in a 
time series as a separate input token, we suggest treating each 

feature variate as a token. To this end, our method changes 
the research focus to learn the relationships between different 
feature variates (temporal patterns of indicators or signals). 
Using feature variates as tokens provides a holistic view and 
directly learns to capture interactions with long-term 
dependencies intrinsically supported. This is particularly 
beneficial for financial time series, where understanding the 
interplay between various indicators (e.g., technical, 
economic indicators) is crucial and helps the model uncover 
connections across different features, leading to better 
predictive performance. 

To do so, we transpose the input data before feeding it into 
the model (Fig. 3). Our approach simplifies the model 
architecture (e.g., does not require additional steps to 
compute temporal tokens), making it easier to implement and 
train, and reducing computational overhead. Our method is 
also flexible and can handle both one-step-ahead and multi-
step predictions, similar to generating one token at a time in 
Natural Language Processing (NLP). 

 

 
Fig. 3. Model overview. 

 
To implement our approach, we start with data preparation. 

Let 𝑣 represent a feature in the dataset 𝑆, and 𝑣௡௨௠  be the 
total number of features. Given a sequence of feature vectors 
𝑋௪×௩೙ೠ೘  (where 𝑤 is the number of timesteps), we transpose 
it to 𝑋௩೙ೠ೘×௪. The transposed data 𝑋௩೙ೠ೘×௪ is then fed into 
an Encoder-only Transformer model. The input passes 
through a series of encoder layers. Each layer uses a multi-
head self-attention mechanism to compute attention scores, 
highlighting the importance of each token (feature variate) in 
the sequence. The output of the attention mechanism is 
processed through a feed-forward network to create a new 
representation of the data. The encoder transforms the input 
sequence into a new representation 𝑌෠ ௩೙ೠ೘×௪ . This 
representation is then transposed back to 𝑌෠௣×௩೙ೠ೘  (where 𝑝 
is the prediction length) to generate the forecast. 

By redefining our approach to feature variate tokenization, 
we enable our model to uncover connections across multiple 
feature variates and reveal trends, offering insights and 
predictive capabilities that were previously overlooked. Our 
proposed technique looks simple but represents new thinking 
in using Transformers for financial time series forecasting, 
focusing on capturing holistic temporal feature interactions 
rather than interactions between local feature timesteps. Our 
comprehensive experiments are the first to validate this 
approach.  

VI. EXPERIMENT SETUP AND EVALUATION MEASURES 

A. Hardware 

Thanks to HPC Wales a compute node was made available 
to us. The system configuration includes 2 Intel(R) Xeon(R) 
Gold 6148 CPUs running at 2.40 GHz, each with 20 cores, 
totaling 40 cores. It is equipped with 384 GB of RAM and an 
Nvidia V100 GPU. For storage, the system offers 808 TB of 
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usable scratch space and 231 TB of home directory space, 
both managed on a Lustre filesystem. We selected two 
Transformer models and two non-deep learning models as 
baseline models for benchmarking. The first Transformer 
model, termed the “Vanilla Transformer,” serves as the 
forecasting baseline. This model mirrors our proposed 
architecture with the exception of having its decoder module 
removed. It follows the encoder-only setup, similar to 
DLinear [57]. The second Transformer model is the Original 
Transformer, as introduced by Vaswani [15]. This allows us 
to evaluate our model’s performance against both a 
foundational model used for further architectural 
enhancements and a well-established baseline. Additionally, 
we included two non-deep learning models for comparison: a 
Support Vector Regressor (SVR) and a Random Forest (RF) 
model, reflecting the approaches discussed by Sapankevych 
and Sankar [10] and Manojlovic and Stajduhar [11], 
respectively. 

B. Hyperparameters  

The non-deep learning models, SVR and RF, were 
implemented using default settings from the scikitlearn 
library [58]. For the deep learning models, we used the 
Optuna framework to fine-tune hyperparameters and applied 
these optimized settings consistently across the baseline 
Transformer models. To maintain consistency, each deep 
learning model was trained for a maximum of 10 epochs, with 
early stopping managed by the ReduceLROnPlateau 
scheduler provided by the PyTorch library [59]. In our 
experiments, this scheduler typically halted training before 
the 10-epoch limit was reached. Detailed information about 
the hyperparameters can be found in Table A5. 

C. Data  

Our proposed dataset, detailed in Section IV, is naturally 
divided into five components: the financial indicators facet F, 
the economic indicators facet E, the temporal features T, the 
close price values variate C, and the volume values variate V. 
We conducted a data ablation study to assess the impact of 
various combinations of these components, resulting in the 
following dataset types: We tested these 7 dataset types, 
which are: 

 {𝑇, 𝐶, 𝑉}, {𝐹, 𝐶, 𝑉}, {𝐸, 𝐶, 𝑉}, {𝐹, 𝐸, 𝐶, 𝑉}, {𝐸, 𝑇, 𝐶, 𝑉}, and 
{𝐹, 𝑇, 𝐶, 𝑉}, {𝐹, 𝐸, 𝑇, 𝐶, 𝑉}. 

We tested these 7 dataset types across different prediction 
window lengths and lookback window lengths. Specifically, 
we examined lookback windows of 16, 32, and 64 days, and 
prediction lengths of 1, 16, 32, and 64 days. This setup 
resulted in 12 experiments for each dataset type (e.g., one 
experiment might use the {𝑇, 𝐶, 𝑉}  dataset with a 16-day 
lookback window and a 1-day prediction length). Given 5 
models (4 baseline models and our proposed model), we 
conducted a total of 12 × 7 × 5 = 420 experiments. With 4 
different prediction lengths, we defined 4 distinct prediction 
tasks. Thus, our experiments can be analyzed to determine the 
best-performing combinations of models and dataset types for 
each prediction task. 

D. Evaluation Measures 

To evaluate the outcomes of our experiments, we utilize 
Mean Absolute Error (MAE), following [57], which 
measures the average magnitude of errors between predicted 

and actual values, without considering their direction. It is 
defined as: 

MAE =
1

𝑁
෍ |

ே

௜ୀଵ

𝑦௜ − 𝑦
^

௜| 

where 𝑦௜  represents the actual values, 𝑦
^

௜  denotes the 
predicted values, and 𝑁 is the total number of samples. 

VII. EXPERIMENTAL RESULTS 

To evaluate the proposed dataset and the updated model, 
we conducted a data ablation study as well as an architecture 
comparison study. Each experiment in our study is identified 
by the model, the dataset type, the task type (the prediction 
length), and the lookback. An experiment is assigned an 
average MAE score of all companies in our dataset for the 
given experimental setup. The scores shown in the figures are 
averaged for visual analysis of the experimental results, as 
noted in the figure captions (e.g., in Fig. 4, averages represent 
a model's performance across all four lookback lengths for 
each prediction length). 

A. Model Comparison 

As the chart in Fig. 4 shows, given the task of predicting 1, 
16, 32 and 64 days ahead, our model performed best across 
all four tasks. Interestingly, the Vanilla Transformer did not 
perform well in the 1-day task (only the RF model performed 
worse), in contrast to in the 32day forecasting task, where it 
performed better than both non-transformer models. The 
SVR model performed surprisingly well as compared to other 
models in the 1-day-ahead task and fell to the fifth place in 
the 64-day task. The Vanilla Transformer started out in place 
4 in 1 day task, to degrade to the last place in 16-day task, 
where it remained in 32-day task. In 64-day task, the Vanilla 
Transformer performed better than the SVR model only. The 
performance differences of the three Transformer models 
might indicate that our new tokenization strategy yields 
significant performance improvement. 

 

 
Fig. 4. Model performance per task. Each bar represents the average of all 
experiment results given a model and a task. The lower the MAE value, the 
better. 

 
We briefly discuss the impact of lookback window length 

on prediction quality. Fig. 5 shows that in the Original 
Transformer model, longer lookback windows improve 
performance for 32- and 64-day tasks. In contrast, our 
model’s performance is less affected by lookback length, 
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suggesting that using feature variates as tokens allows the 
Transformer to rely more on inter-variate dependencies than 
input sequence length. Original transformer only outperforms 
ours when it has the largest lookback window. 

 

 
Fig. 5. Lookback window performance for each task using Our Model (OM) 
and the Original Transformer (OT) at different prediction lengths. Each bar 
represents the average of all experiments for a specific model, task, and 
lookback window length. 

B. Dataset Ablation 

The dataset ablation study in Fig. 6 showed the changing 
quality of separate facets’ contribution to the quality of 
forecasts. The {𝑇, 𝐶, 𝑉} dataset shows the best performance 
on 1, 16 and 64-day tasks, whereas the {𝐹, 𝐶, 𝑉} dataset does 
best in the 32-day task. Interestingly, the {𝐹, 𝐸, 𝑇, 𝐶, 𝑉} 
dataset, while never taking the first spot in any task, saw 
improvement over the 1-day, 16-day, and 32-day tasks, to 
degrade ever so slightly for the 64-day task. A somewhat 
similar behavior was exhibited by the {𝐹, 𝐸, 𝐶, 𝑉}  dataset, 
whose performance improved precipitously over the 16, 32 
and 64-day tasks. 

This shows that the contribution of the economic facet E 
degrades prediction quality, and the T facet sees the opposite 
of this dynamic, as shown in Fig. 6. Additionally, a similar 
effect could be at play with the T facet. An assumption could 
be made that the T facet (holiday time in summer, winter 
Christmas time etc.) plays a more significant role in shorter-
term prediction tasks. The F facet’s contribution could have 
been hindered by keeping parameters when calculating 
technical indicators for particular day timesteps constant. 

When analyzing the performance of each dataset type and 
model pair, on each individual task, we can also notice a 
relationship where the {𝐸, 𝐶, 𝑉}  dataset tends to perform 
better than {𝐹, 𝐸, 𝑇, 𝐶, 𝑉}, and both performing worse than 
{𝑇, 𝐶, 𝑉}, as visualised in Fig. 7. As observed above, this 
could also be explained by the fact that the technical 
indicators are parametrized by static values (e.g., Average 
Directional Index (ADX) has its period set to 14 days, and 
Absolute Price Oscillator (APO) has the fast period set to 26 
and the slow period set to 12 days; see Table A1), and not 
adjusted for the lookback window lengths of the respective 
experiments. In this case, the financial indicator features 
could be detrimental to the prediction quality. The inclusion 
of both the F and E facets improves the prediction quality in 
the 64-day task as compared to the {𝐸, 𝑇, 𝐶, 𝑉} dataset, which 
suggests that the idea of providing both the economic context 
and technical indicators for financial time series improves 
financial forecasting task performance. 

 

 
(a) 1-day prediction task 

 
(b) 16-day prediction task 

 
(c) 32-day prediction task 

 
(d) 64-day prediction task 

Fig. 6. Dataset performance per model, over (a) 1, (b) 16, (c) 32, and (d) 64-
day prediction tasks. OT and VT stand for Original Transformer and Vanilla 
Transformer, respectively. A bar in each figure represents the average of all 
experiment results, given a dataset type, a model and a task. The lower the 
MAE value, the better. 
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Fig. 7. Dataset performance per task. Each bar represents the average of all 
experiment results given a dataset type and a task. The lower the MAE value, 
the better.  

C. Complexity and Timing 

Transformer models generally require significant training 
time due to their quadratic complexity. Our model introduces 
transpose layers before and after the Transformer, 
maintaining a complexity similar to other models. On a V100 
GPU, it converges in approximately 8 to 12 h, depending on 
the parameters for day-ahead forecasting and the lookback 
window. 

VIII. CONCLUSION 

In summary, our examination of financial time series 
forecasting reveals a critical gap in research, particularly in 
modeling individual business sectors like the CC sector and 
incorporating economic indicators for deeper contextual 
insights. To bridge this gap, we introduce a novel dataset and 
an innovative Transformer tokenization technique that better 
captures the intricate interplays of financial features. By 
transposing input time series as tokens, our approach was 
tested against various Transformer architectures and baseline 
models (SVR, RF). The findings demonstrate that integrating 
economic context and tokenizing variates, rather than relying 
on common timesteps, significantly boosts forecasting 
accuracy. Despite its simplicity, this tokenization method 
opens new pathways for exploring and integrating temporal 
patterns in financial time series and beyond, leading to more 
effective forecasting.  

Our dataset is publicly accessible, and future research will 
explore its application with other Transformer variants and 
the effects of input transposition on self-attention 
mechanisms. Specifically, alternative Transformer 
architectures like the Triformer [60], Sepformer [61], 
SpringNet [19], and Multi-Transformer [16] could enhance 
our model’s ability to capture the non-linear and non-
stationary dynamics of stock price movements. The 
Triformer’s long-range dependency management and the 
Sepformer’s focus on sequential information may provide 
insights when combined with our use of multi-variate data as 
tokens that emphasize temporal patterns. Additionally, 
integrating multi-scale temporal tokens could improve our 
model’s ability to capture variations in stock prices across 
different time horizons.  

Further, various domains have made attempts to leverage 
the Transformer architecture, including traffic  
management [50], weather and energy consumption 
forecasting [51]. We are interested to integrate the new input 

transposition technique to enhance temporal pattern modeling 
in these forecasting areas, thereby improving the models' 
ability to capture dynamic changes over time. 

APPENDIX A 
Table A1. Financial indicator feature calculation 

Feature Indicator Description Parameters 

𝐹ଵ Accumulation/Distribution Line - 

𝐹ଶ On-Balance Volume (OBV) - 

𝐹ଷ Average True Range (ATR) period = 7 

𝐹ସ Average True Range (ATR) period = 14 

𝐹ହ Normalized Average True Range (NATR) period = 7 

𝐹଺ Normalized Average True Range (NATR) period = 14 

𝐹଻ True Range (TRANGE) - 

𝐹  Standard Deviation (STDDEV) period = 5 

𝐹ଽ Standard Deviation (STDDEV) period = 10 

𝐹ଵ଴ Standard Deviation (STDDEV) period = 14 

𝐹ଵଵ Time Series Forecast (TSF) period = 5 

𝐹ଵଶ Time Series Forecast (TSF) period = 10 

𝐹ଵଷ Time Series Forecast (TSF) period = 14 

𝐹ଵସ Average Directional Index (ADX) period = 14 

𝐹ଵହ Average Directional Index Rating (ADXR) period = 14 

𝐹ଵ଺ Absolute Price Oscillator (APO) 
fastperiod = 12, 
slowperiod = 26 

𝐹ଵ଻ Aroon Indicator (AROON Down) period = 14 

𝐹ଵ଼ Aroon Indicator (AROON Up) period = 14 

𝐹ଵଽ Aroon Oscillator (AROONOSC) period = 14 

𝐹ଶ଴ Balance of Power (BOP) - 

𝐹ଶଵ Commodity Channel Index (CCI) period = 14 

𝐹ଶଶ Chande Momentum Oscillator (CMO) period = 14 

𝐹ଶଷ Directional Movement Index (DX) period = 14 

𝐹ଶସ 
Moving Average Convergence Divergence 

(MACD) 

fastperiod = 12, 
slowperiod = 26, 
signalperiod = 9 

𝐹ଶହ MACD Signal Line - 

𝐹ଶ଺ MACD Histogram - 

 
Table A2. Economic data sources 

Indicator Name Releasing Institution Frequency Composite
Consumer Confidence 

Index 
Bureau of Economic 

Analysis 
Monthly No 

Corporate Debt as % of 
GDP 

Federal Reserve Quarterly Yes 

Gross Domestic Product 
Bureau of Economic 

Analysis 
Quarterly No 

Personal Income and 
Outlays 

Bureau of Economic 
Analysis 

Monthly No 

Personal Saving Rate 
Bureau of Economic 

Analysis 
Monthly No 

Retail Sales U.S. Census Bureau Monthly Yes 

Unemployment Rate 
Bureau of Labor 

Statistics 
Monthly No 

 
Table A3. Economic indicator feature calculation 

Feature Type Feature Description 

Consumer Confidence & 
Financial Obligations 

𝐸ଵ Consumer Confidence Index (CCI) 

𝐸ଶ 
Consumer Debt Service Payments 

(CDSP) 

Gross Domestic Product 
(GDP) 

𝐸ଷ Exports 

𝐸ସ 
Government consumption 

expenditures and gross investment 
𝐸ହ Gross domestic product 

𝐸଺ 
Gross domestic product, current 

dollars 
𝐸଻ Gross private domestic investment 

𝐸଼ Imports 

𝐸ଽ Personal consumption expenditures 
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Personal Income and 
Outlays 

𝐸ଵ଴ Equals: Personal saving 

𝐸ଵଵ Personal consumption expenditures 

𝐸ଵଶ Personal income 

𝐸ଵଷ 
Personal saving as a percentage of 

disposable personal income 
𝐸ଵସ Personal Savings Rate 

𝐸ଵହ Retail Sales 

𝐸ଵ଺ Unemployment Rate 

 
Table A4. Temporal features 

Feature Calculation Description 

𝑇ଵ Quarter of the year, zero-indexed 

𝑇ଶ Month of the year, zero-indexed 

𝑇ଷ Day of the year, zero-indexed, adjusted for leap years 

𝑇ସ Day within the current quarter, zero-indexed 

𝑇ହ Day of the month, zero-indexed 

𝑇଺ Day of the week, starting from zero (Monday) 

 
Table A5. Proposed hyperparameters 

Value Hyperparameter 

8 Number of heads 

128 Feed-forward network dimensions 

128 Model dimensions 

1 Number of encoder layers 

0.25 Encoder dropout probability 

16 Batch size 

10 Number of epochs 

mse Loss function type 

Adam Optimizer type 

0.001 Optimizer learning rate 

0.0 Optimizer weight decay 

ReduceLROnPlateau Scheduler type 

0.9 Scheduler factor 

7 Scheduler patience 

min Scheduler mode 

1×10⁻⁵ Scheduler min. Learning rate 
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