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Abstract—Machine learning in financial Time Series
Forecasting (TSF) has a clear application in investment, where
predicting stock price movements can inform investment
strategies. The Transformer model has emerged as a powerful
tool for this purpose, yet significant research gaps remain.
Existing studies often focus on a set of stocks without modeling
stock behavior within specific sectors. Notably, there is a lack of
research on the Consumer Cyclicals (CC) industry, which
includes sectors such as automotive, housing, entertainment,
and retail. These industries are highly sensitive to economic
conditions, making them crucial for understanding broader
economic impacts on stock behavior. Furthermore, we observe
that many existing works neglect broader economic contexts,
which is particularly important for CC analysis due to its
sensitivity to economic trends. Additionally, previous studies on
financial Transformer models typically use model tokens as
feature vectors of multiple variates at a single timestep. This
approach may not adequately capture the important
relationships between dataset variates for long-term economic
trends. To this end, we present the first study on financial TSF
for the CC sector along with economic data. To support the
research, we propose the first public benchmark dataset for the
CC sector, consisting of traditional stock price time series,
technical indicators, and temporal data, enriched with economic
indicators. Next, we introduce an alternative tokenization
approach to enhance the model’s ability to capture long-term
trends by preserving information about nonlinear dependencies
between dataset variates. We hypothesize that this approach
helps capture long-term signals more effectively. Through a
comprehensive data ablation study and benchmark testing, we
demonstrate that incorporating economic indicators improves
the accuracy of longer-term predictions for the CC sector, and
the new tokenization method enhances the performance of
Transformer models. The dataset and code are made publicly
available at: https:/github.com/KasperKrawczyk/econtrans

dataset

Keywords—time series, forecasting, transformer, finance,
stocks

I. INTRODUCTION

Accurately predicting stock market behavior offers clear
benefits for maximizing returns [1]. For nearly a century, the
finance industry has used statistical methods for this
purpose [2]. Financial forecasting, especially Time Series
Forecasting (TSF), has grown to manage risk, maximize
profits, and minimize losses [3]. Consequently, stock market
movement forecasting is an important research focus due to
its potential to boost profitability for both institutional and
private traders [4—7].

The research on financial forecasting, using both
traditional statistical techniques and machine learning, is
extensive and rapidly expanding. The earliest statistical
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model for meteorological forecasting [2, 8] evolved into the
Autoregressive Moving Average (ARMA) and Generalized
Autoregressive Conditional Heteroskedasticity (GARCH)
models [9]. Advances in computer hardware later enabled
machine learning to dominate the field [10], with techniques
like Random Forest [11], Long Short-Term Memory
(LSTM) [12, 13], and Bi-directional Long Short-Term
Memory (BiLSTM) networks [14]. Recently, the
Transformer architecture [15] has gained attention, with
efforts to enhance its forecasting abilities using specialized
layers [16], recurrent network layers [17], and graph
networks [18].

Despite recent progress, we observe research gaps and
limitations in the literature. First, most research focuses on
generalizing predictions to exchange-based indices
(aggregating entire stock markets) [16, 19, 20] and general
stock classification problems [21-23]. The issue of time
series datasets limited to price values of one or a few
stocks [23-26], or exchange-based indices [16, 20, 21], is
corroborated by several surveys [27-29]. Further, many study
focus on the use of price signals datasets are often insufficient
to exhaustively model stocks in some sectors and
industries [28, 30, 31].

Notably, to our knowledge, there has not been an attempt
to model the dynamics of the luxury and retail sector, known
as Consumer Cyclicals (CC) [1, 28, 32]. Forecasting the CC
industry is crucial for several reasons. 1) CC stocks often
offer a stable yet profitable investment option, providing a
degree of safety while yielding more than treasury
bonds [1, 33]. 2) The performance of the CC industry can
serve as a barometer for broader economic health, since
consumer spending on luxury and retail goods often reflects
economic confidence. 3) Although forecasting broader
macroeconomic trends is challenging [28], predicting the
future movements of CC industry stocks could improve
policymaking for government institutions [34, 35].
Understanding future trends in this sector can help craft
policies that support economic stability and growth. 4)
Further insights from the CC industry can impact various
downstream applications, including marketing strategies,
supply chain management, and financial planning for
businesses within the sector.

However, we further observe that datasets used in the
research often exclude the wider economic context and use
only historical stock price data, index data [14, 25], social
media data [36], or price data transformed using statistical
techniques [11]. The omission of economic indicators in the
existing datasets makes it arguably difficult to gain insights
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into CC stocks’ behaviour, which tends to be influenced by
the trends of the wider economy the CC companies are
situated in [31]. The lack of forecasting research for CC
industry, and the limited use of economic indicators prompt
us the ask the question, Could we improve CC stocks
performance forecasting with Transformers by adding
economic and temporal context?

The second limitation concerns how existing Transformers
conceptualize time series tokens for financial forecasting.
Typically, a time series token is a vector of continuous
variable observations at one timestep [16—18, 20, 21, 23-26,
37-41]. These vectors are used in forecasting models to
predict future timesteps by exploring the interaction between
other timesteps. However, this approach may overlook the
interplay of temporal patterns in feature variates (e.g.,
financial price signals, technical indicators, economic
indicators). Longer-term temporal patterns are often critical
for financial forecasting, especially in the CC industry against
economic data. This leads us to the second research question
Could we improve Transformer’s performance in financial
time series forecasting tasks by directly tokenising feature
variates (e.g., economic indicators) instead of existing multi-
variate timesteps? By using feature variates as tokens, we can
model correlation between temporal feature interactions in a
holistic way rather than interactions between local feature
timesteps. This would reveal trends and offer better predictive
capabilities that were previously overlooked.

To summarize our contributions:

To our knowledge, this is the first study to model the CC
industry and consider using financial and economic data to
enhance forecasting.

(1) We create a novel economic-financial time series
dataset comprises of 120 CC industry companies,
including cruise operators, golf equipment
manufacturers and kitchenware resellers. It includes
economic and financial indicators, to provide insights
from both economic context and market price signals.
The dataset will be publicly accessible as a benchmark
for community benefit [1, 31-32, 42-44].

We propose a simple but new feature variate
tokenization for the Transformer architecture to better
leverage the temporal pattern in data and model
interplay between feature variates (e.g., financial,
technical, economic indicators).

We compare the model’s performance against
baseline models and conduct an ablation study on the
novel dataset through a series of experiments. The
results show that the use of economic indicators and
the new feature variate tokenization shows promising
results.

In the following, Section II surveys relevant TSF literature.
Section III discusses the concept of the Consumer Cyclicals
industry. Section I'V outlines the creation of the experimental
dataset. Section V describes our tokenization adaptation to
the Transformer model. Section VI gives an overview of our
experimental setup and evaluation measures. Section VII
presents and discusses our findings. Section VIII concludes
this paper.

2)

3)
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II.  RELATED WORK

A. Time Series Forecasting

Time Series Forecasting (TSF) methods originated in 1927
with the introduction of an auto-regressive model [2]. The
ARMA method, introduced in 1931, and ARMA/GARCH,
introduced in 1982, have been significant contributions to the
field [8, 9]. However, these models have encountered
difficulties with nonlinear time series [45]. To address this,
classic ML techniques such as SVM and Adaptive Boosting
have been employed [10]. These models can handle
multivariate datasets, but they face challenges with out-of-
sample data prediction. Deep Learning (DL) models, due to
their ability to approximate nonlinear dependencies, have
shown promise in this area [46]. Recent notable works based
on the transformer architecture include the LogSparse
Transformer, which breaks the Self-Attention quadratic
memory bottleneck [47], and the Sepformer, which utilizes
discrete wavelet transforms for feature extraction [48].

B.  Financial Time Series Forecasting Methods

Traditional ML and LSTM-based Techniques: The use of
machine learning techniques in TSF has a long history.

For instance, Manojlovi¢ ef al. [11] introduced the use of
the Random Forest algorithm for classifying the movement
of the Croatian Stock Exchange Index (CROBEX) index and
four companies on the Zagreb Stock Exchange in 2015. This
was based on 12 technical indicators derived from their Open-
High-Low-Close (OHLC) and volume values. Since 2018,
Long Short-Term Memory (LSTM) networks have been
widely used in TSF tasks. Wu et al. [49] introduced the
LSTM model for stock trend classification, trained on text
corpus and price signals. Liang et al. [36] proposed an LSTM
model trained on a mixed corpus of news items and technical
indicators derived from 262 companies’ OHLC values to
classify multi-horizon market trends. Dai et al. [14] proposed
a Bi-directional LSTM model with an attention mechanism
for predicting future values of the Shanghai Securities
Composite Index. Xu ef al. [12] introduced another LSTM
model with a denoising attention mechanism, trained on the
StockNet  dataset for multi-horizon  classification.
Shen et al. [22] proposed a Gated Recurrent Unit network,
trained on a dataset of three general indices’ time series, for
multi-step future trend classification. Tsang et al [23]
proposed a new LSTM model and a dataset including two
economic variates—the USD exchange rate and the interbank
offered interest rate.

Transformer-Based  Techniques: Recently, several
Transformer architectures for financial TSF tasks have been
proposed. Malibari et al. [25] was the first to explore this
architecture in the financial TSF context, adapting the Vision
Transformer by treating training sequences as flattened
patches. Both Wang et al. [20] and Juairiah et al. [24]
investigated the performance of the original Transformer
architecture, training their models on four exchange-based
indices and Microsoft Corporation’s stock prices,
respectively. Ramos-Perez et al. [16] presented the Multi-
Transformer architecture, which uses bagging to pick random
subsets from the training set and incorporates GARCH-based
methods in the Transformer modules for next day volatility
forecasting of the S&P 500. Zeng et al. [21] enhanced the
Transformer with a Convolutional Neural Network (CNN)
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module for minute-by-minute stock classification.
Wang et al. [18] performs one-day-ahead best stock selection
and incorporates a graph module and an LSTM module in
addition to a Transformer module.

Despite these advancements, the original Transformer,
designed for Natural Language Processing (NLP) purposes,
may not be well-suited to model the time dependencies and
nonlinear complex dependencies of time series [47]. As
Li et al. [47] demonstrated, the self-attention computation
often becomes context-agnostic and fails to differentiate
between anomalies and seasonality. Chen et al. [28] observed
that multiple-feature Transformer models lose some of the
complex dependencies between features. Recent efforts have
been made to adapt this for TSF. Notably, Cai et al. [50]
designed the Auto-Correlation mechanism to conduct
seasonality discovery as part of the learning process.
Yahoo fin [51] attempted to model periodic seasonality for
traffic prediction by extracting features from timestamps.
Fan et al. [47] proposed a Convolutional SelfAttention
module to convert patches of inputs into query-key pairs.
However, the loss of information about nonlinear
dependencies between features is still a recognized issue with
Transformers [27, 28].

We hypothesize that using feature timesteps as tokens in
traditional transformers may be one of the issues. To address
this, we propose using feature variate as a token. This allows
the transformer to explicitly learn the nonlinear dependency
of temporal patterns in a holistic way. This approach could
improve forecasting, especially for CC, which is sensitive to
economic and other indicators.

C. Financial Time Series Forecasting Dataset

Within the literature, the use of time series data beyond the
Open-High-Low-Close (OHLC), volume and indices data has
seen limited exploration. These include text corpus [49],
news items [36], USD exchange rate and the interbank
offered interest rate [23]. For Transformer-based models, we
have observed that only two studies have used non-OHLC
and volume values time series data. Li et al. [41] employed
the StockNet dataset for a one-day-ahead price prediction
task, integrating a Transformer with an LSTM network to
model temporal dependencies. Lim et al. [17] extracted data
from 31 companies from the OMI dataset and used a GRN
network to reduce data noise, leveraging the recurrence
relation.

Moreover, the incorporation of temporal data into input
sequences has been somewhat overlooked in financial TSF.
To our understanding, only Muhammad et al. have attempted
to embed time features in their input sequences while using a
Transformer model for stock price prediction tasks [26]. They
used a dataset of 8 companies’ stocks, confined to the finance
and insurance industries, to train the model for a multi-
horizon prediction regression task. The model was fed the
standard OHLC and volume data, supplemented with the
encoded time, representing an intriguing contribution in
terms of addressing the challenge of time embedding.

To our knowledge, limited studies have incorporated
information about the broader economic context or
specialized their datasets to focus on specific sectors. This
paper represents the first attempt to consider additional
economic context for the CC sector forecasting and to

181

propose and curate a benchmark dataset for this purpose. Our
novel tokenization approach offers a new avenue to explicitly
incorporate temporal dependencies into the transformer
model.

III.

In finance, an industry refers to a group of companies
engaged in similar business activities [42]. For example, the
technology sector, which involves manufacturing electronics,
creating software, and providing information technology
services, includes companies like Meta and Alphabet Inc.
Another example is the cyclical sector [1], also known as the
Consumer Cyclicals (CC) sector [32], which encompasses
companies that depend on personal discretionary spending.
This spending involves money used by individuals on non-
essential goods and services, such as household durables (e.g.,
appliances and furniture) [31], leisure products, and luxury
goods [43, 44]. The CC industry is particularly sensitive to
broader economic conditions because they directly impact the
level of discretionary spending [31]. This sensitivity is
referred to as cyclicality, describing the extent to which an
industry’s output fluctuates in response to economic changes.
As a result, the CC industry is expected to exhibit cyclical
behavior due to regular economic shifts [1, 31].

THE CONSUMER CYCLICALS INDUSTRY

V. DATASET

A. Dataset Overview

In this project, we propose a dataset that consists of
assembled time series data for 120 CC companies, such as
Carnival Corp (cruise operator), Topgolf Callaway Brands
Corp (golf equipment manufacturer) and Williams Sonoma,
Inc. (kitchenware and home furnishings reseller). The
discussion that follows focuses on a specific company,
denoted as ¢, for which we aim to assemble the dataset S. Let
d represent the target length of the dataset in timesteps, which
are days in our study, and let [0, td] denote the timeframe
of the target time series. The target dataset is composed of
five facets, represented as f € S = {F,E,T,C,V} :
Financial Indicators F, Economic Indicators E, Temporal
features T, Stock close price values C, and Stock volume
values V (see summary in Table 1).

Table 1. Summary of dataset facets

Symbol Dataset facet description
F 26 variates (financial indicators)
E 16 variates (economic indicators)
T 6 variates (temporal features)
C 1 variate (closing price)
\% 1 variate (volume values)

1) Price and volume signal (C,V)

For each of the stock, we store the stock closing price C
and stock volume V. C and V contain a single variate each.

2) " F 26)

We source our stock data from Yahoo Finance (YF) [32],
using the yahoo fin library [52]. YF divides the CC industry
into 21 subindustries, which is relevant for matching a
company’s data with relevant economic indicators. At the
time of sourcing, there are 360 publicly traded companies in

Financial indicators (Fy, ..
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the sector whose data is available via YF [32]. Our approach
is to select the K top-performing companies representing each
subindustry within the CC industry or all the companies from
the subindustry if there are fewer than K. This is to ensure as
fair a representation for each industry as possible. Thus, each
company’s time series contains the OHLC and volume values
for the given trading day, the adjusted close value for that day
(which we discard, due to its high correlation with the close
value), and the date timestamp of that trading day. Given an
OHLC and volume values time series, we obtain a set of
standard financial indicators temporal features Fj, ..., Fy.
Examples include Accumulation/Distribution Line, Average
True Range, Moving Average Convergence Divergence
(MACD) etc. The full set of features and their default
parameters are summarized in Table Al.

3) - E16)

The Consumer Cyclicals (CC) sector is highly sensitive to
economic conditions. Given that our stock data focuses on
U.S.-traded companies, we are particularly interested in the
country’s economic context. Inspired by relevant
literature [1, 32], we identified key indicators [34, 44, 53, 54]
to enrich our dataset: Consumer Confidence Index (CCI),
Corporate Debt as a percentage of GDP, Gross Domestic
Product (GDP), Personal Income and Outlays, Personal
Saving Rate, Retail Sales, and Unemployment Rate.

The CCI reflects consumer sentiment and spending
intentions, significantly impacting demand in the CC
sector [1, 34]. Corporate Debt as a percentage of Gross
Domestic Product (GDP) provides insights into corporate
financial health and investment strategies [32]. GDP serves
as a broad measure of economic health, correlating with
consumer spending and business investment [1, 32]. Personal
Income and Outlays indicate consumer spending capacity,

Economic indicators (Eq, ..

while the Personal Saving Rate highlights financial resilience.

Retail Sales data reveals consumer spending trends, and the
Unemployment Rate reflects labor market conditions
affecting disposable income and confidence [1, 52, 53]. By
incorporating these indicators, we aim to better analyze the
relationship between economic conditions and stock
performance in the CC sector.

The works indicated above enabled us to identify the
institutions that collect and produce the relevant time series.
Multiple US institutions maintain Application Programming
Interface (API) endpoints, and we were able to access all but
one indicator directly from the US sources; we accessed the
Consumer Confidence Index time series through the
(Organisation for Economic Co-operation and Development)
OECD API. Table A2 summarizes these data sources. Each
indicator for the timespan [70,td] is fetched from the
relevant API for further processing to finally become a variate
in E. These economic indicators, denoted Ej,..., E;q, are
summarized in Table A3.

4) +Te)

We also hypothesize that the times of year may have
contributions towards the CC sectors. For example, holiday
time during summer, Christmas time during winter. We also
collect the relative Day, Month, Quarter of the year Ty, ..., Ty
as temporal features (see Table A4).

Temporal features (Ty, ...
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B. Data Processing & Feature Selection

Data pre-processing

Financial Data (
Stocks data - Yahoo 3. DeﬂVg ‘efhmce\
Final AP| indicators N
e A.( Timestamp
merging +

temporal
feature
derivation

Training tuple
sequencing

Fig. 1. Data pipeline.

Training sequences

Model

N

Tune <«—— Evaluate

Economic Data |
Economic indicators
 institutional APs:

« USBLS

Upsample
(non-daily
data
interpolation)

Our processing pipeline (Fig. 1) sources, merges, and
upsamples the relevant data facets to a format with regular
intervals. Precisely, we define each feature vector x; of the
format:

(Frire o Fagin Evjy

B Toi- 0 Tei Ci Vi)

where i is a timestep such that i € [0, d].

C. Creating Training and Testing Pairs

Define w as the number of timesteps in the lookback
window that constitute the training sequence, and p as the
prediction length in timesteps. Training our predictive model
involves creating pairs of input sequences (sequences of
feature vectors) and corresponding ground truth sequences.
Each pair, termed a “training tuple”, denoted as u, comprises
an input sequence (spanning w days starting on day i) and the
corresponding ground truth sequence (spanning from day i +
w+1toi+ w+p+1). The ground truth sequence is a
sequence because we are typically predicting multiple feature
variates, not just a single one, and we need to compare our
model’s predictions against this sequence of actual outcomes
to assess its performance accurately. With the sliding window
approach, each new input and its corresponding predicted
sequence overlap with the previous one by shifting forward
one timestep. This method ensures that every sequence shares
a portion of its data with the previous one, maintaining
continuity across the entire time span of interest (Fig. 2).

Ti Ti+w | Titw+l Titw+p+1 | Ti+w+p+2 | Ti+w+p+3

Ti Ti+1 Ti+w+1 | Titw+2 Titw+p+2 | Ti+w+p+3

Ti Ti+1 Tis2 Tit+w+2 Ti+w+3 Ti+wip+3

Fig. 2. The overlapping windows technique.

1) Data processing steps

Data processing and dataset assembly for a company of
interest defined as ¢ form a pipeline described below. It
involves four major steps, which we outline below:

(1) OHLC and volume values of ¢ are sourced from
Yahoo Finance [52] as a time series of 5 variates for
the interval (70, td).

Technical indicators are calculated for each timestep
in the sourced OHLC and volume time series using the
TALIiDb library [55]. After this, Open-High-Low (OHL)
values are discarded due to a high correlation with the
closing price. The technical indicators form facet F,
and the retained close price values and volume values
form facets C and V, respectively.

Economic indicators to form variates v € E are
sourced from APIs listed in Table A2.

(4) v € E are upsampled to a daily frequency using the

2

3
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2nd order polynomial interpolation to cover the
interval [70, 7d].

{F,C,V} and {E} are merged to form {F,E, C,V}.
Temporal features(T, ;, ..., Ty ;) are derived from each
timestep’s timestamp and merged with {F,E,C,V} to
form {F,E,T,C,V}.

Post-merging, each item in {F,E,T,C,V} consists of
timesteps in the range [t0,7d], enriched with 16
technical indicators, 26 economic indicators, closing
prices, and timestamps. These are then sequenced as
follows:

)
(6)

()

(i) {F,E,T,C,V} is segmented into overlapping
windows of w days, each segment starting the day
after its predecessor’s first day.

(i1))  For each window starting on day i and ending on

i + w, atraining tuple u is generated as follows:
u ={F,ET,CV}iiww F.E,T,C,V}iswivitwip+1

where p is the prediction length in days.
(i) The tuples are partitioned into training, validation,
and test sets.

V.

The Transformer model [15] is a deep learning architecture
often used for Natural Language Processing (NLP). It relies
on a mechanism called self-attention to process input data.
Tokens are the basic units of input data, typically words or
subwords in NLP. The self-attention mechanism allows the
model to weigh the importance of different tokens in a
sequence, enabling it to capture relationships between tokens
regardless of their position. The Transformer consists of an
encoder that processes the input sequence and a decoder that
generates the output sequence.

In the context of financial time series forecasting, the
traditional Transformer approach treats each timestep in a
time series as a separate input token. This means the model
learns the temporal relationships between these timesteps.
For example, Jiang et al. [27] and Chen et al. [28] follow this
approach. Lim et al. [56] discuss the use of temporal
embeddings to enhance the original tokenization approach by
attaching temporal tokens representing an aggregate of
temporal features per multiple time series features. Zeng et
al. [57] demonstrate the effectiveness of using an Encoder-
only Transformer for time series forecasting. Muhammad et
al. [26] and Lim et al. [17] explore the idea of generating
temporal features and using them as tokens. However, these
existing approaches have certain limitations. Adding
temporal tokens, as done by Muhammad et al. [26] and Lim
et al. [17], increases the complexity of the model. It requires
additional steps to generate and integrate these tokens,
complicating the model architecture and training process.
Additionally, while these methods capture temporal
dependencies, they might not fully leverage the interactions
between different feature variates in the dataset, focusing
more on the temporal patterns.

Our contribution diverges from these traditional methods
by proposing a new way to handle tokenization in the
Transformer model. Instead of treating each timestep in a
time series as a separate input token, we suggest treating each

METHODOLOGY
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feature variate as a token. To this end, our method changes
the research focus to learn the relationships between different
feature variates (temporal patterns of indicators or signals).
Using feature variates as tokens provides a holistic view and
directly learns to capture interactions with long-term
dependencies intrinsically supported. This is particularly
beneficial for financial time series, where understanding the
interplay between various indicators (e.g., technical,
economic indicators) is crucial and helps the model uncover
connections across different features, leading to better
predictive performance.

To do so, we transpose the input data before feeding it into
the model (Fig. 3). Our approach simplifies the model
architecture (e.g., does not require additional steps to
compute temporal tokens), making it easier to implement and
train, and reducing computational overhead. Our method is
also flexible and can handle both one-step-ahead and multi-
step predictions, similar to generating one token at a time in
Natural Language Processing (NLP).

Technical
Features
Temporal
Features

To implement our approach, we start with data preparation.
Let v represent a feature in the dataset S, and v,,,, be the
total number of features. Given a sequence of feature vectors
XW*Ynum (where w is the number of timesteps), we transpose
it to X¥num*W_The transposed data XVnum*V ig then fed into
an Encoder-only Transformer model. The input passes
through a series of encoder layers. Each layer uses a multi-
head self-attention mechanism to compute attention scores,
highlighting the importance of each token (feature variate) in
the sequence. The output of the attention mechanism is
processed through a feed-forward network to create a new
representation of the data. The encoder transforms the input
sequence into a new representation YUnum*W  This
representation is then transposed back to YP*Vnum (where p
is the prediction length) to generate the forecast.

By redefining our approach to feature variate tokenization,
we enable our model to uncover connections across multiple
feature variates and reveal trends, offering insights and
predictive capabilities that were previously overlooked. Our
proposed technique looks simple but represents new thinking
in using Transformers for financial time series forecasting,
focusing on capturing holistic temporal feature interactions
rather than interactions between local feature timesteps. Our
comprehensive experiments are the first to validate this
approach.

N x Encoder Layers

Fig. 3. Model overview.

VL

A.  Hardware

Thanks to HPC Wales a compute node was made available
to us. The system configuration includes 2 Intel(R) Xeon(R)
Gold 6148 CPUs running at 2.40 GHz, each with 20 cores,
totaling 40 cores. It is equipped with 384 GB of RAM and an
Nvidia V100 GPU. For storage, the system offers 808 TB of

EXPERIMENT SETUP AND EVALUATION MEASURES
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usable scratch space and 231 TB of home directory space,
both managed on a Lustre filesystem. We selected two
Transformer models and two non-deep learning models as
baseline models for benchmarking. The first Transformer
model, termed the “Vanilla Transformer,” serves as the
forecasting baseline. This model mirrors our proposed
architecture with the exception of having its decoder module
removed. It follows the encoder-only setup, similar to
DLinear [57]. The second Transformer model is the Original
Transformer, as introduced by Vaswani [15]. This allows us
to evaluate our model’s performance against both a
foundational model wused for further architectural
enhancements and a well-established baseline. Additionally,
we included two non-deep learning models for comparison: a
Support Vector Regressor (SVR) and a Random Forest (RF)
model, reflecting the approaches discussed by Sapankevych
and Sankar [10] and Manojlovic and Stajduhar [11],
respectively.

B.  Hyperparameters

The non-deep learning models, SVR and RF, were
implemented using default settings from the scikitlearn
library [58]. For the deep learning models, we used the
Optuna framework to fine-tune hyperparameters and applied
these optimized settings consistently across the baseline
Transformer models. To maintain consistency, each deep
learning model was trained for a maximum of 10 epochs, with
early stopping managed by the ReduceLROnPlateau
scheduler provided by the PyTorch library [59]. In our
experiments, this scheduler typically halted training before
the 10-epoch limit was reached. Detailed information about
the hyperparameters can be found in Table AS5.

C. Data

Our proposed dataset, detailed in Section IV, is naturally
divided into five components: the financial indicators facet F,
the economic indicators facet E, the temporal features T, the
close price values variate C, and the volume values variate V.
We conducted a data ablation study to assess the impact of
various combinations of these components, resulting in the
following dataset types: We tested these 7 dataset types,
which are:

{T,C,V},{F,C,V}{E,C,V},{F,E,C,V}{E,T,C,V}, and
{F,T,C,V}{F,E,T,C,V}.

We tested these 7 dataset types across different prediction
window lengths and lookback window lengths. Specifically,
we examined lookback windows of 16, 32, and 64 days, and
prediction lengths of 1, 16, 32, and 64 days. This setup
resulted in 12 experiments for each dataset type (e.g., one
experiment might use the {T,C,V} dataset with a 16-day
lookback window and a 1-day prediction length). Given 5
models (4 baseline models and our proposed model), we
conducted a total of 12 x 7 x 5 = 420 experiments. With 4
different prediction lengths, we defined 4 distinct prediction
tasks. Thus, our experiments can be analyzed to determine the
best-performing combinations of models and dataset types for
each prediction task.

D. Evaluation Measures

To evaluate the outcomes of our experiments, we utilize
Mean Absolute Error (MAE), following [57], which
measures the average magnitude of errors between predicted
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and actual values, without considering their direction. It is
defined as:

N
1 A
MAE =NZ | yi — yil
i=

where y; represents the actual values, y; denotes the
predicted values, and N is the total number of samples.

VII. EXPERIMENTAL RESULTS

To evaluate the proposed dataset and the updated model,
we conducted a data ablation study as well as an architecture
comparison study. Each experiment in our study is identified
by the model, the dataset type, the task type (the prediction
length), and the lookback. An experiment is assigned an
average MAE score of all companies in our dataset for the
given experimental setup. The scores shown in the figures are
averaged for visual analysis of the experimental results, as
noted in the figure captions (e.g., in Fig. 4, averages represent
a model's performance across all four lookback lengths for
each prediction length).

A. Model Comparison

As the chart in Fig. 4 shows, given the task of predicting 1,
16, 32 and 64 days ahead, our model performed best across
all four tasks. Interestingly, the Vanilla Transformer did not
perform well in the 1-day task (only the RF model performed
worse), in contrast to in the 32day forecasting task, where it
performed better than both non-transformer models. The
SVR model performed surprisingly well as compared to other
models in the 1-day-ahead task and fell to the fifth place in
the 64-day task. The Vanilla Transformer started out in place
4 in 1 day task, to degrade to the last place in 16-day task,
where it remained in 32-day task. In 64-day task, the Vanilla
Transformer performed better than the SVR model only. The
performance differences of the three Transformer models
might indicate that our new tokenization strategy yields
significant performance improvement.

0.4
0.3

0.2

-

0.

16 days 32 days 64 days

0
1 day

EmOurModel mVT mOT mRF mSVR

Fig. 4. Model performance per task. Each bar represents the average of all
experiment results given a model and a task. The lower the MAE value, the
better.

We briefly discuss the impact of lookback window length
on prediction quality. Fig. 5 shows that in the Original
Transformer model, longer lookback windows improve
performance for 32- and 64-day tasks. In contrast, our
model’s performance is less affected by lookback length,
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suggesting that using feature variates as tokens allows the
Transformer to rely more on inter-variate dependencies than
input sequence length. Original transformer only outperforms
ours when it has the largest lookback window.

= Our Model 1 d prediction

= Our Model 16 d prediction

= Our Model 32 d prediction

= Our Model 64 d prediction

Original Transformer 1 d prediction
Original Transformer 16 d pradiction
Original Transformer 32 d prediction
=== Original Transformer 64 d prediction

32d 16d 1d 64 d
lookback window 64d

16d 1d 64 d_ 324d
lookback window 32d

32-5- :
lookback window 16d

1d 64d 164

Fig. 5. Lookback window performance for each task using Our Model (OM)
and the Original Transformer (OT) at different prediction lengths. Each bar
represents the average of all experiments for a specific model, task, and
lookback window length.

B. Dataset Ablation

The dataset ablation study in Fig. 6 showed the changing
quality of separate facets’ contribution to the quality of
forecasts. The {T, C,V} dataset shows the best performance
on 1, 16 and 64-day tasks, whereas the {F, C,V} dataset does
best in the 32-day task. Interestingly, the {F,E,T,C,V}
dataset, while never taking the first spot in any task, saw
improvement over the 1-day, 16-day, and 32-day tasks, to
degrade ever so slightly for the 64-day task. A somewhat
similar behavior was exhibited by the {F,E,C,V} dataset,
whose performance improved precipitously over the 16, 32
and 64-day tasks.

This shows that the contribution of the economic facet E
degrades prediction quality, and the T facet sees the opposite
of this dynamic, as shown in Fig. 6. Additionally, a similar
effect could be at play with the T facet. An assumption could
be made that the T facet (holiday time in summer, winter
Christmas time etc.) plays a more significant role in shorter-
term prediction tasks. The F facet’s contribution could have
been hindered by keeping parameters when calculating
technical indicators for particular day timesteps constant.

When analyzing the performance of each dataset type and
model pair, on each individual task, we can also notice a
relationship where the {E,C,V} dataset tends to perform
better than {F,E,T,C,V}, and both performing worse than
{T,C,V}, as visualised in Fig. 7. As observed above, this
could also be explained by the fact that the technical
indicators are parametrized by static values (e.g., Average
Directional Index (ADX) has its period set to 14 days, and
Absolute Price Oscillator (APO) has the fast period set to 26
and the slow period set to 12 days; see Table Al), and not
adjusted for the lookback window lengths of the respective
experiments. In this case, the financial indicator features
could be detrimental to the prediction quality. The inclusion
of both the F and E facets improves the prediction quality in
the 64-day task as compared to the {E, T, C, V} dataset, which
suggests that the idea of providing both the economic context
and technical indicators for financial time series improves
financial forecasting task performance.
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Fig. 6. Dataset performance per model, over (a) 1, (b) 16, (c) 32, and (d) 64-
day prediction tasks. OT and VT stand for Original Transformer and Vanilla
Transformer, respectively. A bar in each figure represents the average of all
experiment results, given a dataset type, a model and a task. The lower the
MAE value, the better.
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Fig. 7. Dataset performance per task. Each bar represents the average of all
experiment results given a dataset type and a task. The lower the MAE value,
the better.

C. Complexity and Timing

Transformer models generally require significant training
time due to their quadratic complexity. Our model introduces
transpose layers before and after the Transformer,
maintaining a complexity similar to other models. On a V100
GPU, it converges in approximately 8 to 12 h, depending on
the parameters for day-ahead forecasting and the lookback
window.

VIII. CONCLUSION

In summary, our examination of financial time series
forecasting reveals a critical gap in research, particularly in
modeling individual business sectors like the CC sector and
incorporating economic indicators for deeper contextual
insights. To bridge this gap, we introduce a novel dataset and
an innovative Transformer tokenization technique that better
captures the intricate interplays of financial features. By
transposing input time series as tokens, our approach was
tested against various Transformer architectures and baseline
models (SVR, RF). The findings demonstrate that integrating
economic context and tokenizing variates, rather than relying
on common timesteps, significantly boosts forecasting
accuracy. Despite its simplicity, this tokenization method
opens new pathways for exploring and integrating temporal
patterns in financial time series and beyond, leading to more
effective forecasting.

Our dataset is publicly accessible, and future research will
explore its application with other Transformer variants and
the effects of input transposition on self-attention
mechanisms.  Specifically,  alternative = Transformer
architectures like the Triformer [60], Sepformer [61],
SpringNet [19], and Multi-Transformer [16] could enhance
our model’s ability to capture the non-linear and non-
stationary dynamics of stock price movements. The
Triformer’s long-range dependency management and the
Sepformer’s focus on sequential information may provide
insights when combined with our use of multi-variate data as
tokens that emphasize temporal patterns. Additionally,
integrating multi-scale temporal tokens could improve our
model’s ability to capture variations in stock prices across
different time horizons.

Further, various domains have made attempts to leverage
the  Transformer  architecture, including  traffic
management [50], weather and energy consumption
forecasting [S51]. We are interested to integrate the new input

transposition technique to enhance temporal pattern modeling
in these forecasting areas, thereby improving the models'
ability to capture dynamic changes over time.

APPENDIX A
Table Al. Financial indicator feature calculation
Feature Indicator Description Parameters
Fy Accumulation/Distribution Line -
F, On-Balance Volume (OBV) -
F; Average True Range (ATR) period =7
F, Average True Range (ATR) period = 14
Fs Normalized Average True Range (NATR) period =7
Fg Normalized Average True Range (NATR) period = 14
F; True Range (TRANGE) -
Fg Standard Deviation (STDDEV) period =5
Fy Standard Deviation (STDDEV) period = 10
Fio Standard Deviation (STDDEV) period = 14
Fi1 Time Series Forecast (TSF) period =5
Fi, Time Series Forecast (TSF) period = 10
Fis Time Series Forecast (TSF) period = 14
Fia Average Directional Index (ADX) period = 14
Fis Average Directional Index Rating (ADXR) period = 14
Fie Absolute Price Oscillator (APO) ;fif;;?f d::122 6’
Fi, Aroon Indicator (AROON Down) period = 14
Fig Aroon Indicator (AROON Up) period = 14
Fio Aroon Oscillator (AROONOSC) period = 14
Fyo Balance of Power (BOP) -
Fy, Commodity Channel Index (CCI) period = 14
F,, Chande Momentum Oscillator (CMO) period = 14
Fy3 Directional Movement Index (DX) period = 14
Moving Average Convergence Divergence fastperi.od :_12’
Fyy slowperiod = 26,
(MACD) signalperiod =9
F,5 MACD Signal Line -
Fye MACD Histogram -

Table A2. Economic data sources
Releasing Institution Frequency Composite

Indicator Name

Consumer Confidence  Bureau of Economic

Index Analysis Monthly No
0,
Corporate Debt as % of Federal Reserve Quarterly Yes
GDP
Gross Domestic Product Bureau of Ecpnomlc Quarterly No
Analysis
Personal Income and Bureau of Economic
Outlays Analysis Monthly No
Personal Saving Rate Bureau OfEC.Onomlc Monthly No
Analysis
Retail Sales U.S. Census Bureau Monthly Yes
Unemployment Rate Bureau of Labor Monthly No

Statistics
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Table A3. Economic indicator feature calculation

Description
Consumer Confidence Index (CCI)
Consumer Debt Service Payments

Feature Type Feature

Ey

E,

Consumer Confidence &
Financial Obligations

(CDSP)
E; Exports
E Government consumption
4 expenditures and gross investment
Es Gross domestic product
Gross Domestic Product Gross domestic product, current
(GDP) Es dollars
E, Gross private domestic investment
Eg Imports
Ey  Personal consumption expenditures
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Ejo Equals: Personal saving

E,;  Personal consumption expenditures

E;, Personal income
Personal Income and Personal saving as a percentage of

Outlays Exs disposable personal income

Ei4 Personal Savings Rate

Eis Retail Sales

Eig Unemployment Rate

Table A4. Temporal features

Feature Calculation Description
T; Quarter of the year, zero-indexed
T, Month of the year, zero-indexed
T3 Day of the year, zero-indexed, adjusted for leap years
T, Day within the current quarter, zero-indexed
Ts Day of the month, zero-indexed
Te Day of the week, starting from zero (Monday)
Table AS. Proposed hyperparameters
Value Hyperparameter
8 Number of heads
128 Feed-forward network dimensions
128 Model dimensions
1 Number of encoder layers
0.25 Encoder dropout probability
16 Batch size
10 Number of epochs
mse Loss function type
Adam Optimizer type
0.001 Optimizer learning rate
0.0 Optimizer weight decay
ReduceLROnPlateau Scheduler type
0.9 Scheduler factor
7 Scheduler patience
min Scheduler mode
1x10°* Scheduler min. Learning rate
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