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Abstract—Ophthalmologists commonly use retinal fundus 

images for diagnosis. Recently, automation of this process using 
deep learning has gained significant attention. Multiclass 
classification, which distinguishes among multiple eye diseases, 
is more representative of actual clinical settings, however, it 
presents challenges such as limited availability of annotated 
datasets, class imbalance, overlapping clinical features across 
various eye diseases and disease heterogeneity. This study 
develops deep learning models for multiclass classification of 
three major eye diseases—cataracts, diabetic retinopathy, and 
glaucoma—alongside normal cases. A larger and more diverse 
dataset was obtained by combining multiple publicly available, 
well-annotated datasets. Four deep learning models: VGG16, 
Inception-v3, ResNet50 and EfficientNet-B0, were deployed 
using a transfer learning approach. These models achieved test 
accuracies ranging from 74.29% to 78.79%, with ResNet50 
performing the best, achieving an accuracy of 78.79%, precision 
of 80.04%, recall of 78.79%, and an F1-score of 78.76%. The 
results demonstrate the effectiveness of transfer learning for 
multiclass classification of eye diseases. Notably, the models 
were trained and evaluated on a heterogeneous dataset that 
simulates real-world variability in image acquisition, 
highlighting their generalization capabilities and robustness to 
inconsistency. The study provides valuable insights about the 
performance of pre-trained deep learning models under realistic 
conditions, supporting their potential as assistive diagnostic 
tools in actual clinical scenarios. 
 

Keywords—multiclass classification, eye diseases, retinal 
fundus images, transfer learning, Convolutional Neural 
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I. INTRODUCTION 

Visual impairment occurs when certain eye conditions 
affect the visual system and its functioning [1]. It covers a 
range of conditions, from mild visual disturbances to 
complete blindness. According to Ref. [2], there are at least 
2.2 billion people worldwide suffering from some form of 
vision impairment, and in nearly half of these cases, the 
problem could have been prevented. The most prevalent eye 
diseases that cause vision impairment and blindness include 
age-related macular degeneration, cataracts, diabetic 
retinopathy, and glaucoma [2]. Age-related macular 
degeneration results from the deterioration of macula due to 
aging and is prevalent among individuals aged 50 and older 
[2]. Cataracts are caused by clouding that accumulates in the 
lens of the eye and are often linked to the clustering of 
proteins in the eye [3]. While cataracts can develop at any age, 
they are more common in the elderly [2]. Diabetic retinopathy 

arises from chronically high and uncontrolled blood sugar 
levels, which damage the retinal blood vessels. Glaucoma, on 
the other hand, is caused by abnormally high intraocular 
pressure, which progressively damages the optic nerve [1]. 

Early diagnosis and timely treatment are important in 
halting disease progression and preventing blindness. 
However, eye disease detection is a challenging task that 
typically requires years of clinical experience. Retinal fundus 
images, captured by fundus cameras or ophthalmoscopes, are 
one of the key tools that allow the ophthalmologists to detect 
signs of various eye conditions [3, 4]. These images depict 
the retina appearance including blood vessels, macula, fovea 
and optic disc [3]. The manual analysis of these images is 
time-consuming, laborious, and arbitrary, resulting in low 
repeatability [5]. Moreover, ophthalmologists sometimes 
face difficulties in making accurate diagnoses when the 
quality of retinal fundus images is compromised [5]. Several 
challenges complicate eye disease detection from retinal 
fundus images, include the complex and subtle symptom of 
eye diseases, overlapping clinical features especially in the 
early stages, and the vast number of images that need to be 
analyzed [5]. Such factors can lead to misdiagnosis, delays, 
and inconsistent evaluations. 

These challenges have motivated the deployment of deep 
learning-based approaches for automated eye disease 
classification. In real-world settings, ophthalmologists often 
diagnose multiple types of eye diseases; thus, multiclass eye 
diseases classification offers a more realistic representation 
of actual clinical practice. A significant limitation in this area 
is the lack of large, well-annotated dataset [5]. Most publicly 
available datasets consist of only a few hundred to a few 
thousand retinal fundus images, which constrain model 
performance and generalizability, especially when training 
from scratch. 

This study proposes a multiclass classification framework 
for detecting three major eye diseases: cataracts, diabetic 
retinopathy, and glaucoma, using retinal fundus images that 
prioritize both diagnostic performance and real-world 
applicability. The contributions of this study are as follows:  

 We investigate the effectiveness of transfer learning in 
developing robust and generalizable models for retinal 
fundus image classification, particularly in the context 
of multiclass eye disease classification. 

 We construct a larger and more diverse dataset by 
combining multiple publicly available datasets to 
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address the limitations of small or homogeneous 
datasets. This approach better reflects real-world 
variations and inconsistencies in medical imaging.  

 We evaluate the diagnostic performance and 
robustness of four state-of-the-art pre-trained models: 
VGG16, Inception-v3, ResNet50, EfficientNet-B0, 
ensuring balanced evaluation on heterogeneous 
dataset to assess their generalizability. 

II. LITERATURE REVIEW 

Recent years have witnessed growing interest in 
employing deep learning, particularly Convolutional Neural 
Networks (CNNs), for automated classification of eye 
diseases using retinal fundus image [5]. Much of existing 
research has focused on major eye diseases, such as age-
related macular degeneration, cataracts, diabetic retinopathy, 
and glaucoma using color retinal fundus images [6–10], 
Optical Coherence Tomography (OCT) [11] below or 
multimodal imaging approaches [12, 13]. The primary goal 
of these studies is to reduce reliance on manual assessment 
by enabling accurate automated multiclass classification  

Several studies have explored various CNN architectures 
for classifying individual eye diseases. Singh et al. [10] below 
deployed VGG16 models to differentiate between cataracts 
and normal cases, reporting a remarkable accuracy of 96.10%. 
Hemelings et al. [14] employed a pre-trained ResNet50 
model, achieving an accuracy of 94% in classifying glaucoma 
from retinal fundus images. Shoukat et al. [15], on the other 
hand, applied a transfer learning approach for glaucoma 
classification using three pre-trained models: VGG19, 
ResNet50, and EfficientNet-B7. These models were trained 
and evaluated on three different datasets (RIM-ONE, G1020, 
REFUGE). Among them, EfficientNet-B7 demonstrated the 
best overall performance, achieving accuracies of 97% on 
RIM-ONE, 99.2% on G1020, and 99% on REFUGE. 

Thanki [16] introduced a dual learning-based approach that 
integrates deep neural networks with traditional machine 
learning classifiers for the classification of glaucomatous 
retinal fundus images. The proposed system utilizes 
SqueezeNet to extract deep features from color fundus 
images, which are then classified using six different machine 
learning algorithms: k-nearest neighbor, decision tree, 
Support Vector Machine (SVM), random forest, naive bayes, 
and logistic regression.  

Kallel and Echtioui [17] evaluated four pre-trained 
convolutional neural network models—VGG16, VGG19, 
InceptionV3, and DenseNet169—on the APTOS2019 dataset, 
for classification of diabetic retinopathy severity. Among the 
models tested, InceptionV3 achieved the highest 
classification accuracy of 96.88%. Furthermore,  
Sarki et al. [18] proposed a hybrid framework combining 
traditional image processing methods with both pre-trained 
deep learning model and custom CNN model. Their 
experiments, conducted on Messidor, Messidor-2, and 
DRISHTI-GS datasets, showed that the custom CNN trained 
on pre-processed images achieved superior performance. 

In the context of multiclass classification, Chea and 
Nam [19] used ResNet (ResNet50, ResNet101, ResNet152) 
and VGG models (VGG16, VGG19) for classification of 
three prevalent eye diseases: age-related macular 
degeneration, diabetic retinopathy, glaucoma. Guergueb and 

Akhloufi [20] evaluated EfficientNet variants (EfficientNet-
B5, EfficientNet-B6, EfficientNet-B7) and DenseNet models 
(DenseNet121, DenseNet169, DenseNet201) for the 
classification of eight eye disease categories. Among these, 
EfficientNet-B7 demonstrated the highest performance, 
achieving an Area Under the Curve (AUC) of 96.04%.  

Babaqi et al. [21] demonstrated improved multiclass 
accuracy by comparing a custom CNN model (84% accuracy) 
with a pre-trained EfficientNet model (94% accuracy) to 
distinguish between normal eyes and those affected by 
cataracts, diabetic retinopathy, or glaucoma. Additionally, 
Toki et al. [22] introduced a CNN-based architecture named 
RetinalNet-500 and benchmarked its performance against 
several pre-trained models, including Inception-v3, 
MobileNetV2, and Xception, with accuracy scores ranging 
from 95.15% to 97.30%. Cui et al. [23] assessed the 
performance of ResNet50, VGG19, EfficientNet-B0 and 
DenseNet on a relatively small dataset consisting of normal, 
cataracts, diabetic retinopathy, and glaucoma fundus images. 
Among these models, ResNet50 achieved the highest test 
accuracy, reaching 92.91%.  

Tashkandi [24] extended classification to multiple eye 
diseases, including diabetic retinopathy, glaucoma, cataracts, 
high myopia, and age-related macular degeneration—using 
retinal images. Several models were evaluated, including 
traditional machine learning algorithms (SVM and random 
forest) and deep learning architectures (VGG16, 
MobileNetV1, and a hybrid CNN-RNN model). Among these, 
MobileNetV1 achieved the highest accuracy of 98%. 

Muntaqim et al. [25] proposed a multi-stage deep learning 
framework addressing limitations in feature extraction, 
computational efficiency, and disease coverage. Their model 
comprises three stages: initial fine-grained features extraction 
via convolutional layers; features enhancement through two 
parallel convolutional and identity blocks; and features fusion 
and classification using Long Short-Term Memory (LSTM) 
and dense layers. Evaluated on three benchmark datasets 
(OCT2017, Dataset-101, and Retinal OCT C8), the model 
achieved high accuracy—97.52%, 92.97%, 94.81% for 
multiclass classification, and 99.33% for binary classification 
on OCT2017—surpassing several state-of-the-art methods. 

Most recently, multimodal approaches have emerged as a 
growing trend, offering improved diagnostic performance by 
integrating complementary information from multiple data 
sources. Wardhani et al. [26] proposed an early fusion of deep 
learning model combining fundus retinal images, OCT, and 
electronic health records for diabetic retinopathy detection. 
Their approach, which employed Local Binary Pattern (LBP) 
for feature extraction and a LSTM network for classification, 
demonstrated superior AUC of 0.99, outperforming unimodal 
approaches. 

Kang et al. [27] proposed a multimodal deep learning 
framework for identifying retinal vascular diseases that 
require treatment, utilizing a combination of retinal fundus 
images, OCT, and Fluorescein/Indocyanine Green 
Angiography (FA/ICGA). It achieved impressive diagnostic 
performance, with AUC values of 0.996 for myopic choroidal 
neovascularization, 0.995 for diabetic macular edema, 0.990 
for neovascular age-related macular degeneration, 0.959 for 
branch retinal vein occlusion, and 0.988 for central retinal 
vein occlusion. 
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El-Ateif and Idri [12] compared seven state-of-the-art deep 
learning models (VGG19, DenseNet121, InceptionV3, 
InceptionResNetV2, Xception, ResNet50V2, and 
MobileNetV2) for diagnosing diabetic eye diseases (diabetic 
retinopathy, age-related macular degeneration, glaucoma, 
cardiovascular disease) across mono-modality and late fusion 
multimodal imaging approaches. While DenseNet121 and 
ResNet50V2 achieved high accuracy in mono-modality 
(99.57% and 99.51%, respectively), multimodal late fusion of 
retinal fundus photography, OCT, and histology significantly 
improved diagnostic performance, with ResNet50V2 
reaching 100% accuracy. 

While the current research direction demonstrates 
promising potential for deep learning in retinal fundus image 
classification, many existing studies focus on limited-class 
classification and are based on curated datasets with limited 
variability [6, 20, 23]. In real-world clinical settings, retinal 
fundus images may vary in terms of resolution, illumination 
and quality, especially when captured from diverse imaging 
devices [4, 5]. This variability can significantly affect model 
performance, highlighting the need to assess the robustness 
and generalization capability of deep learning models across 
heterogeneous dataset. There remains a need for evaluating 
the robustness and generalization ability of pre-trained 
models across heterogeneous dataset with varied image 
conditions. Moreover, while multimodal approaches, such as 
the integration of fundus images, OCT and electronic health 
records, have shown notable improvements in diagnostic 
performance, they often rely on access to advanced imaging 
technologies. In resource-constrained or underserved regions, 
access to OCT or comprehensive electronic health records 
systems may be limited, making the widespread use of such 
approaches challenging. Therefore, there is a need to develop 
cost-effective and scalable solutions that can perform 
reliability using single-modality data, particularly retinal 
fundus images, to ensure broader clinical applicability in later 
time. 

III. MATERIALS AND METHODS 

This research comprises several sequential stages aimed at 
developing multiclass classification models for the detection 
of eye diseases using retinal fundus images. The key stages 
include data collection, data pre-processing, model training, 
and model evaluation. A visual summary of the entire 
research workflow is presented in Fig. 1, which illustrates the 
step-by-step process adopted in this study. Each stage is 
described in detail in the following subsections. 

A. Data Collection 

This study utilizes retinal fundus images representing four 
classes: cataracts, diabetic retinopathy, glaucoma, and normal 
eyes. Retinal fundus imaging offers a non-invasive, cost 
effective, and widely accessible method for capturing 
detailed views of the retinal, making it suitable for large-scale 
screening and early detection of eye diseases. Acquiring such 
medical imaging data can be time-consuming and laborious 
as it is necessary to rely on domain experts to accurately 
annotate the retinal fundus images.   

 

Fig. 1. Research flow diagram for transfer learning-based models’ 
development for multiclass eye diseases classification. 

 
To address these challenges, we used publicly available, 

well-annotated datasets, which were sourced from online 
databases and datasets provided by other researchers in 
previous studies. The publicly available datasets used in this 
study are as follows: 

1) Eye Disease Retinal Images [28] 
2) Glaucoma Fundus Imaging Dataset [29] 
3) Ocular Disease Intelligence Recognition [30] 
4) Retinal Fundus Multi-disease Image Dataset 

(RFMiD) [31] 
All images were reviewed across sources before pre-

processing and used for subsequent process. The distribution 
of the retinal fundus images among four classes in the 
combined dataset is summarized in Table 1. Fig. 2a–d 
showcase sample retinal fundus images for each respective 
class in the combined dataset. By combining multiple 
publicly available datasets, a larger and comprehensive 
dataset was created to ensure volume and diversity, better 
reflecting the variation of images taken in actual clinical 
settings. 
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Table 1. Distribution of dataset 

Class Number of Images 

Cataracts 1305 

Diabetic retinopathy 2875 

Glaucoma 1636 

Normal 3251 

Total 9067 

 

  
(a) (b) 

  
(c) (d) 

Fig. 2. Sample retinal fundus images representing each class in the combined 
dataset: (a) Cataract, (b) Diabetic Retinopathy, (c) Glaucoma, and (d) Normal. 

B. Data Pre-processing 

While the approach of combining several publicly 
available datasets to obtain a larger dataset effectively 
increased the dataset size, it also introduced inconsistencies 
in image quality and resolution due to differences in data 
sources. Rather than filtering out these inconsistencies, this 
study aims to evaluate the performance of pre-trained deep 
learning models in the presence of such variability, reflecting 
real-world scenarios. This approach enhanced the practical 
relevance of the findings, particularly for deployment of the 
models in diverse clinical settings. 

To minimize the impact of these variations, all fundus 
images underwent a series of pre-processing steps. First, we 
cropped all the retinal fundus images into square shapes, with 
the purpose of removing extraneous noise, particularly the 
black background, and preserving only the relevant fundus 
region. This step helped to improve the focus of the models 
on meaningful anatomical structures. The cropped images 
were then resized to a fixed resolution of 224×224 pixels to 
match the input size requirements of the pre-trained models 
used in this study. 

We randomly split the pre-processed dataset into three 
subsets: a training set, a validation set, and a test set, 
following an 8:1:1 split ratio. The random split ensured that 
data from all classes were proportionally represented in each 
subset. The training set and validation set were used during 
model training, whereas the test set was used to evaluate the 
models’ performance. 

C. Model Training 

This research presented an image classification task 

involving retinal fundus images, and pre-trained deep 
learning models based on CNN architectures, known for their 
high performance in computer vision tasks, were selected. 
Given the limited size of the dataset, transfer learning was 
employed to leverage the knowledge gained from large-scale 
training on large amounts of data such as ImageNet. These 
models, having learned biases and weights during the initial 
training process, can be employed to adapt to new 
classification tasks without the need to train from scratch. In 
this study, four pre-trained deep learning models: VGG16, 
Inception-v3, ResNet-50 and EfficientNet-B0 were 
implemented as they performed fairly well using smaller 
datasets and binary classification in the context of medical 
image classification tasks [6, 9, 19, 23]. These models were 
selected as they are well-established, widely used and offer a 
good balance between computational efficiency and 
performance, making them well-suited for real-world clinical 
applications using diverse data sources. A brief description of 
each model is provided in the following subsections. 

1) VGG16 

The Visual Geometry Group (VGG) architecture was 
developed by [32] and won the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) 2014. The authors 
gradually increased the depth of the network by adding more 
convolution layers. This was made feasible due to the use of 
very small convolution filters (3×3) in every layer, along with 
adjustments to other parameters of the architecture. Among 
VGG variants, VGG16, which consists of 16 layers, gave a 
better performance [32]. 

2) Inception-v3 

The first Inception architecture was introduced by  
Szegedy et al. [33]. GoogLeNet, the initial iteration of 
Inception architecture, was designed to solve the problem of 
limited computational resources for deeper neural networks 
and to increase efficiency by reducing the number of 
parameters without sacrificing accuracy. Inception-v3 is a 
variant of Inception-v2, which added batch normalization in 
the auxiliary classifiers. This version not only normalized the 
convolutions but also applied normalization to the fully 
connected layer of the auxiliary classifier. Inception-v3 
outperformed prior architectures with lower computational 
cost [34]. 

3) ResNet50 

The Residual Network (ResNet), introduced by  
Tan et al. [35], was a deep CNN architecture designed to 
address the problem of vanishing and exploding gradients in 
deep neural networks. It employs a technique known as skip 
connections, allowing the network to learn residual functions. 
The first ResNet architecture, ResNet34, converted a plain 
network into its residual network counterpart by inserting 
skip connections. The authors later developed a larger 
architecture using a stacked 3 layers instead of the 2 layers 
used in ResNet34. Therefore, each 2-layer block in ResNet34 
was replaced by a 3-layer bottleneck block, forming the 
ResNet50 architecture [35]. 

4) EfficientNet-B0 

EfficientNet was developed by [36] with the introduction 
of a new scaling method called compound scaling. They 
identified that better performance could be achieved by 
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carefully balancing the depth, width, and resolution of the 
network. EfficientNet-B0 was the first model to implement 
compound scaling. The EfficientNet family of models 
outperformed earlier CNNs in terms of accuracy and 
efficiency [36]. 

These four pre-trained deep learning models were 
implemented using Python and the Keras Application 
Programming Interface (API) with TensorFlow as the 
backend. All models were initialized with weights pre-trained 
on the ImageNet dataset and the top layers were fine-tuned 
on the combined dataset. The models were trained for 10 
epochs using Adam optimizer with a learning rate of 0.001 
and a batch size of 64. The categorical cross entropy was used 
as the loss function for this multiclass classification task. The 
training was conducted under the same configuration to 
ensure a consistent and fair comparison among four models 
and facilitated subsequent performance evaluation. 

D. Model Evaluation 

The performances of the trained models were evaluated 
using several evaluation metrics, including accuracy, 
precision, recall, and F1-score. These metrics were derived 
from the values of True Positives (TP), True Negatives (TN), 
False Positives (FP), and false Negatives (FN). 

1) Accuracy measures the overall correctness of model’s 
predictions, using Eq. (1). 

 Accuracy = 
TP+TN

TP+TN+FP+FN
  (1) 

2) Precision quantifies the model’s ability to identify 
positive instances out of the total predicted positives 
correctly, using Eq. (2). 

 Precision = 
TP

TP+FP
  (2) 

3) Recall measures the model’s ability to classify 
positive instances out of the total actual positives 
correctly, as shown in Eq. (3). 

 Recall = 
TP

TP+FN
 (3) 

4) F1-score calculates the harmonic mean between 
precision and recall using Eq. (4) 

 F1-score = 2 × 
Precision×Recall
Precision+Recall

 (4) 

Additionally, confusion matrices were generated for each 
model to visualize class-specific performance and identify 
misclassification patterns. 

IV. RESULT AND DISCUSSION 

This section presents and analyzes the results of the four 
pre-trained deep learning models on multiclass classification 
of eye diseases. Before training on the combined dataset, the 
models were first evaluated on the test set to assess their 
baseline performance. Subsequently, the models were trained 
using the combined dataset and re-evaluated using the same 
test set. The performance metrics of the pre-trained models 
before and after training on combined dataset are presented 
in Table 2. The models achieved relatively low test accuracy, 
ranging from 13.41% for ResNet50 to 29.78% for  
Inception-v3, indicating a significant domain gap between 
ImageNet and combined dataset. After training on combined 

dataset, the results demonstrate a clear improvement in test 
accuracy for all four models, with ResNet50 achieving the 
highest value at 78.79%, followed by VGG (76.26%), 
EfficientNet-B0 (75.05%), and Inception-v3 (74.29%). The 
training and validation accuracy and loss plots are shown in 
Fig. 3. The red line in each figure represents the training 
accuracy and loss of each model while green line represents 
the validation accuracy and loss of the models. 

 
Table 2. Comparison of the pre-trained models before and after training 

using combined dataset 
Results 

 
 

Model 

Before Training with 
Combined Dataset 

After Training with 
Combined Dataset 

Test Accuracy 
(%) 

Test 
Loss 

Test 
Accuracy (%) 

Test 
Loss 

VGG16 29.56 3.75 76.26 0.80 

Inception-v3 29.78 1.41 74.29 0.74 

ResNet50 13.41 2.91 78.79 0.76 

EfficientNet-B0 23.85 1.48 75.05 0.57 

 
According to the performance of each model on the test set 

shown in Table 3, all models achieved classification 
accuracies exceeding 70%, indicating the effectiveness of 
transfer learning using ImageNet pre-trained weights in the 
context of eye disease classification. ResNet50 demonstrated 
the best overall performance among the evaluated models, 
achieving the highest test accuracy of 78.79%, a precision of 
80.04%, recall of 78.79%, and F1-score of 78.76%. These 
results suggest that ResNet50 was not only accurate in its 
predictions but also balanced in its sensitivity and specificity 
across all classes. Following ResNet50, VGG16 achieved a 
test accuracy of 76.26%, with a precision of 78.67%, recall of 
76.26%, and F1-score of 76.44%. EfficientNet-B0 and 
Inception-v3 also performed competitively, with accuracies 
of 75.05% and 74.29%, respectively. These results highlight 
the ability of deep CNN architecture to generalize well to 
complex medical image classification tasks. 

 
Table 3. Performances of pre-trained deep learning models 

Pre-trained 
Model 

Accuracy 
(%) 

Recall 
(%) 

Precision 
(%) 

F1-score 
(%) 

VGG16 76.26 76.26 78.67 76.44 

Inception-v3 74.29 74.29 74.48 74.37 

ResNet50 78.79 78.79 80.04 78.76 

EfficientNet-B0 75.05 75.05 78.08 74.83 

 
Fig. 4 shows the confusion matrix for each of the pre-

trained models in predicting the classes of retinal fundus 
images in test set. All the four pre-trained models exhibited 
relatively low misclassification rates for cataracts and 
glaucoma classes. However, a notable number of 
misclassifications occurred between diabetic retinopathy and 
normal retinal fundus images. As observed in the confusion 
matrices, the models tended to misclassify diabetic 
retinopathy images as normal, which indicates overlapping 
features or subtle abnormalities that were not adequately 
captured during training. Specifically, VGG16, Inception-v3, 
ResNet50, and EfficientNet-B0 incorrectly classified 30, 62, 
81 and 113 out of 288 diabetic retinopathy fundus images as 
normal, respectively. This trend suggests that more advanced 
feature augmentation may be required to improve the 
classification performance for diabetic retinopathy. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Training and validation accuracy and loss plots for four models: (a) VGG16, (b) Inception-v3, (c) ResNet50, and (d) EfficientNet-B0. 
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(a) (b) 

  
(c) (d) 

Fig. 4. Confusion matrices for four models: (a) VGG16, (b) Inception-v3, (c) ResNet50, and (d) EfficientNet-B0. 
 

V. CONCLUSION 

This study demonstrated that using transfer learning 
approach, deep learning models can effectively perform 
multiclass classification of eye diseases, specifically cataracts, 
diabetic retinopathy, glaucoma, and normal retinal fundus 
images. All four pre-trained deep learning models deployed 
in this study achieved encouraging accuracies above 70%, 
with ResNet50 performing the best at 78.79%. While there is 
still room for improvement, these results show the potential 
of pre-trained models as assistive tools in the early screening 
of multiple eye diseases.  

The use of transfer learning also proved suitable for 
scenarios with limited computational resources, allowing for 
efficient model development without the need for extensive 
training from scratch. A larger and more diverse dataset was 
obtained by combining several publicly available datasets, 
contributing to improved generalization of the models, 
though this also presented challenges in terms of maintaining 
higher accuracy. Beyond achieving competitive performance, 
this study highlights the generalization capability of pre-
trained deep learning models across heterogeneous retinal 
fundus image data. By training and evaluating models on a 

combined dataset with inherent variability and 
inconsistencies, we closely simulate real-world clinical 
setting. The models’ ability to maintain consistent 
performance under these conditions reinforces their potential 
for practical deployments in computer-aided systems. This 
study offers a practical and scalable solution for automated 
eye disease screening, particularly in settings with limited 
access to advanced imaging technologies. 

For future work, the performance of the model may be 
further enhanced through various computer vision techniques, 
such as improved image pre-processing (e.g., illumination 
correction, noise reduction), advanced feature enhancement, 
robust data augmentation strategies to address class 
imbalance and increase model generalization. Additionally, 
integrating advanced deep learning techniques such as 
attention mechanisms, transformer-based architectures, or 
ensemble learning, could improve feature discrimination and 
classification accuracy. Future research may also explore 
domain adaptation techniques to reduce performance drops 
when deploying models across different populations or 
imaging devices. Finally, real-world validation through 
prospective clinical studies will be essential to ensure the 
reliability and clinical utility of the proposed system. 
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