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Abstract—Ophthalmologists commonly use retinal fundus
images for diagnosis. Recently, automation of this process using
deep learning has gained significant attention. Multiclass
classification, which distinguishes among multiple eye diseases,
is more representative of actual clinical settings, however, it
presents challenges such as limited availability of annotated
datasets, class imbalance, overlapping clinical features across
various eye diseases and disease heterogeneity. This study
develops deep learning models for multiclass classification of
three major eye diseases—cataracts, diabetic retinopathy, and
glaucoma—alongside normal cases. A larger and more diverse
dataset was obtained by combining multiple publicly available,
well-annotated datasets. Four deep learning models: VGG16,
Inception-v3, ResNet50 and EfficientNet-B0, were deployed
using a transfer learning approach. These models achieved test
accuracies ranging from 74.29% to 78.79%, with ResNetS0
performing the best, achieving an accuracy of 78.79%, precision
of 80.04%, recall of 78.79%, and an F1-score of 78.76%. The
results demonstrate the effectiveness of transfer learning for
multiclass classification of eye diseases. Notably, the models
were trained and evaluated on a heterogeneous dataset that
simulates real-world variability in image acquisition,
highlighting their generalization capabilities and robustness to
inconsistency. The study provides valuable insights about the
performance of pre-trained deep learning models under realistic
conditions, supporting their potential as assistive diagnostic
tools in actual clinical scenarios.

Keywords—multiclass classification, eye diseases, retinal
fundus images, transfer learning, Convolutional Neural
Networks (CNNs), pre-trained deep learning models

I. INTRODUCTION

Visual impairment occurs when certain eye conditions
affect the visual system and its functioning [1]. It covers a
range of conditions, from mild visual disturbances to
complete blindness. According to Ref. [2], there are at least
2.2 billion people worldwide suffering from some form of
vision impairment, and in nearly half of these cases, the
problem could have been prevented. The most prevalent eye
diseases that cause vision impairment and blindness include
age-related macular degeneration, cataracts, diabetic
retinopathy, and glaucoma [2]. Age-related macular
degeneration results from the deterioration of macula due to
aging and is prevalent among individuals aged 50 and older
[2]. Cataracts are caused by clouding that accumulates in the
lens of the eye and are often linked to the clustering of
proteins in the eye [3]. While cataracts can develop at any age,
they are more common in the elderly [2]. Diabetic retinopathy
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arises from chronically high and uncontrolled blood sugar
levels, which damage the retinal blood vessels. Glaucoma, on
the other hand, is caused by abnormally high intraocular
pressure, which progressively damages the optic nerve [1].

Early diagnosis and timely treatment are important in
halting disease progression and preventing blindness.
However, eye disease detection is a challenging task that
typically requires years of clinical experience. Retinal fundus
images, captured by fundus cameras or ophthalmoscopes, are
one of the key tools that allow the ophthalmologists to detect
signs of various eye conditions [3, 4]. These images depict
the retina appearance including blood vessels, macula, fovea
and optic disc [3]. The manual analysis of these images is
time-consuming, laborious, and arbitrary, resulting in low
repeatability [5]. Moreover, ophthalmologists sometimes
face difficulties in making accurate diagnoses when the
quality of retinal fundus images is compromised [5]. Several
challenges complicate eye disease detection from retinal
fundus images, include the complex and subtle symptom of
eye diseases, overlapping clinical features especially in the
early stages, and the vast number of images that need to be
analyzed [5]. Such factors can lead to misdiagnosis, delays,
and inconsistent evaluations.

These challenges have motivated the deployment of deep
learning-based approaches for automated eye disease
classification. In real-world settings, ophthalmologists often
diagnose multiple types of eye diseases; thus, multiclass eye
diseases classification offers a more realistic representation
of actual clinical practice. A significant limitation in this area
is the lack of large, well-annotated dataset [5]. Most publicly
available datasets consist of only a few hundred to a few
thousand retinal fundus images, which constrain model
performance and generalizability, especially when training
from scratch.

This study proposes a multiclass classification framework
for detecting three major eye diseases: cataracts, diabetic
retinopathy, and glaucoma, using retinal fundus images that
prioritize both diagnostic performance and real-world
applicability. The contributions of this study are as follows:

e  Weinvestigate the effectiveness of transfer learning in

developing robust and generalizable models for retinal
fundus image classification, particularly in the context
of multiclass eye disease classification.

e We construct a larger and more diverse dataset by

combining multiple publicly available datasets to
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address the limitations of small or homogenecous
datasets. This approach better reflects real-world
variations and inconsistencies in medical imaging.

e We evaluate the diagnostic performance and
robustness of four state-of-the-art pre-trained models:
VGG16, Inception-v3, ResNet50, EfficientNet-BO,
ensuring balanced evaluation on heterogeneous
dataset to assess their generalizability.

II. LITERATURE REVIEW

Recent years have witnessed growing interest in
employing deep learning, particularly Convolutional Neural
Networks (CNNs), for automated classification of eye
diseases using retinal fundus image [5]. Much of existing
research has focused on major eye diseases, such as age-
related macular degeneration, cataracts, diabetic retinopathy,
and glaucoma using color retinal fundus images [6-10],
Optical Coherence Tomography (OCT) [11] below or
multimodal imaging approaches [12, 13]. The primary goal
of these studies is to reduce reliance on manual assessment
by enabling accurate automated multiclass classification

Several studies have explored various CNN architectures
for classifying individual eye diseases. Singh et al. [10] below
deployed VGG16 models to differentiate between cataracts
and normal cases, reporting a remarkable accuracy of 96.10%.
Hemelings et al. [14] employed a pre-trained ResNet50
model, achieving an accuracy of 94% in classifying glaucoma
from retinal fundus images. Shoukat et al. [15], on the other
hand, applied a transfer learning approach for glaucoma
classification using three pre-trained models: VGGI9,
ResNet50, and EfficientNet-B7. These models were trained
and evaluated on three different datasets (RIM-ONE, G1020,
REFUGE). Among them, EfficientNet-B7 demonstrated the
best overall performance, achieving accuracies of 97% on
RIM-ONE, 99.2% on G1020, and 99% on REFUGE.

Thanki [16] introduced a dual learning-based approach that
integrates deep neural networks with traditional machine
learning classifiers for the classification of glaucomatous
retinal fundus images. The proposed system utilizes
SqueezeNet to extract deep features from color fundus
images, which are then classified using six different machine
learning algorithms: k-nearest neighbor, decision tree,
Support Vector Machine (SVM), random forest, naive bayes,
and logistic regression.

Kallel and Echtioui [17] evaluated four pre-trained
convolutional neural network models—VGG16, VGG19,
InceptionV3, and DenseNet1 69—on the APTOS2019 dataset,
for classification of diabetic retinopathy severity. Among the
models tested, InceptionV3 achieved the highest
classification  accuracy of  96.88%.  Furthermore,
Sarki et al. [18] proposed a hybrid framework combining
traditional image processing methods with both pre-trained
deep learning model and custom CNN model. Their
experiments, conducted on Messidor, Messidor-2, and
DRISHTI-GS datasets, showed that the custom CNN trained
on pre-processed images achieved superior performance.

In the context of multiclass classification, Chea and
Nam [19] used ResNet (ResNet50, ResNet101, ResNet152)
and VGG models (VGG16, VGG19) for classification of
three prevalent eye diseases: age-related macular
degeneration, diabetic retinopathy, glaucoma. Guergueb and
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Akhloufi [20] evaluated EfficientNet variants (EfficientNet-
BS5, EfficientNet-B6, EfficientNet-B7) and DenseNet models
(DenseNet121, DenseNetl69, DenseNet201) for the
classification of eight eye disease categories. Among these,
EfficientNet-B7 demonstrated the highest performance,
achieving an Area Under the Curve (AUC) of 96.04%.

Babaqi ef al. [21] demonstrated improved multiclass
accuracy by comparing a custom CNN model (84% accuracy)
with a pre-trained EfficientNet model (94% accuracy) to
distinguish between normal eyes and those affected by
cataracts, diabetic retinopathy, or glaucoma. Additionally,
Toki et al. [22] introduced a CNN-based architecture named
RetinalNet-500 and benchmarked its performance against
several pre-trained models, including Inception-v3,
MobileNetV2, and Xception, with accuracy scores ranging
from 95.15% to 97.30%. Cui et al. [23] assessed the
performance of ResNet50, VGG19, EfficientNet-BO and
DenseNet on a relatively small dataset consisting of normal,
cataracts, diabetic retinopathy, and glaucoma fundus images.
Among these models, ResNet50 achieved the highest test
accuracy, reaching 92.91%.

Tashkandi [24] extended classification to multiple eye
diseases, including diabetic retinopathy, glaucoma, cataracts,
high myopia, and age-related macular degeneration—using
retinal images. Several models were evaluated, including
traditional machine learning algorithms (SVM and random
forest) and deep learning architectures (VGGI6,
MobileNetV1, and a hybrid CNN-RNN model). Among these,
MobileNetV1 achieved the highest accuracy of 98%.

Muntaqim et al. [25] proposed a multi-stage deep learning
framework addressing limitations in feature extraction,
computational efficiency, and disease coverage. Their model
comprises three stages: initial fine-grained features extraction
via convolutional layers; features enhancement through two
parallel convolutional and identity blocks; and features fusion
and classification using Long Short-Term Memory (LSTM)
and dense layers. Evaluated on three benchmark datasets
(OCT2017, Dataset-101, and Retinal OCT CS8), the model
achieved high accuracy—97.52%, 92.97%, 94.81% for
multiclass classification, and 99.33% for binary classification
on OCT2017—surpassing several state-of-the-art methods.

Most recently, multimodal approaches have emerged as a
growing trend, offering improved diagnostic performance by
integrating complementary information from multiple data
sources. Wardhani et al. [26] proposed an early fusion of deep
learning model combining fundus retinal images, OCT, and
electronic health records for diabetic retinopathy detection.
Their approach, which employed Local Binary Pattern (LBP)
for feature extraction and a LSTM network for classification,
demonstrated superior AUC of 0.99, outperforming unimodal
approaches.

Kang et al. [27] proposed a multimodal deep learning
framework for identifying retinal vascular diseases that
require treatment, utilizing a combination of retinal fundus
images, OCT, and Fluorescein/Indocyanine Green
Angiography (FA/ICGA). It achieved impressive diagnostic
performance, with AUC values of 0.996 for myopic choroidal
neovascularization, 0.995 for diabetic macular edema, 0.990
for neovascular age-related macular degeneration, 0.959 for
branch retinal vein occlusion, and 0.988 for central retinal
vein occlusion.
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El-Ateif and Idri [ 12] compared seven state-of-the-art deep
learning models (VGGI19, DenseNetl21, InceptionV3,
InceptionResNetV2, Xception, ResNet50V2, and
MobileNetV?2) for diagnosing diabetic eye diseases (diabetic
retinopathy, age-related macular degeneration, glaucoma,
cardiovascular disease) across mono-modality and late fusion
multimodal imaging approaches. While DenseNetl121 and
ResNet50V2 achieved high accuracy in mono-modality
(99.57% and 99.51%, respectively), multimodal late fusion of
retinal fundus photography, OCT, and histology significantly
improved diagnostic performance, with ResNet5S0V2
reaching 100% accuracy.

While the current research direction demonstrates
promising potential for deep learning in retinal fundus image
classification, many existing studies focus on limited-class
classification and are based on curated datasets with limited
variability [6, 20, 23]. In real-world clinical settings, retinal
fundus images may vary in terms of resolution, illumination
and quality, especially when captured from diverse imaging
devices [4, 5]. This variability can significantly affect model
performance, highlighting the need to assess the robustness
and generalization capability of deep learning models across
heterogeneous dataset. There remains a need for evaluating
the robustness and generalization ability of pre-trained
models across heterogeneous dataset with varied image
conditions. Moreover, while multimodal approaches, such as
the integration of fundus images, OCT and electronic health
records, have shown notable improvements in diagnostic
performance, they often rely on access to advanced imaging
technologies. In resource-constrained or underserved regions,
access to OCT or comprehensive electronic health records
systems may be limited, making the widespread use of such
approaches challenging. Therefore, there is a need to develop
cost-effective and scalable solutions that can perform
reliability using single-modality data, particularly retinal
fundus images, to ensure broader clinical applicability in later
time.

III. MATERIALS AND METHODS

This research comprises several sequential stages aimed at
developing multiclass classification models for the detection
of eye diseases using retinal fundus images. The key stages
include data collection, data pre-processing, model training,
and model evaluation. A visual summary of the entire
research workflow is presented in Fig. 1, which illustrates the
step-by-step process adopted in this study. Each stage is
described in detail in the following subsections.

A. Data Collection

This study utilizes retinal fundus images representing four
classes: cataracts, diabetic retinopathy, glaucoma, and normal
eyes. Retinal fundus imaging offers a non-invasive, cost
effective, and widely accessible method for capturing
detailed views of the retinal, making it suitable for large-scale
screening and early detection of eye diseases. Acquiring such
medical imaging data can be time-consuming and laborious
as it is necessary to rely on domain experts to accurately
annotate the retinal fundus images.
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Fig. 1. Research flow diagram for transfer learning-based models’
development for multiclass eye diseases classification.

To address these challenges, we used publicly available,
well-annotated datasets, which were sourced from online
databases and datasets provided by other researchers in
previous studies. The publicly available datasets used in this
study are as follows:

1) Eye Disease Retinal Images [28]

2) Glaucoma Fundus Imaging Dataset [29]

3) Ocular Disease Intelligence Recognition [30]

4) Retinal Fundus Multi-disease Image Dataset

(RFMiD) [31]

All images were reviewed across sources before pre-
processing and used for subsequent process. The distribution
of the retinal fundus images among four classes in the
combined dataset is summarized in Table 1. Fig. 2a—d
showcase sample retinal fundus images for each respective
class in the combined dataset. By combining multiple
publicly available datasets, a larger and comprehensive
dataset was created to ensure volume and diversity, better
reflecting the variation of images taken in actual clinical
settings.
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Table 1. Distribution of dataset

Class Number of Images
Cataracts 1305
Diabetic retinopathy 2875
Glaucoma 1636
Normal 3251
Total 9067

(©
Fig. 2. Sample retinal fundus images representing each class in the combined
dataset: (a) Cataract, (b) Diabetic Retinopathy, (c) Glaucoma, and (d) Normal.

(d)

B. Data Pre-processing

While the approach of combining several publicly
available datasets to obtain a larger dataset effectively
increased the dataset size, it also introduced inconsistencies
in image quality and resolution due to differences in data
sources. Rather than filtering out these inconsistencies, this
study aims to evaluate the performance of pre-trained deep
learning models in the presence of such variability, reflecting
real-world scenarios. This approach enhanced the practical
relevance of the findings, particularly for deployment of the
models in diverse clinical settings.

To minimize the impact of these variations, all fundus
images underwent a series of pre-processing steps. First, we
cropped all the retinal fundus images into square shapes, with
the purpose of removing extraneous noise, particularly the
black background, and preserving only the relevant fundus
region. This step helped to improve the focus of the models
on meaningful anatomical structures. The cropped images
were then resized to a fixed resolution of 224x224 pixels to
match the input size requirements of the pre-trained models
used in this study.

We randomly split the pre-processed dataset into three
subsets: a training set, a validation set, and a test set,
following an 8:1:1 split ratio. The random split ensured that
data from all classes were proportionally represented in each
subset. The training set and validation set were used during
model training, whereas the test set was used to evaluate the
models’ performance.

C. Model Training
This research presented an image classification task
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involving retinal fundus images, and pre-trained deep
learning models based on CNN architectures, known for their
high performance in computer vision tasks, were selected.
Given the limited size of the dataset, transfer learning was
employed to leverage the knowledge gained from large-scale
training on large amounts of data such as ImageNet. These
models, having learned biases and weights during the initial
training process, can be employed to adapt to new
classification tasks without the need to train from scratch. In
this study, four pre-trained deep learning models: VGG16,
Inception-v3, ResNet-50 and EfficientNet-BO were
implemented as they performed fairly well using smaller
datasets and binary classification in the context of medical
image classification tasks [6, 9, 19, 23]. These models were
selected as they are well-established, widely used and offer a
good balance between computational efficiency and
performance, making them well-suited for real-world clinical
applications using diverse data sources. A brief description of
each model is provided in the following subsections.

1) VGGI6

The Visual Geometry Group (VGG) architecture was
developed by [32] and won the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2014. The authors
gradually increased the depth of the network by adding more
convolution layers. This was made feasible due to the use of
very small convolution filters (3x3) in every layer, along with
adjustments to other parameters of the architecture. Among
VGG variants, VGG16, which consists of 16 layers, gave a
better performance [32].

2) Inception-v3

The first Inception architecture was introduced by
Szegedy et al. [33]. GooglLeNet, the initial iteration of
Inception architecture, was designed to solve the problem of
limited computational resources for deeper neural networks
and to increase efficiency by reducing the number of
parameters without sacrificing accuracy. Inception-v3 is a
variant of Inception-v2, which added batch normalization in
the auxiliary classifiers. This version not only normalized the
convolutions but also applied normalization to the fully
connected layer of the auxiliary classifier. Inception-v3
outperformed prior architectures with lower computational
cost [34].

3) ResNet50

The Residual Network (ResNet), introduced by
Tan et al. [35], was a deep CNN architecture designed to
address the problem of vanishing and exploding gradients in
deep neural networks. It employs a technique known as skip
connections, allowing the network to learn residual functions.
The first ResNet architecture, ResNet34, converted a plain
network into its residual network counterpart by inserting
skip connections. The authors later developed a larger
architecture using a stacked 3 layers instead of the 2 layers
used in ResNet34. Therefore, each 2-layer block in ResNet34
was replaced by a 3-layer bottleneck block, forming the
ResNet50 architecture [35].

4) EfficientNet-B0

EfficientNet was developed by [36] with the introduction
of a new scaling method called compound scaling. They
identified that better performance could be achieved by
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carefully balancing the depth, width, and resolution of the
network. EfficientNet-BO was the first model to implement
compound scaling. The EfficientNet family of models
outperformed earlier CNNs in terms of accuracy and
efficiency [36].

These four pre-trained deep learning models were
implemented using Python and the Keras Application
Programming Interface (API) with TensorFlow as the
backend. All models were initialized with weights pre-trained
on the ImageNet dataset and the top layers were fine-tuned
on the combined dataset. The models were trained for 10
epochs using Adam optimizer with a learning rate of 0.001
and a batch size of 64. The categorical cross entropy was used
as the loss function for this multiclass classification task. The
training was conducted under the same configuration to
ensure a consistent and fair comparison among four models
and facilitated subsequent performance evaluation.

D. Model Evaluation

The performances of the trained models were evaluated
using several evaluation metrics, including accuracy,
precision, recall, and F1-score. These metrics were derived
from the values of True Positives (TP), True Negatives (TN),
False Positives (FP), and false Negatives (FN).

1) Accuracy measures the overall correctness of model’s
predictions, using Eq. (1).
TP+TN

ACCUACY = TN PP W

2) Precision quantifies the model’s ability to identify

positive instances out of the total predicted positives

correctly, using Eq. (2).

Precision = TPiFP 2)

3) Recall measures the model’s ability to classify

positive instances out of the total actual positives
correctly, as shown in Eq. (3).

Recall = TPIFN 3)

4) Fl-score calculates the harmonic mean between

precision and recall using Eq. (4)

PrecisionxRecall

Fl-score =2 x Precision+Recall

“

Additionally, confusion matrices were generated for each
model to visualize class-specific performance and identify
misclassification patterns.

IV. RESULT AND DISCUSSION

This section presents and analyzes the results of the four
pre-trained deep learning models on multiclass classification
of eye diseases. Before training on the combined dataset, the
models were first evaluated on the test set to assess their
baseline performance. Subsequently, the models were trained
using the combined dataset and re-evaluated using the same
test set. The performance metrics of the pre-trained models
before and after training on combined dataset are presented
in Table 2. The models achieved relatively low test accuracy,
ranging from 13.41% for ResNet50 to 29.78% for
Inception-v3, indicating a significant domain gap between
ImageNet and combined dataset. After training on combined

dataset, the results demonstrate a clear improvement in test
accuracy for all four models, with ResNet50 achieving the
highest value at 78.79%, followed by VGG (76.26%),
EfficientNet-BO (75.05%), and Inception-v3 (74.29%). The
training and validation accuracy and loss plots are shown in
Fig. 3. The red line in each figure represents the training
accuracy and loss of each model while green line represents
the validation accuracy and loss of the models.

Table 2. Comparison of the pre-trained models before and after training
using combined dataset

Results Before Training with After Training with
Combined Dataset Combined Dataset
Test Accuracy  Test Test Test
Model (%) Loss  Accuracy (%)  Loss
VGG16 29.56 3.75 76.26 0.80
Inception-v3 29.78 141 74.29 0.74
ResNet50 13.41 291 78.79 0.76
EfficientNet-BO 23.85 1.48 75.05 0.57

According to the performance of each model on the test set
shown in Table 3, all models achieved classification
accuracies exceeding 70%, indicating the effectiveness of
transfer learning using ImageNet pre-trained weights in the
context of eye disease classification. ResNet50 demonstrated
the best overall performance among the evaluated models,
achieving the highest test accuracy of 78.79%, a precision of
80.04%, recall of 78.79%, and F1-score of 78.76%. These
results suggest that ResNet50 was not only accurate in its
predictions but also balanced in its sensitivity and specificity
across all classes. Following ResNet50, VGG16 achieved a
test accuracy of 76.26%, with a precision of 78.67%, recall of
76.26%, and Fl-score of 76.44%. EfficientNet-BO and
Inception-v3 also performed competitively, with accuracies
of 75.05% and 74.29%, respectively. These results highlight
the ability of deep CNN architecture to generalize well to
complex medical image classification tasks.

Table 3. Performances of pre-trained deep learning models

Pre-trained Accuracy Recall Precision F1-score
Model (%) (%) (%) (%)
VGG16 76.26 76.26 78.67 76.44
Inception-v3 74.29 74.29 74.48 74.37
ResNetS0 78.79 78.79 80.04 78.76
EfficientNet-B0O 75.05 75.05 78.08 74.83
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Fig. 4 shows the confusion matrix for each of the pre-
trained models in predicting the classes of retinal fundus
images in test set. All the four pre-trained models exhibited
relatively low misclassification rates for cataracts and
glaucoma classes. However, a notable number of
misclassifications occurred between diabetic retinopathy and
normal retinal fundus images. As observed in the confusion
matrices, the models tended to misclassify diabetic
retinopathy images as normal, which indicates overlapping
features or subtle abnormalities that were not adequately
captured during training. Specifically, VGG16, Inception-v3,
ResNet50, and EfficientNet-BO0 incorrectly classified 30, 62,
81 and 113 out of 288 diabetic retinopathy fundus images as
normal, respectively. This trend suggests that more advanced
feature augmentation may be required to improve the
classification performance for diabetic retinopathy.



International Journal of Computer Theory and Engineering, Vol. 17, No. 4, 2025

Training and Validation Loss

12 === Training loss
= Validation loss
® Dbestepoch =4

0.8

06 \./

Loss

04
0.2
2 4 6 8 10
Epochs
Training and Validation Loss
=== Training loss
== Validation loss
12 @® Dbestepoch=6
1.0
2
=]
=08
0.6
0.4
2 4 6 8 10
Epochs
Training and Validation Loss
= Training loss
1.0 = \/alidation loss
i @® bestepoch=3
0.8
Z
‘_]()Aﬁ
0.4
0.2
2 4 6 8 10
Epochs

Training and Validation Loss
=== Training loss
1.2 === Validation loss
@® Dbestepoch =9

1.0
2
=]
8 0.9
0.8
0.7
0.6
2 4 6 8 10
Epochs

0.90

0.85

0.80

0.75

Accuracv

0.70

0.65

0.60

@

0.85

0.80

0.75

Accuracy

0.60

0.55

(b

0.95

0.90

Accuracy

0.70
0.65

0.60

0.75

0.70

(d

Training and Validation Accuracy

== Training Accuracy
= \/alidation Accuracy
@ bestepoch= §

Epochs

Training and Validation Accuracy

=== Training Accuracy
= Validation Accuracy
@ bestepoch= 6

Epochs

Training and Validation Accuracy

== Training Accuracy
w——\/alidation Accuracy
@® bestepoch= 8§

Epochs

Training and Validation Accuracy

= Training Accuracy
= \/alidation Accuracy
@ bestepoch=§

2 4 6 8 10
Epochs

Fig. 3. Training and validation accuracy and loss plots for four models: (a) VGG16, (b) Inception-v3, (c) ResNet50, and (d) EfficientNet-B0.
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Fig. 4. Confusion matrices for four models: (a) VGG16, (b) Inception-v3, (c) ResNet50, and (d) EfficientNet-B0.

V. CONCLUSION

This study demonstrated that using transfer learning
approach, deep learning models can effectively perform
multiclass classification of eye diseases, specifically cataracts,
diabetic retinopathy, glaucoma, and normal retinal fundus
images. All four pre-trained deep learning models deployed
in this study achieved encouraging accuracies above 70%,
with ResNet50 performing the best at 78.79%. While there is
still room for improvement, these results show the potential
of pre-trained models as assistive tools in the early screening
of multiple eye diseases.

The use of transfer learning also proved suitable for
scenarios with limited computational resources, allowing for
efficient model development without the need for extensive
training from scratch. A larger and more diverse dataset was
obtained by combining several publicly available datasets,
contributing to improved generalization of the models,
though this also presented challenges in terms of maintaining
higher accuracy. Beyond achieving competitive performance,
this study highlights the generalization capability of pre-
trained deep learning models across heterogeneous retinal
fundus image data. By training and evaluating models on a

cataracts 111 9 6 5
200
ﬁ diabetic retinopathy 0 219 7 62 150
O
E
© glaucoma 6 18 107 34 R0
<
50
normal 2 68 17 239
0
2 Z £ 2
g % g g
i o 3 2
L
]
o
n
:a .
Predicted Class
(b)
cataracts 114 2 7 8 250
200
ﬁ diabetic retinopathy 3 167 5 113
8 150
©
2 I 3 7 110 45
aucoma
<Lf 9 100
normal 3 23 292 20
g 2
I o ) E
i) 5] H 2
¢} £ el
fé (=)
L
@
o
"
“G .
Predicted Class
(d)
combined dataset with inherent variability and

inconsistencies, we closely simulate real-world -clinical
setting. The models’ ability to maintain consistent
performance under these conditions reinforces their potential
for practical deployments in computer-aided systems. This
study offers a practical and scalable solution for automated
eye disease screening, particularly in settings with limited
access to advanced imaging technologies.

For future work, the performance of the model may be
further enhanced through various computer vision techniques,
such as improved image pre-processing (e.g., illumination
correction, noise reduction), advanced feature enhancement,
robust data augmentation strategies to address class
imbalance and increase model generalization. Additionally,
integrating advanced deep learning techniques such as
attention mechanisms, transformer-based architectures, or
ensemble learning, could improve feature discrimination and
classification accuracy. Future research may also explore
domain adaptation techniques to reduce performance drops
when deploying models across different populations or
imaging devices. Finally, real-world wvalidation through
prospective clinical studies will be essential to ensure the
reliability and clinical utility of the proposed system.
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