
Bridging Language Barriers in Programming Education: Java

Programming Assistance Tool for Sinhala Native Speakers

Kalpani Sachie Nelanka Athukorala1,* and Dilshan Indraraj De Silva2

1Oloid (Pvt) Ltd, Colombo 08, Sri Lanka
2Department of Information Technology, Faculty of Computing, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka

Email: kalpani.athukorala@oloidtechnologies.com (K.S.N.A.); dilshan.i@sliit.lk (D.I.D.S.)
*Corresponding author

Manuscript received October 17, 2024; revised February 10, 2025; accepted April 14, 2025; published September 12, 2025.

Abstract—This study presents an innovative programming

assistance tool designed to address language barriers faced by

Sinhala-speaking novice Java programmers. The tool provides

real-time Java code generation and diagram creation based on

Sinhala programming queries, enhancing conceptual

understanding. Developed using a Design-Based Research

methodology, the tool underwent iterative testing with 122

Sinhala-speaking learners, incorporating user feedback to

refine usability and performance. Central to the system is

Generative Pre-trained Transformer, version 3.5 Turbo,

ensuring accurate translations and programming assistance,

alongside a transformer-based model that translates Sinhala

queries into English for processing. The translation model

achieved 91.37% accuracy, with strong Bilingual Evaluation

Understudy scores validating its contextual relevance. The

tool’s practical applications extend beyond academia,

supporting educational institutions, self-learners, and industry

professionals in learning and skill development. Statistical

evaluation of user performance demonstrated significant

improvements in programming comprehension, reinforcing its

effectiveness. By promoting inclusivity and expanding access to

programming knowledge, this research contributes to the

advancement of Sri Lanka’s technology sector and establishes

a scalable framework for broader implementation in

multilingual programming education.

Keywords—Design-Based Research (DBR), pedagogical

strategies, java coding, Large Language Model (LLM), Sinhala

native speakers

I. INTRODUCTION

Programming education has advanced significantly in

recent years, leading to the development of various tools

aimed at enhancing learning experiences. However, non-

English-speaking novice programmers face a persistent

challenge: the language barrier. Learners who are more

comfortable in their native language often struggle to grasp

English-based programming materials, which impedes their

progress and creates educational inequality in computer

science [1].

Language barriers introduce a significant cognitive load,

as learners must simultaneously navigate complex technical

concepts and a non-native language. This challenge often

results in frustration and reduced learning outcomes. While

existing programming assistance tools focus on syntax

correction, code completion, and debugging, they rarely

address the cognitive overload caused by language

translation. Additionally, current machine translation

solutions lack domain-specific accuracy, often producing

incorrect or contextually irrelevant translations that hinder

effective learning.

To address this issue, this study introduces a Sinhala-

based Java assistance tool designed to mitigate the language

barriers faced by Sinhala-speaking novice programmers.

The tool leverages machine translation and transformer

architectures to provide real-time, contextually accurate

translations and programming assistance in Sinhala. By

integrating these technologies, it aims to bridge the language

gap, enabling learners to focus on mastering programming

concepts without the added burden of translation.

This study adopts the DBR methodology, which

facilitates iterative design, development, and refinement

based on practical feedback [2]. DBR is particularly suitable

for programming education as it allows the tool to evolve

with learners’ needs, ensuring continuous improvement

based on real-world usability and effectiveness.

The dominance of English in programming languages and

educational resources places non-English speakers at a

disadvantage, limiting their ability to fully engage with and

contribute to the field. This research seeks to promote

inclusivity by developing a solution that accommodates

diverse language preferences and learning environments.

Unlike existing programming tools, the proposed solution

offers structured learning support beyond mere translation,

ensuring a more effective educational experience.

The primary objective of this study is to develop a

comprehensive programming assistance tool that allows

Sinhala-speaking learners to input queries in Sinhala and

receive relevant Java code, along with a corresponding

program structure diagram. This tool not only addresses the

immediate educational needs of Sinhala-speaking

programmers but also sets a precedent for expanding similar

tools to other non-English-speaking communities. By

removing linguistic barriers, this research contributes to the

broader goal of democratizing programming education,

ensuring language becomes a bridge to knowledge rather

than a hindrance.

The remainder of this paper is organized as follows:

Section II provides the background necessary to

contextualize the research. It begins by exploring the

linguistic challenges faced by Sinhala-speaking students in

programming education, highlighting the dominance of

English in programming resources and instruction. The

section emphasizes how this language barrier can hinder

comprehension and discourage engagement among novice

learners. It then discusses the selection of Java as the target

programming language, citing its widespread use in

education, object-oriented structure, and compatibility with

beginner-friendly tools. The potential of AI-driven

translation and programming assistance tools is introduced

next, illustrating how such technologies can bridge the gap

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

151DOI: 10.7763/IJCTE.2025.V17.1378

between natural language input and code generation,

especially in linguistically diverse environments. Finally,

the section reviews key advancements in transformer models

that have enabled significant improvements in natural

language understanding and translation—technologies that

form the foundation of the proposed Sinhala-based

programming assistance tool.

Section III reviews the existing body of literature relevant

to the development of the proposed tool. It begins by

examining current programming assistance tools and

Sinhala-English translation systems, identifying the lack of

tailored solutions for Sinhala-speaking learners. The section

then explores the broader application of Artificial

Intelligence (AI) and Natural Language Processing (NLP) in

programming education, focusing on how these technologies

can support code generation, syntax translation, and learning

personalization. It further investigates the role of

gamification and AI-driven feedback mechanisms in

enhancing learner motivation and programming skill

acquisition. Attention is also given to AI-enabled

approaches for improving student engagement and self-

assessment within online learning environments. Finally, the

section presents a comparative analysis of existing self-

assessment tools and related studies, highlighting the

research gap addressed by the proposed Sinhala-based

solution that combines translation, code generation, and

educational reinforcement in a single tool.

Section IV details the methodology adopted in developing

the Sinhala-based Java programming assistance tool. It

begins with an explanation of the DBR methodology,

emphasizing its iterative structure involving problem

identification, solution design, real-world testing, and

evaluation. The back-end Application Programming

Interface (API) development is then described, highlighting

how user queries in Sinhala are processed, translated into

English using a custom transformer model, and passed to the

Generative Pre-trained Transformer (GPT), version 3.5

Turbo, for code generation. The section also outlines the

architecture and training of the transformer-based Sinhala-

English translator, including its attention mechanisms, token

embeddings, and fine-tuning process using a Java-specific

dataset. Next, it presents the front-end development,

showcasing an intuitive user interface built to reduce

cognitive load by enabling real-time code and diagram

generation based on Sinhala queries. Finally, the section

explains the user testing and quality assurance integration

process, detailing functional and usability testing conducted

with 122 Sinhala-speaking novice programmers, and how

iterative feedback was used to refine the tool’s effectiveness

and reliability.

Section V presents a detailed account of the results and

discussion. It begins by outlining how the tool was

developed through iterative phases of the DBR methodology,

incorporating user feedback and continuous refinement. The

section then examines the composition and preparation of

the training, validation, and testing datasets used to develop

the translation model. It explores how variations in sentence

structure affect translation quality, providing insights into

linguistic nuances that influence model outputs. The

performance of the model is assessed through accuracy

metrics and Bilingual Evaluation Understudy (BLEU)

scores, supported by a comprehensive analysis of dataset

distribution. Usability testing is described, detailing the

evaluation methodology and findings from 122 Sinhala-

speaking learners. Further, the section connects BLEU

scores to user performance improvements and compares the

proposed model’s performance with other English–Sinhala

Neural Machine Translation (NMT) systems. Finally, it

discusses the practical applications of the tool, its

educational impact, pedagogical benefits, and the technical

soundness and reliability of the implemented system.

Section VI concludes the paper by summarizing the key

findings, technical contributions, and educational benefits of

the proposed tool. It also outlines future work, such as

extending language support, integrating with development

tools, and expanding to other programming domains.

II. BACKGROUND STUDY

A. Sinhala and English in Programming Education

Sinhala, an Indo-Aryan language, is the national language

of Sri Lanka and is spoken by the majority of the population.

It possesses unique linguistic characteristics, including a

distinctive script, phonetic structure, and grammatical

constructs that differentiate it from other Indo-Aryan

languages [3]. Understanding these features is essential for

developing effective educational tools that support Sinhala-

speaking learners in grasping complex subjects.

In contrast, English, originating from the West Germanic

language family, has become the primary global language

due to historical colonization and the impacts of modern

globalization. It is the dominant language in countries such

as the United Kingdom, the United States, Australia, Canada,

and New Zealand, as well as in several former British

colonies [4]. This widespread dominance extends to

programming education, where most instructional materials

and programming languages are based on English syntax

and terminology. As a result, non-English speakers,

including Sinhala-speaking learners, often face difficulties

in grasping programming concepts, leading to an

accessibility gap in computer science education.

B. Java as a Programming Language

Java, a widely used object-oriented programming

language, was developed by Sun Microsystems (now Oracle)

in the mid-1990s. Designed for platform independence,

security, and robustness, Java eliminates complex low-level

programming constructs, making it suitable for educational

settings. Many institutions introduce Java as a foundational

language due to its readability and maintainability. However,

for non-English-speaking learners, the challenge extends

beyond programming logic to understanding English-based

syntax and documentation.

C. AI-Driven Translation and Assistance in Programming

Education

To mitigate language barriers in programming education,

this study integrates a custom transformer-based Sinhala-

English translation model with AI-driven assistance. The

tool provides real-time Java code generation and diagrams,

ensuring an inclusive learning experience. By automating

translation and contextual programming support, the system

enhances comprehension and encourages broader

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

152

participation in programming education, particularly among

Sinhala-speaking students.

D. Advancements in Transformer Models

The Transformer model, introduced by Vaswani et al. [5],

has revolutionized NLP by replacing traditional Recurrent

Neural Networks (RNNs). Unlike RNNs, which process

input sequentially, transformers leverage self-attention

mechanisms to analyze entire sequences simultaneously,

improving efficiency and accuracy in capturing long-term

dependencies.

Compared to RNNs and Long Short-Term Memory

(LSTM) networks, transformers offer significant advantages:

• Parallel Processing: Unlike RNNs, which process

tokens sequentially, transformers handle entire

sentences simultaneously, improving speed and

efficiency.

• Enhanced Long-Term Dependency Capture:

Traditional models suffer from the vanishing gradient

problem, which weakens token influence over long

sequences. Transformers overcome this by establishing

direct connections between all words in a sequence.

• Superior Accuracy in Translation Tasks: Gated

Recurrent Units (GRU) and LSTM-based RNN models

struggle with complex language patterns, whereas

multi-head self-attention and positional encodings in

transformers enable precise translations [5, 6].

By leveraging these advancements, the proposed tool

provides contextually accurate programming assistance for

Sinhala-speaking learners, ensuring that language is no

longer a barrier to programming education.

III. LITERATURE REVIEW

A. Existing Programming Assistance Tools and Sinhala-

English Translation Systems

A range of tools has been developed to support

programming education and overcome language barriers

between Sinhala and English. Some tools primarily assist

with programming education, while others focus on

facilitating translation between Sinhala and English for

better accessibility. Additionally, certain tools integrate both

programming assistance and language translation, offering a

comprehensive solution for Sinhala-speaking programmers.

The following is an overview of existing tools in these

categories:

• Helaa [1]: A Sinhala programming assistance tool that

introduces a novel programming language tailored

specifically for Sinhala speakers. This Java-based tool

integrates Sinhala syntax and compiler exceptions,

making programming more accessible to non-English

speakers. Future development aims to expand its

compatibility with JavaScript and Python.

• Interactive Programming Assistance Tool

(iPAT) [7]: A tool designed to assist students and

instructors in managing computer labs through

functionalities like error handling, remote access, and

PC inventory management. While it enhances the

learning environment, it does not specifically address

the linguistic barriers faced by Sinhala-speaking

programmers.

• CodeMage [8]: An educational platform that provides

real-time programming guidance, automatic code

generation, and best practices. Although robust in

supporting novice programmers, it does not

specifically cater to Sinhala speakers.

• SimpliTrans [9]: A bilingual coding tool allowing

users to switch between English and Sinhala. It

translates programming commands and instructions,

making coding more accessible to Sinhala-speaking

learners by integrating localized programming

terminology.

• Web Programming Assistance Tool (WPAT) [10]: A

debugging-focused tool that interprets compiler error

messages and suggests fixes. While beneficial for

reducing frustration during programming, it does not

address language barriers.

• Sinhala to English Language Translator [11] and

Sinhala to English and English to Sinhala

(SEES) [12]: These tools facilitate Sinhala-English

translation, including Singlish recognition, making

them useful for general language translation but not

specifically optimized for programming-related

terminology.

• NMT for Sinhala-English Code-Mixed Text [13]:

This research utilizes advanced neural network

architectures, including LSTM units and Sequence to

Sequence (Seq2Seq) models, to translate Sinhala-

English mixed text. The integration of a normalization

pipeline and Teacher Forcing mechanism aims to

improve the accuracy and fluency of translations,

supporting bilingual communication effectively.

• Example-Based Machine Translation for English-

Sinhala Translations [14]: This model leverages a

knowledge database to perform accurate translations

between English and Sinhala by utilizing inter-

language matching techniques. This approach helps in

understanding and generating contextually relevant

translations, thereby facilitating smoother

communication between English and Sinhala speakers

in educational and professional settings.

B. AI and NLP Applications in Programming Education

1) AI-driven pedagogical strategies

Recent studies have explored the integration of AI to

support non-native English speakers in programming

education. AI-driven pedagogical strategies are increasingly

being developed to enhance multilingual learners’

comprehension and engagement in coding. For instance,

research by Long et al. [15] introduced innovative

instructional techniques such as storytelling, role-playing,

and AI-driven text-to-speech-to-text mechanisms to foster

AI literacy among multilingual students. These methods

leverage linguistic scaffolding and translanguaging to bridge

language gaps, ensuring that programming concepts are

effectively conveyed regardless of the learner’s native

language.

2) AI-based programming assistants

AI-based programming assistants are being assessed for

their role in aiding multilingual education. Wang et al. [16]

evaluated the effectiveness of AI-powered tools like

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

153

ChatGPT in solving diverse computer science problems.

Their study explored how AI-generated explanations and

code suggestions can be optimized to support learners with

varying levels of English proficiency, highlighting the

importance of adapting instructional materials to AI

capabilities while incorporating instructor insights.

Furthermore, Piech and Abu-El-Haija [17] developed

“CodeInternational,” an NLP-based tool designed to

facilitate code translation between human languages. By

localizing programming instructions and offering context-

aware explanations, this system aims to make computer

science education more accessible to non-English speakers.

3) Advancements in machine translation and NLP

While several tools aim to address programming

education challenges for non-English speakers, the

integration of advanced AI techniques like NLP offers new

avenues for innovation. For instance, Shaik et al.’s study [18]

delves into the potential of NLP in educational feedback

analysis, emphasizing its role in bridging language barriers

and enhancing student engagement. By employing methods

such as sentiment analysis, entity recognition, and topic

modeling, NLP provides actionable insights from textual

feedback, which could be adapted to evaluate programming

education tools tailored for Sinhala speakers. Furthermore,

the study highlights challenges such as domain-specific

language ambiguity and proposes strategies to overcome

these limitations, showcasing its relevance to creating

effective educational technologies in linguistically diverse

contexts.

The following studies exemplify key advancements in

machine translation and NLP:

• Attention Is All You Need [19]: This research paper

introduced the Transformer model, discussing its

architecture and improvements over Seq2seq models.

The Transformer model minimizes the need for

recurrent or convolution layers, focusing primarily on

the attention mechanism. This mechanism enables

efficient parallelization, significantly reducing training

times. The paper covers various aspects of the

Transformer model, including the encoder, decoder,

attention, feed-forward layers, embedding, and

positional encoding. The model demonstrated

exceptional performance in machine translation,

achieving state-of-the-art BLEU scores on the WMT

2014 English-to-German and English-to-French

translation benchmarks. The study highlights the

Transformer’s scalability and robustness, establishing

it as a cornerstone in machine learning.

• Machine Translation on Dravidian Languages [20]:

This study explores translation resources for Dravidian

languages, predominantly spoken in southern India.

Despite their popularity, Dravidian languages have not

received adequate attention due to a lack of translation

resources. The paper discusses several machine

translation models, including rule-based machine

translation, NMT, example-based machine translation,

hybrid machine translation, transformer model,

statistical machine translation, and LSTM model. It

explores the characteristics, importance, and

advantages of these models, highlighting the most

effective model for improving information access and

generation for monolingual speakers in the region.

• Improving English to Sinhala NMT using Part-of-

Speech (POS) Tag [21]: This study identifies

techniques to improve the English to Sinhala

translation model. Byte Pair Encoding (BPE) and

Character Segmentation were utilized to enhance

translation quality. The study sheds light on optimizing

NMT for languages with complex linguistic structures

and addressing the challenges of low-resource

constraints.

Although AI-based tools enhance learning through

intelligent assistance and translation, they do not inherently

address student motivation and engagement. To further

enhance learning outcomes, gamification strategies have

been integrated into AI-driven programming education,

providing interactive and competitive learning experiences.

The next section examines these strategies.

C. Gamification and AI-Driven Learning Insights in

Programming Education

1) Gamification approaches

Gamification has emerged as a transformative approach in

programming education. Zhan et al. [22] conducted a meta-

analysis assessing its effectiveness, demonstrating how

reasoning strategy games and competitive mechanisms can

significantly enhance student motivation and learning

outcomes. The study underscores the importance of

balancing cognitive load and maintaining intrinsic

motivation to create inclusive, gamified educational

platform.

2) Predictive Learning Analytics (PLA)

PLA has emerged as a powerful tool for improving

educational outcomes by identifying students at risk. Hlosta

et al. [23] investigates the errors made by PLA systems,

particularly False Positives (FP) and False Negatives (FN),

in predicting assignment submissions. Through qualitative

interviews with students, the study reveals that factors such

as unexpected life events, shifting responsibilities, and

technical issues significantly contribute to these errors. The

findings underscore the limitations of machine learning

algorithms in capturing contextual nuances and highlight the

need for integrating human intelligence, such as teacher

insights, into AI-driven systems. By addressing these

challenges, PLA can play a crucial role in enhancing not

only engagement but also the accuracy and inclusivity of

educational tools, including those aimed at overcoming

language barriers in programming education.

3) Explainable AI (XAI) in education

XAI has gained prominence in the educational sector due

to its potential to improve trust and usability in AI-driven

systems. Khosravi et al. [24] propose the XAI-ED

framework, which identifies six key aspects of

explainability tailored to educational contexts. These aspects

include stakeholder needs, benefits, explanation delivery

methods, AI model types, human-centered interface designs,

and potential pitfalls. The framework is exemplified through

four case studies, demonstrating its applicability in

designing educational AI tools that support metacognitive

processes like self-monitoring and reflection. By addressing

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

154

Fairness, Accountability, Transparency, and Ethics (FATE),

the study emphasizes the importance of mitigating biases

and ensuring that AI tools align with educational goals. The

insights from this work are particularly valuable for

integrating XAI into tools aimed at reducing linguistic and

accessibility barriers in programming education, ensuring

that explanations foster both trust and effective learning

outcomes.

While gamification strategies enhance motivation and

engagement, effective learning also requires students to

assess their own progress and identify areas for

improvement. AI-driven self-assessment tools complement

gamification by providing structured feedback, enabling

students to track their learning outcomes systematically. The

next section explores these self-assessment tools and their

impact on online learning environments.

D. AI-Driven Approches to Student Engagement and Self-

Assessment in Online Learning Education

A study by Yang et al. [25] explored how students’ self-

assessment behaviors in online learning environments

impact their academic performance. This research

specifically looks at online self-assessment behaviors in the

context of a 6-week accounting course where students

completed formative quizzes after class. The study

investigates students’ patterns of online self-assessment

behavior using AI techniques, specifically hierarchical

clustering algorithms. By analyzing factors such as test

attempt frequency, question views, submission rates, and

hint usage, the researchers identified three distinct

behavioral patterns: students who rarely completed

assessments, those who engaged in nonstandard behaviors,

and those who consistently completed assessments with

standard behaviors. AI clustering enabled profiling of these

behaviors, revealing that students who relied heavily on

hints or engaged in extensive, unspaced practice were less

likely to benefit from the testing effect, thus impacting their

learning performance.

As AI continues to reshape self-assessment in online

learning, evaluating existing tools and related studies is

essential for understanding their effectiveness across various

educational contexts. The following section provides a

comparative analysis of the various tools and studies

discussed in the paper, focusing on several key factors to

provide the reader with an overall summary.

E. Comparative Analysis of Self-Assessment Tools and

Studies

Table 1 provides a structured comparison of the tools and

developments discussed in this paper, highlighting key

factors such as target audience, core features, language

support, and primary focus areas. This analysis offers

valuable insights into the suitability of each tool for various

educational needs and contexts.

Table 1. Overview of tools and research papers discussed in the study

Tool / Research

Paper
Target Audience Primary Features

Input

Language
Focus Areas

Helaa
Sinhala-speaking

novice programmers
Sinhala-based coding, compiler

support
Sinhala

Introduces a Sinhala programming language to

support non-English speakers

iPAT Students, Instructors
Remote error handling, lab

management
English

Supports computer lab management, but does not

address linguistic barriers

CodeMage
Novice Java

programmers

Real-time programming guidance,

automated code generation
English

Supports Java programming but lacks Sinhala

language support

SimpliTrans
Bilingual

programmers

Bilingual programming support,

localized error messages
English

Improves accessibility by translating programming

keywords between Sinhala and English

WPAT
Novice C

programmers
GUI-based debugging, compiler

error analysis
English

Focused on enhancing error handling in C
programming

Sinhala to English

Language
Translator

Sinhala speakers
General text translation, grammar

checking, Sinhalese dictionary
Sinhala

Translates general Sinhala text to English, not

specialized for programming

SEES
Sinhala and English

speakers

Sinhala-English bidirectional

translation

Sinhala,

English

Supports linguistic translation but lacks

programming-specific adaptations

Neural Machine

Translator
Singlish speakers

AI-driven translation for mixed-

language text
Singlish

Convert Singlish-based Sinhala to structured

Sinhala text

Example Based
Machine Translator

Sinhala speakers
Rule-based translation for

structured documents
English

Primarily facilitates formal government
documentation

AI-Driven

Pedagogical

Strategies

Non-native English

speakers in
programming

education

AI-assisted storytelling, role-

playing, and text-to-speech-to-text

learning

Multilingual

Enhances programming comprehension for

multilingual learners by integrating linguistic

scaffolding and translanguaging techniques.

AI-powered tools
Educators,

multilingual learners

AI-generated explanations and

code suggestions, adaptation to

instructional materials

Multilingual
Optimizes AI-generated content through instructor

insights

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

155

CodeInternational
Non-English speaking

programming students

NLP-based tool, localization of

programming instructions,

context-aware explanations

Non-English

languages

May not fully capture nuanced programming

terminology across all languages

NLP for

Educational
Feedback Analysis

Sinhala speakers
Sentiment analysis, topic

modeling, linguistic adaptation
Sinhala

Uses NLP to evaluate student responses and

provide contextual feedback

Attention Is All

You Need

AI & NLP

advancements

Attention-based model improving

translation accuracy

Multilingual

support
(English,

German,

French)

Machine Translation, NLP Model Architecture

Machine Translation

on Dravidian

Languages

Dravidian Languages
Speakers

Translation Dravidian Language of
text to English

Dravidian
Language

Translate Dravidian Language into English and

improve information access and generation for

monolingual speakers in the region

Improving English

to Sinhala NMT
using POS Tag

Sinhala Speakers
Translation of English text to

Sinhala
English

Develop an efficient domain-specific English to

Sinhala NMT system using the Transformer

architecture, incorporating POS information as an

additional linguistic feature.

Gamification in

Programming
Education

Novice programmers
AI-driven competitive coding,

interactive assessments
English

Enhance motivation and knowledge retention

through AI-assisted gamification

PLA Educators, Students
AI-based student behavior

analysis, risk prediction
English

Identifies at-risk students and personalizes

educational strategies

Explainable AI

(XAI-ED)

Educational

technology designers

AI-driven personalized feedback

with transparency
English

Focus on integrating XAI into educational tools to
improve trust and outcomes, reducing linguistic

and accessibility barriers in programming

education.

AI-Based Self-

Assessment Systems

Online learners,

Educators

AI-powered real-time feedback,

behavioral profiling
English

Uses hierarchical clustering to assess student self-

learning patterns

IV. METHODOLOGY

This study presents the development of an innovative

Java assistance tool specifically tailored for novice

programmers who are native Sinhala speakers. The primary

objective of this tool is to transcend the language barriers

that hinder the effective learning of Java programming by

providing real-time code generation and diagrams directly in

Sinhala. This reduces reliance on external resources and

facilitates independent learning. The methodology employed

in this research integrates cutting-edge techniques, notably

the use of the LLM model GPT-3.5 Turbo, which has been

custom-trained to generate relevant code and diagrams

based on user queries. This model also maintains a history

of user interactions to refine responses and improve

accuracy over time. By leveraging this advanced language

model, the tool ensures precise translations and effective

programming assistance, aligning with the unique linguistic

and educational needs of Sinhala-speaking users and

fostering a more inclusive and supportive learning

environment. To offer a clear understanding of the system’s

operational dynamics, Fig. 1 illustrates the system

architecture, highlighting the interactions between its three

core components: the front-end user interface, the back-end

APIs, and the Sinhala-English translators optimized for Java

programming. Each component is meticulously designed to

work in harmony, ensuring that users experience a seamless

and intuitive interface while receiving accurate, context-

specific programming support.

A. DBR Methodology

DBR is a methodology focused on enhancing educational

practices through iterative design and development [2]. The

process begins with a thorough analysis of specific problems

or challenges within an educational context. In this study,

this involves identifying the language barriers faced by

Sinhala-speaking novice programmers and understanding

the cognitive load associated with navigating English-based

programming materials. Based on this analysis, a solution is

designed and developed to address these issues. For this

research, a Sinhala-based Java assistance tool is created,

leveraging machine translation technologies to provide

programming support in Sinhala. The tool undergoes

iterative testing, where it is implemented in real-world

settings and used by learners. Feedback from these testing

phases is crucial for refining the tool and making necessary

improvements. Finally, the effectiveness of the tool is

evaluated to determine how well it meets its objectives, such

as reducing language barriers and improving learning

outcomes. DBR ensures that the tool is both theoretically

grounded and practically effective, as it is continually

adjusted based on real-world use and feedback, leading to a

more robust solution that specifically addresses the needs of

Sinhala-speaking novice programmers. Fig. 2 illustrates the

iterative process of identifying challenges, designing

solutions, testing prototypes, and refining tools based on

user feedback to enhance educational practices.

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

156

Fig. 1. System diagram of the proposed Sinhala-based programming assistance tool.

Fig. 2. Iterative stages of the DBR methodology.

B. Back-end API Development

The back-end API of the system serves dual functions.

Initially, it processes incoming Sinhala queries by

translating them into English using a transformer-based

model. The translated queries are then passed to the LLM

model (GPT-3.5 Turbo) with the aid of custom prompt

templates and an output parser to generate the corresponding

Java code.

Within the Flask framework, specialized libraries and

parsers are employed to accurately distinguish Java code

from text, supporting robust input validation and effective

translations. The architecture of this system is illustrated in

Fig. 1, which highlights the interactions between the front-

end user interface, the back-end API, and the LLM model

optimized for Java programming. This diagram underscores

the coordinated workflow that enables the tool to deliver

precise and contextually relevant programming support,

bridging the language gap for Sinhala-speaking users.

C. Transformer-Based Sinhala-English Translator

At the core of the system lies the transformer-based

translation model, meticulously trained for the specific task

of translating Java programming content between Sinhala

and English. This model has been fine-tuned to handle the

unique linguistic challenges and technical terminology

associated with Java programming, ensuring high accuracy

and contextual relevance in translations.

The development of this transformer model was

underpinned by a dataset uniquely tailored to the Java

programming domain, which significantly enhances the

model’s ability to translate and interpret Java programming

principles with precision. The choice of a transformer model

was driven by its superior capability in managing long-range

dependencies and parallel processing, making it the optimal

solution for creating an effective and efficient translation

system within the context of programming education.

Fig. 3 provides an overview of the entire model

architecture, detailing the stages from input embedding and

positional encoding through to the attention mechanisms and

final training and inferencing phases. Fig. 4 delves deeper

into the flow of data through the system’s encoders and

decoders, visually demonstrating the encoding and decoding

processes that are pivotal to the model’s functionality.

These processes involve transforming raw data into

encoded formats suitable for specific tasks, such as

transmission and storage, and then reversing this

transformation to restore the data to its original form. The

system’s design, which includes multiple encoders and

decoders, is specifically tailored to manage the complexities

of Java programming translation, ensuring that the output is

both technically accurate and contextually appropriate for

educational purposes.

In this research, the transformer model plays a crucial

role in the machine translation process, translating Java

queries to English with a high degree of accuracy. The

following steps detail how the transformer model was

implemented and fine-tuned to maximize the accuracy and

effectiveness of the Java-specific dataset used in this study:

• Input Embedding: The methodology begins with the

critical process of input embedding, where the input

text is tokenized into individual units called tokens.

Each token is then transformed into a numerical array

that encapsulates its semantic meaning. This

transformation is essential for enabling the model to

interpret and process the linguistic nuances of the

Sinhala language, particularly in the context of Java

programming. The accurate representation of these

tokens in vector form ensures that the subsequent

stages of the model can effectively capture and utilize

the underlying semantics.

Problem analysis Learning solution
development

Iterative testing &
Development

Evaluation

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

157

Fig. 3. Transformer model architecture.

• Positional Encoding: Unlike traditional models,

transformers do not inherently recognize the order of

tokens in a sequence. To address this, positional

encoding is incorporated, which provides the model

with essential information about the position of each

token within the sequence. This step is crucial for

maintaining the syntactic structure of the input, as it

allows the model to understand and respect word

ordering. For instance, when breaking down a sentence

like “Write a Java class to check if a given number is

prime,” the positional encoding ensures that the

sequence is interpreted correctly, preserving the logical

flow necessary for accurate translation.

• Attention Mechanism: The attention mechanism is a

key feature of the transformer model that enables it to

selectively focus on different parts of an input sentence

when generating output. By calculating attention

scores, the model identifies how much importance it is

to assign to each word in relation to others, effectively

understanding their connections. This capability is

especially useful for capturing relationships between

words that are far apart in a sentence. For example, as

shown in Fig. 5, the model assigns significant attention

to the word “given” in the context of the entire

sentence, ensuring the translation not only preserves

the meaning but also aligns with the sentence structure

and overall context, making it accurate and appropriate

for the situation.

• Multi-Head Attention: To enhance the model’s

ability to understand complex linguistic structures,

multi-head attention is employed. This technique

involves running several attention mechanisms in

parallel, each specializing in different aspects of the

token relationships. By combining the outputs of these

attention heads, the model generates a more

comprehensive and multi-faceted representation of the

input. This process is particularly effective in capturing

the intricacies of Java programming terminology and

syntax, ensuring that the translation is both precise and

contextually relevant.

Fig. 4. Illustration of encoders and decoders in a transformer model,

demonstrating the process with a Java prompt to check if a number is prime,

accompanied by explanatory text in Sinhala.

• Query (Q), Key (K), Value (V): Within the attention

mechanism, each token is categorized into three

vectors: Q, K, and V. These vectors are used to

calculate attention scores, which determine the

emphasis that should be placed on each token during

translation. For example, when translating the English

phrase “Write a Java class to check if a given number

is prime” into Sinhala, the model utilizes these vectors

to accurately map the relationships between words,

ensuring that the most contextually significant terms

are appropriately weighted in the translated sentence.

• Add & Norm: Following the attention mechanism, the

model applies a residual connection, adding the

original input to the output of the attention layer. This

step is followed by normalization, which stabilizes the

training process and preserves the integrity of the input

information. By maintaining a balance between the

original input and the processed output, this technique

ensures that the model continues to generate accurate

and stable translations throughout the training and

inference phases.

• Masked Multi-Head Attention: In the decoding

phase, masked multi-head attention is used to prevent

the model from attending to future tokens during

training. This technique ensures that the model’s

predictions for a given position are based solely on the

known outputs up to that point, thereby enhancing the

accuracy and reliability of the translation process.

• Training Phase: The training phase is a critical

component of the methodology, where the model is fed

with pairs of Sinhala Java explanations and their

English counterparts. The objective during training is

to minimize the difference between the predicted

Input Embedding

Positional Encoding

Attention

Multi-Head Attention

Query, Key, Value

Add & Norm

Masked Multi-Head
Attention

Training Phase

Inferencing

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

158

translations and the actual translations, achieved

through a loss function and the optimization of the

model’s parameters via backpropagation. This phase is

iterative, allowing the model to gradually improve its

translation accuracy and contextual understanding.

Fig. 5. Illustration of the attention mechanism in a Transformer model,

emphasizing its ability to capture long-range dependencies and selectively

focus on various segments of an input sequence.

• Inferencing: In the inferencing stage, the trained

model is applied to new input sequences, translating

them with high accuracy. When presented with a

Sinhala explanation, the model generates the

corresponding English Java explanation, enabling

Sinhala-speaking students to engage with Java

programming in a language they understand. This

inclusive approach ensures that the educational tool

meets its primary objective of bridging the language

gap in programming instruction.

• Final Model Architecture: Fig. 6 showcases the

complete transformer model architecture, illustrating the

flow from input embeddings through multi-head

attention, feed-forward networks, and positional

encoding layers, culminating in the generation of output

probabilities via a Softmax function. This architecture is

specifically designed to handle the complexities of

language translation within the Java programming

domain, ensuring that the output is both contextually

appropriate and semantically precise.

• Closing the Language Gap: By leveraging cutting-

edge AI and transformer technology, this research

provides Sinhala-speaking novice programmers with

real-time, contextually accurate translations and

programming diagrams. The integration of these

advanced methodologies ensures that the tool not only

addresses the immediate language barrier but also

contributes to a more inclusive and equitable learning

environment in the field of computer science.

Fig. 6. Diagram of a Transformer model, showcasing the progression from input embeddings through multi-head attention, feed-forward networks, and

positional encoding, culminating in output probabilities via a SoftMax function.

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

159

D. Front End Development

The front-end of the system serves as the primary user

interface, designed to facilitate a seamless interaction

experience for novice programmers. Built using the Flask

framework, the front-end prioritizes ease of use, ensuring

that users can effortlessly submit their programming queries

or Java code snippets. The interface processes user inputs

and transmits them via HTTP requests to the back-end API,

which then returns the relevant output—either Java code

generated from Sinhala queries and diagrams of Java code

translated into Sinhala.

The user interface is intentionally designed to reduce

cognitive load and language barriers by providing direct,

contextually appropriate code outputs. As depicted in Fig. 7,

the interface of the Sinhala-based Java assistance tool

enables users to input queries in Sinhala and receive real-

time Java code along with corresponding visual diagrams.

This feature allows learners to instantly visualize the

structure and logic of their code, reinforcing conceptual

understanding. The tool automatically converts the

generated code into Mermaid diagram code, which is then

rendered as visual diagrams on the front end. This user-

centric design ensures that the interface not only meets

functional requirements but also enhances the overall

learning experience by catering to the specific linguistic

needs of Sinhala-speaking users.

To further demonstrate the tool’s versatility and its

applicability to advanced programming tasks, the following

examples highlight its ability to generate code for data

structure operations, recursive functions, and object-

oriented design patterns.

Fig. 8 illustrates the tool’s capability to find the second

largest element in an array by sorting the array and

comparing elements in reverse order. The operation

emphasizes the importance of array manipulation in data

structures, showcasing the tool’s effectiveness in handling

tasks related to sorting and array traversal. The approach

ensures the identification of the second largest element,

demonstrating the tool's practical use in real-world

programming scenarios.

Fig. 9 showcases how the tool generates Java code for

recursive functions based on user input. Recursion is a

fundamental yet challenging programming concept, often

used for problems like factorial calculation, Fibonacci

sequence generation, and tree traversals. By successfully

generating recursive solutions, the tool demonstrates its

capability to handle complex algorithmic problems.

Fig. 10 showcases the tool generating Java code for the

Singleton design pattern. Design patterns are critical in

software development, providing reusable solutions to

common problems. The Singleton pattern ensures a class

has only one instance and provides a global access point to

it. Successfully generating this pattern demonstrates the

tool’s ability to support OOP principles and best practices.

 Fig. 7. User interface of the Sinhala-based Java assistance tool enabling real-time code and diagram generation.

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

160

Fig. 8. User interface displaying a Java code to find the second-largest element in an array, generated based on a Sinhala-language user query.

Fig. 9. User interface displaying a Java code for a recursive function, generated based on a Sinhala-language user query.

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

161

Fig. 10. User interface displaying a Java code to understand the Singleton design pattern, generated based on a Sinhala-language user query.

E. User Testing and Quality Assurance Integration

To ensure the robustness, reliability, and user-friendliness

of the proposed tool, a comprehensive user testing and

quality assurance protocol was meticulously designed and

implemented. This protocol was critical in validating that

each system component—the front-end interface, the back-

end API, and the custom transformer-based translation

model—performed optimally and met predefined standards

for functionality, accuracy, and user satisfaction.

The testing process began with functional tests, aimed at

verifying the technical performance of each system

component. These tests assessed the translation accuracy of

the Java-specific Sinhala-English model, the responsiveness

and intuitiveness of the front-end interface, and the

robustness of the back-end API in processing and managing

user queries and code snippets. Ensuring that each

component was individually effective was essential in

achieving a cohesive and reliable overall user experience.

Following the functional testing phase, a series of

usability tests were conducted with a targeted group of 122

novice programmers who were fluent in Sinhala. These

participants were asked to engage with the tool by inputting

Java code and queries in Sinhala, allowing the development

team to assess the tool’s ease of use, intuitiveness, and

effectiveness in assisting programming tasks. The feedback

gathered from these sessions was invaluable, highlighting

areas for improvement in user interaction and satisfaction.

The usability testing also provided insights into how the tool

could be optimized to better meet the needs of its target

audience.

Quality assurance was integrated into the development

process through continuous iterative cycles. These cycles

involved refining the tool’s functionality, enhancing the user

interface, and improving translation accuracy based on real-

time feedback. This iterative approach ensured that the tool

evolved in response to user needs and external changes,

such as updates to services like ChatGPT or modifications in

the Java programming environment. The iterative testing

and refinement process played a crucial role in maintaining

the tool’s relevance, reliability, and effectiveness, ensuring

that it could be seamlessly deployed in a variety of

educational contexts.

User feedback was a driving force behind the iterative

development of the tool. Adjustments such as optimizing

translation accuracy, refining code generation algorithms,

and improving the user interface were directly influenced by

the experiences and suggestions of the target user base. This

ongoing process of enhancement ensured that the tool

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

162

remained attuned to the needs of Sinhala-speaking novice

programmers, delivering a high-quality, user-friendly

learning experience. The rigorous approach to user testing

and quality assurance not only confirmed the tool’s

readiness for broader deployment but also underscored its

potential to significantly enhance the programming

education landscape for non-English speaking learners.

V. RESULTS AND DISCUSSION

A. DBR Methodology in Tool Development

The development of the Sinhala-based Java assistance

tool followed the DBR methodology, which emphasizes

iterative design, collaboration, and real-world testing to

address practical challenges in educational contexts. This

approach ensured that the tool effectively mitigated

language barriers and cognitive load experienced by

Sinhala-speaking novice programmers. The DBR

methodology was implemented through the following four

key phases, which guided the tool’s design, development,

and refinement:

• Phase 1: Identifying Practical Problems: The initial

phase focused on identifying the challenges faced by

Sinhala-speaking novice programmers in

understanding English-based programming resources.

Authors collaborated with practitioners, including

educators and novice programmers, to identify specific

obstacles, such as language barriers and cognitive load

associated with translating and interpreting Java

programming content. Through this process, the

problem was clearly defined, laying the foundation for

the development of the Sinhala-based Java assistance

tool.

• Phase 2: Analyzing Data and Developing Solutions:

Once the problem was identified, researchers analyzed

learner experiences and existing design principles to

develop a suitable solution. Data was collected from

real-world settings to understand the difficulties

Sinhala-speaking learners face while interacting with

Java programming materials. Leveraging insights from

machine translation technologies and educational tools,

the team designed a Sinhala-based Java assistance tool

that provides real-time programming support in the

native language. The tool’s design prioritized ease of

use and effectiveness in improving learning outcomes.

• Phase 3: Testing and Refining the Solution: The tool

underwent usability testing with 122 Sinhala-speaking

novice programmers, who interacted with it by

entering Java code and Sinhala queries. User feedback

played a crucial role in refining interface design,

translation accuracy, and interaction mechanisms.

Several iterations were conducted to enhance

functionality, ensuring that the tool effectively

supports programming tasks and meets user needs.

• Phase 4: Evaluating the Effectiveness of the Solution:

Following iterative testing and refinement, the final

phase involved evaluating the tool’s overall

effectiveness. The analysis focused on user feedback,

usability, and the tool’s impact on reducing language

barriers and cognitive load. Results demonstrated that

the tool successfully addressed the identified

challenges and significantly improved programming

comprehension for Sinhala-speaking learners.

Additionally, areas for further development and

optimization were identified, ensuring continuous

improvement. While the solution was deemed effective,

ongoing user feedback and refinements will be crucial

for maintaining long-term success and adaptability.

B. Training, Validation, and Testing Data

Table 2 presents a detailed breakdown of the dataset used

for training, validation, and testing the transformer-based

model. Comprising 223,334 sentences, the dataset ensures

that the model is exposed to a wide range of linguistic

structures and contexts, strengthening its ability to handle

diverse translation tasks. The careful allocation of data

across these phases supports the model’s generalization

capability, enabling accurate performance in real-world

scenarios.

Table 2. Breakdown of sentences across the training, validation, and testing
datasets

Dataset Type Sentence Count

Training set size 156,334

Validation set size 33,500

Testing set size 33,500

Total Sentences 223,334

C. Impact of Sentence Structure on Translation Quality

The effectiveness of the dataset distribution is evaluated

through BLEU scores, a key metric for assessing machine

translation quality. Sentence length and complexity

significantly influence BLEU scores, as observed in model

testing.

• Shorter sentences with common structures tend to

achieve higher BLEU scores, as they pose less

linguistic ambiguity and are easier to translate.

• Longer and structurally complex sentences,

particularly those in the Sinhala dataset, present greater

challenges, often resulting in lower BLEU scores.

This analysis underscores the importance of dataset

composition in translation accuracy.

D. Model Performance and Accuracy

The transformer-based model developed in this study

achieved an overall accuracy of 91.37%, demonstrating its

effectiveness in translating Java programming content

between Sinhala and English. The BLEU scores indicate

that the model produces translations that closely align with

reference outputs, ensuring both accuracy and fluency.

Given the linguistic differences between Sinhala and

English, as well as the technical nature of programming

content, this performance is significant. The model

successfully adapts to complex sentence structures,

maintaining syntactic accuracy and semantic coherence in

Java-related translations. These results highlight the

potential of transformer-based models in mitigating

language barriers for Sinhala-speaking programmers.

E. Dataset Distribution Analysis

Fig. 11 provides a visual representation of the dataset

distribution, offering insights into the sentence structures in

both Sinhala and English. The dataset was analyzed using

two key visualization techniques:

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

163

• Box Plot: Illustrates variation in sentence lengths and

highlights differences between Sinhala and English

datasets.

• Histogram: Displays the frequency distribution of

sentence lengths, identifying common patterns and

anomalies in dataset composition.

The analysis reveals that most sentences in both

languages fall within the 5 to 10-word range, ensuring

consistency in linguistic complexity across training,

validation, and testing sets. However, the presence of

outliers, particularly longer Sinhala sentences, suggests that

translation quality may be affected by complex syntactic

structures.

This dataset composition analysis is critical for refining

translation models, as it ensures balanced training data that

can enhance the model’s ability to handle both common and

complex sentence structures effectively. Additionally, a

statistical evaluation was conducted to measure the tool’s

effectiveness in bridging the language barrier and improving

Java programming comprehension. The evaluation also

included a pre- and post-tool user performance comparison,

validating its impact on learning outcomes.

Fig. 11. Distribution of words per sentence in English and Sinhala.

F. Usability Test Evaluation Methodology

• Participant Selection: To ensure a diverse

representation of students with varying educational

backgrounds, participants were recruited from two

distinct categories of universities in Sri Lanka that

offer University Grants Commission (UGC)-affiliated

IT degrees:

o UGC-affiliated government universities

o UGC-affiliated private universities

An initial target of at least four students per institution

was set, covering 25 universities across these two categories,

with the aim of recruiting 100 participants. However, 122

responses were successfully collected, exceeding the

anticipated sample size.

Participants were further categorized into three groups

based on their programming proficiency:

o Group A (Minimal programming experience):

First and second semester students with limited

prior exposure to programming.

o Group B (Moderate programming experience):

Third to fifth semester students with intermediate

programming knowledge.

o Group C (Advanced programming experience):

Sixth semester and beyond students with

substantial programming experience.

• Testing Procedure: The evaluation was conducted in

three phases to systematically assess the effectiveness

of the tool:

o Pre-Test: Participants were assigned a set of Java

programming tasks in English to establish their

baseline understanding and performance. These

tasks included writing Java code snippets,

interpreting existing code, and solving fundamental

programming problems.

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

164

o Tool Interaction: Participants were introduced to

the tool and given two weeks to explore its

functionalities. During this period, they utilized the

tool to translate Sinhala programming queries into

Java code and visualize corresponding diagrams.

o Post-Test: After the tool interaction phase,

participants completed a new but comparable set of

Java programming tasks in Sinhala, requiring them

to use the tool. Performance was assessed based on

three key metrics: task accuracy (percentage of

correctly solved problems), completion time (time

taken to complete assigned tasks), and perceived

difficulty (self-reported ease of use).

• Data Collection: To evaluate user performance and

tool usability, the following quantitative data points

were collected:

o Task accuracy

o Average task completion time

o Self-reported ease of use (measured using a 5-point

Likert scale)

• Statistical Analysis: To assess the significance of

performance improvements, paired t-tests were

conducted, comparing pre-test and post-test scores

across participant groups. The statistical findings,

detailed in Tables 3–5, highlight the tool’s impact on

task accuracy, completion time, and user experience.

Table 3. Task accuracy metrics before and after using the proposed tool across participant categories

Metric Pre-Test Post-Test Progress

Task Accuracy

(Students belonging to UGC-affiliated government universities in Group A)
59.26% 77.78% 18.52%

Task Accuracy

(Students belonging to UGC-affiliated private universities in Group A)
55.17% 79.31% 24.14%

Task Accuracy

(Students belonging to UGC-affiliated government universities in Group B)
66.67% 83.33% 16.67%

Task Accuracy

(Students belonging to UGC-affiliated private universities in Group B)
76.19% 80.95% 4.76%

Task Accuracy

(Students belonging to UGC-affiliated government universities in Group C)
78.95% 89.47% 10.53%

Task Accuracy

(Students belonging to UGC-affiliated private universities in Group C)
76.92% 84.62% 7..69%

Table 4. Task completion time metrics before and after using the proposed tool across participant categories

Metric Pre-Test (Minutes) Post-Test (Minutes) Progress (Minutes)

Task Completion Time

(Students belonging to UGC-affiliated government universities in Group A)
40 32 8

Task Completion Time

(Students belonging to UGC-affiliated private universities in Group A)
51 38 13

Task Completion Time

(Students belonging to UGC-affiliated government universities in Group B)
28 22 6

Task Completion Time

(Students belonging to UGC-affiliated private universities in Group B)
32 28 4

Task Completion Time

(Students belonging to UGC-affiliated government universities in Group C)
25 20 5

Task Completion Time

(Students belonging to UGC-affiliated private universities in Group C)
23 19 4

Table 5. User experience metrics before and after using the proposed tool across participant categories

Metric Pre-Test Post-Test Progress

User Experience

(Students belonging to UGC-affiliated government universities in Group A)
3 4 1

User Experience

(Students belonging to UGC-affiliated private universities in Group A)
2 4 2

User Experience

(Students belonging to UGC-affiliated government universities in Group B)
3 4 1

User Experience

(Students belonging to UGC-affiliated private universities in Group B)
2 3 1

User Experience

(Students belonging to UGC-affiliated government universities in Group C)
3 5 2

User Experience

(Students belonging to UGC-affiliated private universities in Group C)
4 5 1

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

165

G. Connecting BLEU Scores to Translation Performance

and User Improvement

The BLEU score, a widely recognized metric for

evaluating translation quality, was utilized to measure the

effectiveness of Sinhala-to-Java translations produced by the

tool.

The analysis revealed a strong correlation between higher

BLEU scores and improved student performance, indicating

that superior translation quality directly enhances

programming comprehension. Specifically, translations with

higher BLEU scores resulted in fewer syntactic and

semantic errors, enabling students to understand Java

programming concepts more effectively.

By incorporating BLEU score-based evaluation, this

study establishes a robust relationship between translation

accuracy and learning outcomes, further validating the tool’s

practical effectiveness in improving programming education

for Sinhala-speaking learners. The results underscore the

importance of high-quality translations in reducing cognitive

load, facilitating knowledge retention, and improving

students’ ability to write Java code accurately. To

contextualize these findings, the following section compares

BLEU scores from related studies and highlights how the

proposed model outperforms existing approaches.

H. BLEU Score Comparison Across English–Sinhala

NMT Models

To contextualize the performance of the proposed

transformer-based model, this section compares its BLEU

score with those reported in previous English–Sinhala NMT

studies. These comparisons highlight advancements in

dataset size, model design, and translation accuracy over

time.

Sen et al. [26] introduced two multilingual NMT models

based on the Transformer architecture—one for English-to-

Indic language translation and another for the reverse

direction. Sinhala was among the supported languages, and

their English-to-Sinhala bilingual baseline model achieved a

BLEU score of 12.75.

Expanding on this foundation, Guzman et al. [27]

developed an NMT system trained on open-domain datasets

using both supervised and semi-supervised methods.

However, due to a domain mismatch between the training

and test data, the English-to-Sinhala translation yielded a

significantly lower BLEU score of just 1.2, revealing the

sensitivity of translation accuracy to domain-specific data.

To address this challenge, Nguyen et al. [28] employed a

data diversification strategy using backward and forward

peer models to enrich the dataset. This method improved the

BLEU score to 2.2, surpassing the result reported by

Guzman et al., yet still reflecting limitations due to dataset

quality and volume.

A notable improvement was achieved by Fonseka et

al. [29], who trained an English-to-Sinhala NMT model

using BPE and a Transformer architecture on a closed-

domain dataset comprising 18,000 official Sri Lankan

government document pairs. This model attained a BLEU

score of 28.28, marking a significant step forward in

domain-specific translation quality.

Building upon these efforts, Naranpanawa et al. [30]

explored the impact of various sub-word segmentation

techniques, including BPE, Unigram Language Model, and

Character Segmentation. Their best-performing model,

trained on a dataset of 54,000 sentences, achieved a BLEU

score of 29.92 using BPE, demonstrating the effectiveness

of sub-word techniques in handling morphologically rich

languages like Sinhala.

While these studies have contributed meaningfully to the

development of English–Sinhala NMT, they are often

constrained by limited training data and scope. In contrast,

the proposed model in this study achieves a BLEU score of

33.17—substantially higher than previously reported results.

This improvement is attributed primarily to the

significantly larger dataset of 156,334 training sentences,

complemented by balanced validation and test sets of 33,500

sentences each. The larger training corpus enables better

learning of grammar patterns, contextual alignments, and

vocabulary distributions, while the expansive test set

enhances the statistical reliability of performance evaluation.

The use of BPE, coupled with task-specific tuning and

transformer-based architecture, further contributes to the

model’s high accuracy and fluency in translation.

Table 6 summarizes the BLEU scores and methodologies

of the reviewed English–Sinhala NMT models for quick

reference and comparison.

This comparative analysis underscores the effectiveness

of the proposed model in delivering superior translation

quality for English–Sinhala NMT tasks. By overcoming

limitations in dataset size and leveraging advanced

transformer techniques, the model sets a new benchmark in

BLEU score performance for this language pair.

Table 6. Comparison of BLEU Scores for English–Sinhala NMT Models

Model
BLEU

Score
Methodology

Sen et al.’s Model

[26]
12.75

Multilingual NMT using

Transformer

Guzman et al.’s

Model [27]
1.2

Open-domain NMT,

supervised training

Nguyen et al.’s

Model [28]
2.2

Data diversification with peer

models

Fonseka et al.’s

Model [29]
28.28 Transformer with BPE

Naranpanawa et al.’s

Model [30]
29.92

Transformer with various sub-

word techniques

Proposed Model 33.17

Transformer with BPE and

enhanced training on a

significantly larger dataset

(156,334 sentences)

I. Significance and Practical Applications

This research makes a significant contribution to

programming education by addressing the unique challenges

faced by Sinhala-speaking novice programmers. By

developing a transformer-based Sinhala-to-Java

programming assistance tool, this study bridges a critical

gap in educational resources for non-English-speaking

learners.

Beyond resolving immediate linguistic challenges, this

tool establishes a scalable model that can be adapted for

other linguistic communities worldwide, breaking language

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

166

barriers in programming education and fostering a more

inclusive and equitable learning experience.

By enabling the generation of Java code and visual

representations in Sinhala, the tool democratizes

programming education, ensuring that non-English-speaking

learners have access to high-quality learning resources. This

innovative approach has the potential to transform

programming education for underrepresented linguistic

groups, making technical knowledge more accessible and

empowering.

J. Key Finding and Pedagogical Benifits

• Enhanced Learning and Code Quality:

o Students demonstrated substantial improvements in

writing syntactically correct Java code.

o The tool contributed to a reduction in common syntax

errors, leading to cleaner and more efficient coding

practices.

• Improved Programming Comprehension:

o By allowing students to articulate problems in Sinhala,

the tool enhanced their understanding of Java

programming concepts.

o Code structure visualization and logic diagrams

reinforced conceptual clarity, resulting in better

learning outcomes.

• Reduction in Cognitive Load:

o Eliminating the language barrier enabled students to

focus on programming logic, rather than struggling

with English-based syntax and terminology.

o This was particularly impactful for first and second-

semester students, who had limited exposure to

English-based programming resources.

• Increased Engagement and Confidence:

o The tool significantly boosted student motivation, with

post-test surveys reporting higher confidence levels.

o A structured two-week interaction period allowed

students to gain familiarity with the tool, fostering

greater competence in Java programming.

K. Technical Soundness and Reliability

The technical robustness of the research is demonstrated

through the meticulous development and seamless

integration of a custom transformer-based translation model.

Specifically trained on a curated dataset tailored for Java

programming, the model ensures translations that are both

accurate and contextually relevant.

The system architecture, encompassing a front-end

interface, back-end API, and integration with ChatGPT,

underwent rigorous testing to guarantee optimal

performance. Comprehensive user testing and quality

assurance protocols further validate the tool’s reliability and

effectiveness, positioning it as a valuable resource for both

educational institutions and professional programming

environments.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

This research has successfully developed and validated a

transformer-based programming assistance tool designed to

overcome language barriers faced by Sinhala-speaking

novice Java programmers. With a translation accuracy of

91.37% and strong BLEU scores, the tool demonstrates its

ability to generate precise and contextually relevant Java

code from Sinhala queries. The integration of GPT-3.5

Turbo for code generation, combined with a transformer-

based translation model, has proven to be an effective

solution for bridging linguistic gaps in programming

education.

Beyond its immediate educational benefits, this tool

enhances inclusivity and accessibility by enabling real-time

code and diagram generation. By fostering a more equitable

learning experience, it democratizes access to technology

education, particularly in regions where English proficiency

poses a barrier. Its technical robustness and reliability have

been validated through rigorous testing and iterative

refinements, making it a valuable resource for both

academic institutions and industry professionals. The tool’s

applications extend beyond classrooms, benefiting self-

learners, educators, and software developers.

Furthermore, this research establishes a scalable

framework that can be adapted to support other non-

English-speaking communities, setting a precedent for the

development of similar educational technologies. By

fostering inclusivity and expanding access to programming

knowledge, this study contributes to a more diverse and

innovative technology landscape.

While the tool significantly enhances accessibility in

programming education, several limitations must be

addressed in future iterations. A key area for improvement is

expanding the dataset to further improve translation

accuracy and model robustness. Additionally, increasing the

response count during testing is essential to validate the

tool’s performance across a broader range of scenarios and

use cases, ensuring its effectiveness in diverse real-world

applications.

B. Future Work

The future directions for this research offer significant

advancements and broader applications beyond its current

scope. The following key areas highlight promising avenues

for further development:

1) Enhanced language support

Expanding the tool’s language capabilities to include

additional languages such as Tamil, Arabic, and Hindi

would make programming education accessible to a broader

demographic. By offering multilingual support, the tool

could effectively bridge the language barrier in

programming education, particularly in regions where

English is not the first language. This enhancement would

foster greater inclusivity and increase global adoption.

2) Integration with specialized models

Instead of relying solely on ChatGPT, integrating

multiple specialized AI models could enhance performance.

Incorporating models for code completion, error detection,

and algorithm optimization would provide task-specific

support and improve accuracy. This approach would create a

more robust system capable of addressing diverse

programming needs and styles.

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

167

3) Broader Programming Language and Domain Support

Adapting the tool to support other programming

languages (e.g., Python, C++, JavaScript) would increase its

relevance to a wider audience. Additionally, extending its

capabilities to domains like web development, mobile app

development, and machine learning would enhance its

versatility and scalability, making it a comprehensive

resource for learners across various fields.

4) Integration with development tools and platforms

Connecting the tool with popular Integrated Development

Environments (IDEs) such as IntelliJ IDEA, Eclipse, and

Visual Studio Code, as well as version control systems like

Git, could streamline programming workflows. Additionally,

integration with online learning platforms would further

enhance its educational value, providing real-time feedback,

personalized recommendations, and a seamless learning

experience.

5) Improved usability and user experience

Enhancing the tool’s user interface and incorporating

personalized feedback based on user progress would

improve accessibility and engagement. An intuitive design

with targeted guidance would empower learners to better

understand their mistakes, boost confidence, and accelerate

skill development.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Kalpani Sachie Nelanka Athukorala was responsible for

developing the Sinhala-to-English translation model and

designing the overall structure of the Sinhala-based Java

programming assistance tool. Dilshan Indraraj De Silva

integrated the translation model with the Java programming

assistant and conducted tool evaluations to enhance its

usability for students. Both authors contributed to the

writing and critical revision of the manuscript and approved

the final version for submission.

REFERENCES

[1] R. Yasasri and D. Karunarathna, “Helaa: A Sinhala language-based
programming,” in Proc. 4th International Conference on Innovations
in Info-business & Technology, Colombo, Sri Lanka, Aug. 2023, pp.
1–11.

[2] F. Wang and M. Hannafin, “Design-based research and technology-
enhanced learning environments,” Educational Technology Research
& Development, vol. 53, no. 4, pp. 5–23, 2005.

[3] Editors of Encyclopaedia Britannica (2012). Sinhalese language.
Britannica. [Online]. Available: https://www.britannica.com/topic/
Sinhalese-language

[4] R. Nordquist. (2024). English language: History, definition, and
examples. ThoughtCo. [Online]. Available: https://www.
thoughtco.com/what-is-the-english-language-1690652

[5] R. Kulshrestha. (2020). Transformers. Medium: Towards Data
Science. [Online]. Available: https://towardsdatascience.com/
transformers-89034557de14

[6] Z. Xu and E. Martin. (2024). From RNNs to Transformers. [Online].
Available: https://www.baeldung.com/cs/rnns-transformers-nlp

[7] M. Amaratunga, G. Wickramasinghe, M. Deepal, O. Perera, D. De
Silva, and S. Rajapakse, “An Interactive Programming Assistance tool
(iPAT) for instructors and novice programmers,” in Proc. 8th
International Conference on Computer Science & Education,
Colombo, Sri Lanka, 2013, pp. 680–684.

[8] S. J. Whittall, W. A. C. Prashandi, G. L. S. Himasha, D. I. De Silva,
and T. K. Suriyawansa, “CodeMage: Educational programming
environment for beginners,” in Proc. 9th International Conference on
Knowledge and Smart Technology, Chonburi, Thailand, 2017, pp.
311–316.

[9] P. Perera and S. Ahangama, “SimplyTrans: A simplified approach to
sinhala-based coding and introductory programming language
localization,” in Proc. 16th International Conference on Industrial
and Information Systems, Kandy, Sri Lanka, 2021, pp. 318–323. doi:
10.1109/ICIIS53135.2021.9660709

[10] A. More, J. Kumar, and R. V. G. “Web based programming assistance
tool for novices,” in Proc. International Conference on Technology
for Education, Chennai, India, 2011, pp. 270–273.

[11] D. De Silva, A. Alahakoon, I. Udayangani, V. Kumara, D. Kolonnage,
H. Perera, and S. Thelijjagoda, “Sinhala to English language
translator,” in Proc. International Conference on Information and
Automation for Sustainability, Colombo, Sri Lanka, 2008, pp. 419–
424.

[12] L. Wijerathna, W. L. S. L. Somaweera, S. L. Kaduruwana, Y. V.
Wijesinghe, D. I. De Silva, K. Pulasinghe, and S. Thellijjagoda, “A
translator from Sinhala to English and English to Sinhala (SEES),” in
Proc. International Conference on Advances in ICT for Emerging
Regions, Colombo, Sri Lanka, 2012, pp. 14–18.

[13] A. Kugathasan and S. Sumathipala, “Neural machine translation for
Sinhala-English code-mixed text,” International Journal on Advances
in ICT for Emerging Regions (ICTer), vol. 15, no. 3, pp. 60–71, 2022.

[14] A. M. Silva and R. Weerasinghe, “Example based machine translation
for English-Sinhala translations,” in Proc. 9th International IT
Conference, Colombo, Sri Lanka, Oct. 2008, pp. 27–28.

[15] L. Long, J. Liang, and A. Smith, “AI literacy for multilingual learners:
Storytelling, role-playing, and programming,” The CATESOL Journal,
vol. 35, no. 1, pp. 1–11, 2024.

[16] T. Wang, D. V. Diaz, C. Brown, and Y. Chen, “Exploring the role of
ai assistants in computer science education: Methods, implications,
and instructor perspectives,” in Proc. IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Washington,
DC, USA, 2023, pp. 92–102. doi: 10.1109/VL-
HCC57772.2023.00018

[17] C. Piech and S. Abu-El-Haija, “Human languages in source code:
Auto-translation for localized instruction,” in Proc. Seventh ACM
Conference on Learning @ Scale, USA, 2020, pp. 167–174. doi:
10.1145/3386527.3405916

[18] T. Shaik, X. Tao, Y. Li, C. Dann, J. Mcdonald, P. Redmond, and L.
Galligan, “A review of the trends and challenges in adopting natural
language processing methods for education feedback analysis,” IEEE
Access, vol. 10, pp. 56720–56739, 2022.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Proc. International Conference on Neural Information Processing
Systems, California, USA, 2017, pp. 6000–6010.

[20] B. V. Kiranmayee, R. S. Priya, R. Vijaya, P. Suresh, and R. V.
Goutham, “Machine translation on dravidian languages,”
International Journal of Recent Technology and Engineering, vol. 12,
no. 1, pp. 1–14, 2023.

[21] R. Perera, T. Fonseka, R. Naranpanawa, and U. Thayasivam,
“Improving English to Sinhala neural machine translation using part-
of-speech tag,” arXiv Print, arXiv:2202.08882, 2022. doi:
10.48550/arXiv.2202.08882

[22] Z. Zhan, L. He, Y. Tong, X. Liang, S. Guo, and X. Lan, “The
effectiveness of gamification in programming education: Evidence
from a meta-analysis,” Computers and Education: Artificial
Intelligence, vol. 3, no. 100096, pp.1–11 ,2022.

[23] M. Hlosta, P. Bergamin, C. Herodotou, T. Papathoma, and A.
Gillespie, “Predictive learning analytics in online education: A deeper
understanding through explaining algorithmic errors,” Computers and
Education: Artificial Intelligence, vol. 3, no. 100108, pp.1–12, 2022.

[24] H. Khosravi, Y. S. Tsai, S. B. Shum, J. Kay, S. Knight, G. Chen, R.
Martinez-Maldonado, and D. Gašević, “Explainable artificial
intelligence in education,” Computers and Education: Artificial
Intelligence, vol. 3, no. 100074, pp. 1–22, 2022.

[25] A. C. M. Yang, I. Y. L. Chen, B. Flanagan, and H. Ogata, “How
students’ self-assessment behavior affects their online learning
performance,” Computers and Education: Artificial Intelligence, vol.
3, no. 100058, pp.1–8,2022.

[26] S. Sen, K. K. Gupta, A. Ekbal, and P. Bhattacharyya, “IITP-MT at
WAT2018: Transformer-based multilingual indic-english neural
machine translation system,” in Proc. 32nd Pacific Asia Conference

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

168

Language, Information and Computation: 5th Workshop Asian
Translation, Hong Kong, Dec. 2018, pp. 1003–1007.

[27] F. Guzmán, P. Chen, M. Ott, J. Pino, G. Lample, P. Koehn, V.
Chaudhary, and M. Ranzato, “The FLORES evaluation datasets for
low-resource machine translation: Nepali–English and Sinhala–
English,” in Proc. Conference Empirical Methods in Natural
Language Processing and the 9th International Joint Conference
Natural Language Processing, Hong Kong, China, 2019, pp. 6097–
6110.

[28] X. P. Nguyen, S. Joty, W. Kui, and A. T. Aw, “Data diversification:
An elegant strategy for neural machine translation,” arXiv preprint,
arXiv: 1911.01986, 2019.

[29] T. Fonseka, R. Naranpanawa, R. Perera, and U. Thayasivam,
“English to Sinhala neural machine translation,” in Proc.

International Conference on Asian Language Processing, Kuala
Lumpur, Malaysia, 2020, pp. 305–309.
doi:10.1109/IALP51396.2020.9310462

[30] R. Naranpanawa, R. Perera, T. Fonseka, and U. Thayasivam,
“Analyzing subword techniques to improve English to Sinhala neural
machine translation,” International Journal of Asian Language
Processing, vol. 30, no. 04, pp. 2050017:1–2050017:13, 2020.
doi:10.1142/s2717554520500174

Copyright © 2025 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits

unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited (CC BY 4.0).

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

169

https://creativecommons.org/licenses/by/4.0/

