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Abstract—This study presents an innovative programming 

assistance tool designed to address language barriers faced by 

Sinhala-speaking novice Java programmers. The tool provides 

real-time Java code generation and diagram creation based on 

Sinhala programming queries, enhancing conceptual 

understanding. Developed using a Design-Based Research 

methodology, the tool underwent iterative testing with 122 

Sinhala-speaking learners, incorporating user feedback to 

refine usability and performance. Central to the system is 

Generative Pre-trained Transformer, version 3.5 Turbo, 

ensuring accurate translations and programming assistance, 

alongside a transformer-based model that translates Sinhala 

queries into English for processing. The translation model 

achieved 91.37% accuracy, with strong Bilingual Evaluation 

Understudy scores validating its contextual relevance. The 

tool’s practical applications extend beyond academia, 

supporting educational institutions, self-learners, and industry 

professionals in learning and skill development. Statistical 

evaluation of user performance demonstrated significant 

improvements in programming comprehension, reinforcing its 

effectiveness. By promoting inclusivity and expanding access to 

programming knowledge, this research contributes to the 

advancement of Sri Lanka’s technology sector and establishes 

a scalable framework for broader implementation in 

multilingual programming education. 

 

Keywords—Design-Based Research (DBR), pedagogical 

strategies, java coding, Large Language Model (LLM), Sinhala 

native speakers  

I. INTRODUCTION 

Programming education has advanced significantly in 

recent years, leading to the development of various tools 

aimed at enhancing learning experiences. However, non-

English-speaking novice programmers face a persistent 

challenge: the language barrier. Learners who are more 

comfortable in their native language often struggle to grasp 

English-based programming materials, which impedes their 

progress and creates educational inequality in computer 

science [1]. 

Language barriers introduce a significant cognitive load, 

as learners must simultaneously navigate complex technical 

concepts and a non-native language. This challenge often 

results in frustration and reduced learning outcomes. While 

existing programming assistance tools focus on syntax 

correction, code completion, and debugging, they rarely 

address the cognitive overload caused by language 

translation. Additionally, current machine translation 

solutions lack domain-specific accuracy, often producing 

incorrect or contextually irrelevant translations that hinder 

effective learning. 

To address this issue, this study introduces a Sinhala-

based Java assistance tool designed to mitigate the language 

barriers faced by Sinhala-speaking novice programmers. 

The tool leverages machine translation and transformer 

architectures to provide real-time, contextually accurate 

translations and programming assistance in Sinhala. By 

integrating these technologies, it aims to bridge the language 

gap, enabling learners to focus on mastering programming 

concepts without the added burden of translation. 

This study adopts the DBR methodology, which 

facilitates iterative design, development, and refinement 

based on practical feedback [2]. DBR is particularly suitable 

for programming education as it allows the tool to evolve 

with learners’ needs, ensuring continuous improvement 

based on real-world usability and effectiveness. 

The dominance of English in programming languages and 

educational resources places non-English speakers at a 

disadvantage, limiting their ability to fully engage with and 

contribute to the field. This research seeks to promote 

inclusivity by developing a solution that accommodates 

diverse language preferences and learning environments. 

Unlike existing programming tools, the proposed solution 

offers structured learning support beyond mere translation, 

ensuring a more effective educational experience. 

The primary objective of this study is to develop a 

comprehensive programming assistance tool that allows 

Sinhala-speaking learners to input queries in Sinhala and 

receive relevant Java code, along with a corresponding 

program structure diagram. This tool not only addresses the 

immediate educational needs of Sinhala-speaking 

programmers but also sets a precedent for expanding similar 

tools to other non-English-speaking communities. By 

removing linguistic barriers, this research contributes to the 

broader goal of democratizing programming education, 

ensuring language becomes a bridge to knowledge rather 

than a hindrance. 

The remainder of this paper is organized as follows: 

Section II provides the background necessary to 

contextualize the research. It begins by exploring the 

linguistic challenges faced by Sinhala-speaking students in 

programming education, highlighting the dominance of 

English in programming resources and instruction. The 

section emphasizes how this language barrier can hinder 

comprehension and discourage engagement among novice 

learners. It then discusses the selection of Java as the target 

programming language, citing its widespread use in 

education, object-oriented structure, and compatibility with 

beginner-friendly tools. The potential of AI-driven 

translation and programming assistance tools is introduced 

next, illustrating how such technologies can bridge the gap 
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between natural language input and code generation, 

especially in linguistically diverse environments. Finally, 

the section reviews key advancements in transformer models 

that have enabled significant improvements in natural 

language understanding and translation—technologies that 

form the foundation of the proposed Sinhala-based 

programming assistance tool.  

Section III reviews the existing body of literature relevant 

to the development of the proposed tool. It begins by 

examining current programming assistance tools and 

Sinhala-English translation systems, identifying the lack of 

tailored solutions for Sinhala-speaking learners. The section 

then explores the broader application of Artificial 

Intelligence (AI) and Natural Language Processing (NLP) in 

programming education, focusing on how these technologies 

can support code generation, syntax translation, and learning 

personalization. It further investigates the role of 

gamification and AI-driven feedback mechanisms in 

enhancing learner motivation and programming skill 

acquisition. Attention is also given to AI-enabled 

approaches for improving student engagement and self-

assessment within online learning environments. Finally, the 

section presents a comparative analysis of existing self-

assessment tools and related studies, highlighting the 

research gap addressed by the proposed Sinhala-based 

solution that combines translation, code generation, and 

educational reinforcement in a single tool.  

Section IV details the methodology adopted in developing 

the Sinhala-based Java programming assistance tool. It 

begins with an explanation of the DBR methodology, 

emphasizing its iterative structure involving problem 

identification, solution design, real-world testing, and 

evaluation. The back-end Application Programming 

Interface (API) development is then described, highlighting 

how user queries in Sinhala are processed, translated into 

English using a custom transformer model, and passed to the 

Generative Pre-trained Transformer (GPT), version 3.5 

Turbo, for code generation. The section also outlines the 

architecture and training of the transformer-based Sinhala-

English translator, including its attention mechanisms, token 

embeddings, and fine-tuning process using a Java-specific 

dataset. Next, it presents the front-end development, 

showcasing an intuitive user interface built to reduce 

cognitive load by enabling real-time code and diagram 

generation based on Sinhala queries. Finally, the section 

explains the user testing and quality assurance integration 

process, detailing functional and usability testing conducted 

with 122 Sinhala-speaking novice programmers, and how 

iterative feedback was used to refine the tool’s effectiveness 

and reliability. 

Section V presents a detailed account of the results and 

discussion. It begins by outlining how the tool was 

developed through iterative phases of the DBR methodology, 

incorporating user feedback and continuous refinement. The 

section then examines the composition and preparation of 

the training, validation, and testing datasets used to develop 

the translation model. It explores how variations in sentence 

structure affect translation quality, providing insights into 

linguistic nuances that influence model outputs. The 

performance of the model is assessed through accuracy 

metrics and Bilingual Evaluation Understudy (BLEU) 

scores, supported by a comprehensive analysis of dataset 

distribution. Usability testing is described, detailing the 

evaluation methodology and findings from 122 Sinhala-

speaking learners. Further, the section connects BLEU 

scores to user performance improvements and compares the 

proposed model’s performance with other English–Sinhala 

Neural Machine Translation (NMT) systems. Finally, it 

discusses the practical applications of the tool, its 

educational impact, pedagogical benefits, and the technical 

soundness and reliability of the implemented system.  

Section VI concludes the paper by summarizing the key 

findings, technical contributions, and educational benefits of 

the proposed tool. It also outlines future work, such as 

extending language support, integrating with development 

tools, and expanding to other programming domains. 

II. BACKGROUND STUDY 

A. Sinhala and English in Programming Education 

Sinhala, an Indo-Aryan language, is the national language 

of Sri Lanka and is spoken by the majority of the population. 

It possesses unique linguistic characteristics, including a 

distinctive script, phonetic structure, and grammatical 

constructs that differentiate it from other Indo-Aryan 

languages [3]. Understanding these features is essential for 

developing effective educational tools that support Sinhala-

speaking learners in grasping complex subjects. 

In contrast, English, originating from the West Germanic 

language family, has become the primary global language 

due to historical colonization and the impacts of modern 

globalization. It is the dominant language in countries such 

as the United Kingdom, the United States, Australia, Canada, 

and New Zealand, as well as in several former British 

colonies [4]. This widespread dominance extends to 

programming education, where most instructional materials 

and programming languages are based on English syntax 

and terminology. As a result, non-English speakers, 

including Sinhala-speaking learners, often face difficulties 

in grasping programming concepts, leading to an 

accessibility gap in computer science education. 

B. Java as a Programming Language 

Java, a widely used object-oriented programming 

language, was developed by Sun Microsystems (now Oracle) 

in the mid-1990s. Designed for platform independence, 

security, and robustness, Java eliminates complex low-level 

programming constructs, making it suitable for educational 

settings. Many institutions introduce Java as a foundational 

language due to its readability and maintainability. However, 

for non-English-speaking learners, the challenge extends 

beyond programming logic to understanding English-based 

syntax and documentation. 

C. AI-Driven Translation and Assistance in Programming 

Education 

To mitigate language barriers in programming education, 

this study integrates a custom transformer-based Sinhala-

English translation model with AI-driven assistance. The 

tool provides real-time Java code generation and diagrams, 

ensuring an inclusive learning experience. By automating 

translation and contextual programming support, the system 

enhances comprehension and encourages broader 
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participation in programming education, particularly among 

Sinhala-speaking students. 

D. Advancements in Transformer Models 

The Transformer model, introduced by Vaswani et al. [5], 

has revolutionized NLP by replacing traditional Recurrent 

Neural Networks (RNNs). Unlike RNNs, which process 

input sequentially, transformers leverage self-attention 

mechanisms to analyze entire sequences simultaneously, 

improving efficiency and accuracy in capturing long-term 

dependencies. 

Compared to RNNs and Long Short-Term Memory 

(LSTM) networks, transformers offer significant advantages: 

• Parallel Processing: Unlike RNNs, which process 

tokens sequentially, transformers handle entire 

sentences simultaneously, improving speed and 

efficiency. 

• Enhanced Long-Term Dependency Capture: 

Traditional models suffer from the vanishing gradient 

problem, which weakens token influence over long 

sequences. Transformers overcome this by establishing 

direct connections between all words in a sequence. 

• Superior Accuracy in Translation Tasks: Gated 

Recurrent Units (GRU) and LSTM-based RNN models 

struggle with complex language patterns, whereas 

multi-head self-attention and positional encodings in 

transformers enable precise translations [5, 6]. 

By leveraging these advancements, the proposed tool 

provides contextually accurate programming assistance for 

Sinhala-speaking learners, ensuring that language is no 

longer a barrier to programming education. 

III. LITERATURE REVIEW 

A. Existing Programming Assistance Tools and Sinhala-

English Translation Systems 

A range of tools has been developed to support 

programming education and overcome language barriers 

between Sinhala and English. Some tools primarily assist 

with programming education, while others focus on 

facilitating translation between Sinhala and English for 

better accessibility. Additionally, certain tools integrate both 

programming assistance and language translation, offering a 

comprehensive solution for Sinhala-speaking programmers. 

The following is an overview of existing tools in these 

categories:  

• Helaa [1]: A Sinhala programming assistance tool that 

introduces a novel programming language tailored 

specifically for Sinhala speakers. This Java-based tool 

integrates Sinhala syntax and compiler exceptions, 

making programming more accessible to non-English 

speakers. Future development aims to expand its 

compatibility with JavaScript and Python. 

• Interactive Programming Assistance Tool  

(iPAT) [7]: A tool designed to assist students and 

instructors in managing computer labs through 

functionalities like error handling, remote access, and 

PC inventory management. While it enhances the 

learning environment, it does not specifically address 

the linguistic barriers faced by Sinhala-speaking 

programmers.  

• CodeMage [8]: An educational platform that provides 

real-time programming guidance, automatic code 

generation, and best practices. Although robust in 

supporting novice programmers, it does not 

specifically cater to Sinhala speakers.  

• SimpliTrans [9]: A bilingual coding tool allowing 

users to switch between English and Sinhala. It 

translates programming commands and instructions, 

making coding more accessible to Sinhala-speaking 

learners by integrating localized programming 

terminology.  

• Web Programming Assistance Tool (WPAT) [10]: A 

debugging-focused tool that interprets compiler error 

messages and suggests fixes. While beneficial for 

reducing frustration during programming, it does not 

address language barriers. 

• Sinhala to English Language Translator [11] and 

Sinhala to English and English to Sinhala  

(SEES) [12]: These tools facilitate Sinhala-English 

translation, including Singlish recognition, making 

them useful for general language translation but not 

specifically optimized for programming-related 

terminology.  

• NMT for Sinhala-English Code-Mixed Text [13]: 

This research utilizes advanced neural network 

architectures, including LSTM units and Sequence to 

Sequence (Seq2Seq) models, to translate Sinhala-

English mixed text. The integration of a normalization 

pipeline and Teacher Forcing mechanism aims to 

improve the accuracy and fluency of translations, 

supporting bilingual communication effectively. 

• Example-Based Machine Translation for English-

Sinhala Translations [14]: This model leverages a 

knowledge database to perform accurate translations 

between English and Sinhala by utilizing inter-

language matching techniques. This approach helps in 

understanding and generating contextually relevant 

translations, thereby facilitating smoother 

communication between English and Sinhala speakers 

in educational and professional settings.  

B. AI and NLP Applications in Programming Education 

1) AI-driven pedagogical strategies  

Recent studies have explored the integration of AI to 

support non-native English speakers in programming 

education. AI-driven pedagogical strategies are increasingly 

being developed to enhance multilingual learners’ 

comprehension and engagement in coding. For instance, 

research by Long et al. [15] introduced innovative 

instructional techniques such as storytelling, role-playing, 

and AI-driven text-to-speech-to-text mechanisms to foster 

AI literacy among multilingual students. These methods 

leverage linguistic scaffolding and translanguaging to bridge 

language gaps, ensuring that programming concepts are 

effectively conveyed regardless of the learner’s native 

language. 

2) AI-based programming assistants 

AI-based programming assistants are being assessed for 

their role in aiding multilingual education. Wang et al. [16] 

evaluated the effectiveness of AI-powered tools like 
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ChatGPT in solving diverse computer science problems. 

Their study explored how AI-generated explanations and 

code suggestions can be optimized to support learners with 

varying levels of English proficiency, highlighting the 

importance of adapting instructional materials to AI 

capabilities while incorporating instructor insights. 

Furthermore, Piech and Abu-El-Haija [17] developed 

“CodeInternational,” an NLP-based tool designed to 

facilitate code translation between human languages. By 

localizing programming instructions and offering context-

aware explanations, this system aims to make computer 

science education more accessible to non-English speakers. 

3) Advancements in machine translation and NLP  

While several tools aim to address programming 

education challenges for non-English speakers, the 

integration of advanced AI techniques like NLP offers new 

avenues for innovation. For instance, Shaik et al.’s study [18] 

delves into the potential of NLP in educational feedback 

analysis, emphasizing its role in bridging language barriers 

and enhancing student engagement. By employing methods 

such as sentiment analysis, entity recognition, and topic 

modeling, NLP provides actionable insights from textual 

feedback, which could be adapted to evaluate programming 

education tools tailored for Sinhala speakers. Furthermore, 

the study highlights challenges such as domain-specific 

language ambiguity and proposes strategies to overcome 

these limitations, showcasing its relevance to creating 

effective educational technologies in linguistically diverse 

contexts.  

The following studies exemplify key advancements in 

machine translation and NLP: 

• Attention Is All You Need [19]: This research paper 

introduced the Transformer model, discussing its 

architecture and improvements over Seq2seq models. 

The Transformer model minimizes the need for 

recurrent or convolution layers, focusing primarily on 

the attention mechanism. This mechanism enables 

efficient parallelization, significantly reducing training 

times. The paper covers various aspects of the 

Transformer model, including the encoder, decoder, 

attention, feed-forward layers, embedding, and 

positional encoding. The model demonstrated 

exceptional performance in machine translation, 

achieving state-of-the-art BLEU scores on the WMT 

2014 English-to-German and English-to-French 

translation benchmarks. The study highlights the 

Transformer’s scalability and robustness, establishing 

it as a cornerstone in machine learning. 

• Machine Translation on Dravidian Languages [20]: 

This study explores translation resources for Dravidian 

languages, predominantly spoken in southern India. 

Despite their popularity, Dravidian languages have not 

received adequate attention due to a lack of translation 

resources. The paper discusses several machine 

translation models, including rule-based machine 

translation, NMT, example-based machine translation, 

hybrid machine translation, transformer model, 

statistical machine translation, and LSTM model. It 

explores the characteristics, importance, and 

advantages of these models, highlighting the most 

effective model for improving information access and 

generation for monolingual speakers in the region. 

• Improving English to Sinhala NMT using Part-of-

Speech (POS) Tag [21]: This study identifies 

techniques to improve the English to Sinhala 

translation model. Byte Pair Encoding (BPE) and 

Character Segmentation were utilized to enhance 

translation quality. The study sheds light on optimizing 

NMT for languages with complex linguistic structures 

and addressing the challenges of low-resource 

constraints. 

Although AI-based tools enhance learning through 

intelligent assistance and translation, they do not inherently 

address student motivation and engagement. To further 

enhance learning outcomes, gamification strategies have 

been integrated into AI-driven programming education, 

providing interactive and competitive learning experiences. 

The next section examines these strategies.  

C. Gamification and AI-Driven Learning Insights in 

Programming Education 

1) Gamification approaches  

Gamification has emerged as a transformative approach in 

programming education. Zhan et al. [22] conducted a meta-

analysis assessing its effectiveness, demonstrating how 

reasoning strategy games and competitive mechanisms can 

significantly enhance student motivation and learning 

outcomes. The study underscores the importance of 

balancing cognitive load and maintaining intrinsic 

motivation to create inclusive, gamified educational 

platform. 

2) Predictive Learning Analytics (PLA)  

PLA has emerged as a powerful tool for improving 

educational outcomes by identifying students at risk. Hlosta 

et al. [23] investigates the errors made by PLA systems, 

particularly False Positives (FP) and False Negatives (FN), 

in predicting assignment submissions. Through qualitative 

interviews with students, the study reveals that factors such 

as unexpected life events, shifting responsibilities, and 

technical issues significantly contribute to these errors. The 

findings underscore the limitations of machine learning 

algorithms in capturing contextual nuances and highlight the 

need for integrating human intelligence, such as teacher 

insights, into AI-driven systems. By addressing these 

challenges, PLA can play a crucial role in enhancing not 

only engagement but also the accuracy and inclusivity of 

educational tools, including those aimed at overcoming 

language barriers in programming education. 

3) Explainable AI (XAI) in education  

XAI has gained prominence in the educational sector due 

to its potential to improve trust and usability in AI-driven 

systems. Khosravi et al. [24] propose the XAI-ED 

framework, which identifies six key aspects of 

explainability tailored to educational contexts. These aspects 

include stakeholder needs, benefits, explanation delivery 

methods, AI model types, human-centered interface designs, 

and potential pitfalls. The framework is exemplified through 

four case studies, demonstrating its applicability in 

designing educational AI tools that support metacognitive 

processes like self-monitoring and reflection. By addressing 
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Fairness, Accountability, Transparency, and Ethics (FATE), 

the study emphasizes the importance of mitigating biases 

and ensuring that AI tools align with educational goals. The 

insights from this work are particularly valuable for 

integrating XAI into tools aimed at reducing linguistic and 

accessibility barriers in programming education, ensuring 

that explanations foster both trust and effective learning 

outcomes. 

While gamification strategies enhance motivation and 

engagement, effective learning also requires students to 

assess their own progress and identify areas for 

improvement. AI-driven self-assessment tools complement 

gamification by providing structured feedback, enabling 

students to track their learning outcomes systematically. The 

next section explores these self-assessment tools and their 

impact on online learning environments. 

D. AI-Driven Approches to Student Engagement and Self-

Assessment in Online Learning Education 

A study by Yang et al. [25] explored how students’ self-

assessment behaviors in online learning environments 

impact their academic performance. This research 

specifically looks at online self-assessment behaviors in the 

context of a 6-week accounting course where students 

completed formative quizzes after class. The study 

investigates students’ patterns of online self-assessment 

behavior using AI techniques, specifically hierarchical 

clustering algorithms. By analyzing factors such as test 

attempt frequency, question views, submission rates, and 

hint usage, the researchers identified three distinct 

behavioral patterns: students who rarely completed 

assessments, those who engaged in nonstandard behaviors, 

and those who consistently completed assessments with 

standard behaviors. AI clustering enabled profiling of these 

behaviors, revealing that students who relied heavily on 

hints or engaged in extensive, unspaced practice were less 

likely to benefit from the testing effect, thus impacting their 

learning performance. 

As AI continues to reshape self-assessment in online 

learning, evaluating existing tools and related studies is 

essential for understanding their effectiveness across various 

educational contexts. The following section provides a 

comparative analysis of the various tools and studies 

discussed in the paper, focusing on several key factors to 

provide the reader with an overall summary.  

E. Comparative Analysis of Self-Assessment Tools and 

Studies 

Table 1 provides a structured comparison of the tools and 

developments discussed in this paper, highlighting key 

factors such as target audience, core features, language 

support, and primary focus areas. This analysis offers 

valuable insights into the suitability of each tool for various 

educational needs and contexts. 

Table 1. Overview of tools and research papers discussed in the study 

Tool / Research 

Paper 
Target Audience Primary Features 

Input 

Language 
Focus Areas 

Helaa 
Sinhala-speaking 

novice programmers 
Sinhala-based coding, compiler 

support 
Sinhala 

Introduces a Sinhala programming language to 

support non-English speakers 

iPAT Students, Instructors 
Remote error handling, lab 

management 
English 

Supports computer lab management, but does not 

address linguistic barriers 

CodeMage 
Novice Java 

programmers 

Real-time programming guidance, 

automated code generation 
English 

Supports Java programming but lacks Sinhala 

language support 

SimpliTrans 
Bilingual 

programmers 

Bilingual programming support, 

localized error messages 
English 

Improves accessibility by translating programming 

keywords between Sinhala and English 

WPAT 
Novice C 

programmers 
GUI-based debugging, compiler 

error analysis 
English 

Focused on enhancing error handling in C 
programming 

Sinhala to English 

Language 
Translator 

Sinhala speakers 
General text translation, grammar 

checking, Sinhalese dictionary 
Sinhala 

Translates general Sinhala text to English, not 

specialized for programming 

SEES 
Sinhala and English 

speakers 

Sinhala-English bidirectional 

translation 

Sinhala, 

English 

Supports linguistic translation but lacks 

programming-specific adaptations 

Neural Machine 

Translator 
Singlish speakers 

AI-driven translation for mixed-

language text 
Singlish 

Convert Singlish-based Sinhala to structured 

Sinhala text 

Example Based 
Machine Translator 

Sinhala speakers 
Rule-based translation for 

structured documents 
English 

Primarily facilitates formal government 
documentation 

AI-Driven 

Pedagogical 

Strategies 

Non-native English 

speakers in 
programming 

education 

AI-assisted storytelling, role-

playing, and text-to-speech-to-text 

learning 

Multilingual 

Enhances programming comprehension for 

multilingual learners by integrating linguistic 

scaffolding and translanguaging techniques. 

AI-powered tools 
Educators, 

multilingual learners 

AI-generated explanations and 

code suggestions, adaptation to 

instructional materials 

Multilingual 
Optimizes AI-generated content through instructor 

insights 
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CodeInternational 
Non-English speaking 

programming students 

NLP-based tool, localization of 

programming instructions, 

context-aware explanations 

Non-English 

languages 

May not fully capture nuanced programming 

terminology across all languages 

NLP for 

Educational 
Feedback Analysis 

Sinhala speakers 
Sentiment analysis, topic 

modeling, linguistic adaptation 
Sinhala 

Uses NLP to evaluate student responses and 

provide contextual feedback 

Attention Is All 

You Need 

AI & NLP 

advancements 

Attention-based model improving 

translation accuracy 

Multilingual 

support 
(English, 

German, 

French) 

Machine Translation, NLP Model Architecture 

Machine Translation 

on Dravidian 

Languages 

Dravidian Languages 
Speakers 

Translation Dravidian Language of 
text to English 

Dravidian 
Language 

Translate Dravidian Language into English and 

improve information access and generation for 

monolingual speakers in the region 

Improving English 

to Sinhala NMT 
using POS Tag 

Sinhala Speakers 
Translation of English text to 

Sinhala 
English 

Develop an efficient domain-specific English to 

Sinhala NMT system using the Transformer 

architecture, incorporating POS information as an 

additional linguistic feature. 

Gamification in 

Programming 
Education 

Novice programmers 
AI-driven competitive coding, 

interactive assessments 
English 

Enhance motivation and knowledge retention 

through AI-assisted gamification 

PLA Educators, Students 
AI-based student behavior 

analysis, risk prediction 
English 

Identifies at-risk students and personalizes 

educational strategies 

Explainable AI 

(XAI-ED) 

Educational 

technology designers 

AI-driven personalized feedback 

with transparency 
English 

Focus on integrating XAI into educational tools to 
improve trust and outcomes, reducing linguistic 

and accessibility barriers in programming 

education. 

AI-Based Self-

Assessment Systems 

Online learners, 

Educators 

AI-powered real-time feedback, 

behavioral profiling 
English 

Uses hierarchical clustering to assess student self-

learning patterns 

 

IV. METHODOLOGY 

This study presents the development of an innovative 

Java assistance tool specifically tailored for novice 

programmers who are native Sinhala speakers. The primary 

objective of this tool is to transcend the language barriers 

that hinder the effective learning of Java programming by 

providing real-time code generation and diagrams directly in 

Sinhala. This reduces reliance on external resources and 

facilitates independent learning. The methodology employed 

in this research integrates cutting-edge techniques, notably 

the use of the LLM model GPT-3.5 Turbo, which has been 

custom-trained to generate relevant code and diagrams 

based on user queries. This model also maintains a history 

of user interactions to refine responses and improve 

accuracy over time. By leveraging this advanced language 

model, the tool ensures precise translations and effective 

programming assistance, aligning with the unique linguistic 

and educational needs of Sinhala-speaking users and 

fostering a more inclusive and supportive learning 

environment. To offer a clear understanding of the system’s 

operational dynamics, Fig. 1 illustrates the system 

architecture, highlighting the interactions between its three 

core components: the front-end user interface, the back-end 

APIs, and the Sinhala-English translators optimized for Java 

programming. Each component is meticulously designed to 

work in harmony, ensuring that users experience a seamless 

and intuitive interface while receiving accurate, context-

specific programming support.  

A. DBR Methodology  

DBR is a methodology focused on enhancing educational 

practices through iterative design and development [2]. The 

process begins with a thorough analysis of specific problems 

or challenges within an educational context. In this study, 

this involves identifying the language barriers faced by 

Sinhala-speaking novice programmers and understanding 

the cognitive load associated with navigating English-based 

programming materials. Based on this analysis, a solution is 

designed and developed to address these issues. For this 

research, a Sinhala-based Java assistance tool is created, 

leveraging machine translation technologies to provide 

programming support in Sinhala. The tool undergoes 

iterative testing, where it is implemented in real-world 

settings and used by learners. Feedback from these testing 

phases is crucial for refining the tool and making necessary 

improvements. Finally, the effectiveness of the tool is 

evaluated to determine how well it meets its objectives, such 

as reducing language barriers and improving learning 

outcomes. DBR ensures that the tool is both theoretically 

grounded and practically effective, as it is continually 

adjusted based on real-world use and feedback, leading to a 

more robust solution that specifically addresses the needs of 

Sinhala-speaking novice programmers. Fig. 2 illustrates the 

iterative process of identifying challenges, designing 

solutions, testing prototypes, and refining tools based on 

user feedback to enhance educational practices.  
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Fig. 1. System diagram of the proposed Sinhala-based programming assistance tool. 

 

Fig. 2. Iterative stages of the DBR methodology. 

 

B. Back-end API Development 

The back-end API of the system serves dual functions. 

Initially, it processes incoming Sinhala queries by 

translating them into English using a transformer-based 

model. The translated queries are then passed to the LLM 

model (GPT-3.5 Turbo) with the aid of custom prompt 

templates and an output parser to generate the corresponding 

Java code. 

Within the Flask framework, specialized libraries and 

parsers are employed to accurately distinguish Java code 

from text, supporting robust input validation and effective 

translations. The architecture of this system is illustrated in 

Fig. 1, which highlights the interactions between the front-

end user interface, the back-end API, and the LLM model 

optimized for Java programming. This diagram underscores 

the coordinated workflow that enables the tool to deliver 

precise and contextually relevant programming support, 

bridging the language gap for Sinhala-speaking users. 

C. Transformer-Based Sinhala-English Translator 

At the core of the system lies the transformer-based 

translation model, meticulously trained for the specific task 

of translating Java programming content between Sinhala 

and English. This model has been fine-tuned to handle the 

unique linguistic challenges and technical terminology 

associated with Java programming, ensuring high accuracy 

and contextual relevance in translations. 

The development of this transformer model was 

underpinned by a dataset uniquely tailored to the Java 

programming domain, which significantly enhances the 

model’s ability to translate and interpret Java programming 

principles with precision. The choice of a transformer model 

was driven by its superior capability in managing long-range 

dependencies and parallel processing, making it the optimal 

solution for creating an effective and efficient translation 

system within the context of programming education. 

Fig. 3 provides an overview of the entire model 

architecture, detailing the stages from input embedding and 

positional encoding through to the attention mechanisms and 

final training and inferencing phases. Fig. 4 delves deeper 

into the flow of data through the system’s encoders and 

decoders, visually demonstrating the encoding and decoding 

processes that are pivotal to the model’s functionality. 

These processes involve transforming raw data into 

encoded formats suitable for specific tasks, such as 

transmission and storage, and then reversing this 

transformation to restore the data to its original form. The 

system’s design, which includes multiple encoders and 

decoders, is specifically tailored to manage the complexities 

of Java programming translation, ensuring that the output is 

both technically accurate and contextually appropriate for 

educational purposes. 

In this research, the transformer model plays a crucial 

role in the machine translation process, translating Java 

queries to English with a high degree of accuracy. The 

following steps detail how the transformer model was 

implemented and fine-tuned to maximize the accuracy and 

effectiveness of the Java-specific dataset used in this study: 

• Input Embedding: The methodology begins with the 

critical process of input embedding, where the input 

text is tokenized into individual units called tokens. 

Each token is then transformed into a numerical array 

that encapsulates its semantic meaning. This 

transformation is essential for enabling the model to 

interpret and process the linguistic nuances of the 

Sinhala language, particularly in the context of Java 

programming. The accurate representation of these 

tokens in vector form ensures that the subsequent 

stages of the model can effectively capture and utilize 

the underlying semantics. 

Problem analysis Learning solution 
development 

Iterative testing & 
Development 

Evaluation 
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Fig. 3. Transformer model architecture. 

• Positional Encoding: Unlike traditional models, 

transformers do not inherently recognize the order of 

tokens in a sequence. To address this, positional 

encoding is incorporated, which provides the model 

with essential information about the position of each 

token within the sequence. This step is crucial for 

maintaining the syntactic structure of the input, as it 

allows the model to understand and respect word 

ordering. For instance, when breaking down a sentence 

like “Write a Java class to check if a given number is 

prime,” the positional encoding ensures that the 

sequence is interpreted correctly, preserving the logical 

flow necessary for accurate translation. 

• Attention Mechanism: The attention mechanism is a 

key feature of the transformer model that enables it to 

selectively focus on different parts of an input sentence 

when generating output. By calculating attention 

scores, the model identifies how much importance it is 

to assign to each word in relation to others, effectively 

understanding their connections. This capability is 

especially useful for capturing relationships between 

words that are far apart in a sentence. For example, as 

shown in Fig. 5, the model assigns significant attention 

to the word “given” in the context of the entire 

sentence, ensuring the translation not only preserves 

the meaning but also aligns with the sentence structure 

and overall context, making it accurate and appropriate 

for the situation. 

• Multi-Head Attention: To enhance the model’s 

ability to understand complex linguistic structures, 

multi-head attention is employed. This technique 

involves running several attention mechanisms in 

parallel, each specializing in different aspects of the 

token relationships. By combining the outputs of these 

attention heads, the model generates a more 

comprehensive and multi-faceted representation of the 

input. This process is particularly effective in capturing 

the intricacies of Java programming terminology and 

syntax, ensuring that the translation is both precise and 

contextually relevant. 

 
Fig. 4. Illustration of encoders and decoders in a transformer model, 

demonstrating the process with a Java prompt to check if a number is prime, 

accompanied by explanatory text in Sinhala. 

• Query (Q), Key (K), Value (V): Within the attention 

mechanism, each token is categorized into three 

vectors: Q, K, and V. These vectors are used to 

calculate attention scores, which determine the 

emphasis that should be placed on each token during 

translation. For example, when translating the English 

phrase “Write a Java class to check if a given number 

is prime” into Sinhala, the model utilizes these vectors 

to accurately map the relationships between words, 

ensuring that the most contextually significant terms 

are appropriately weighted in the translated sentence. 

• Add & Norm: Following the attention mechanism, the 

model applies a residual connection, adding the 

original input to the output of the attention layer. This 

step is followed by normalization, which stabilizes the 

training process and preserves the integrity of the input 

information. By maintaining a balance between the 

original input and the processed output, this technique 

ensures that the model continues to generate accurate 

and stable translations throughout the training and 

inference phases. 

• Masked Multi-Head Attention: In the decoding 

phase, masked multi-head attention is used to prevent 

the model from attending to future tokens during 

training. This technique ensures that the model’s 

predictions for a given position are based solely on the 

known outputs up to that point, thereby enhancing the 

accuracy and reliability of the translation process. 

• Training Phase: The training phase is a critical 

component of the methodology, where the model is fed 

with pairs of Sinhala Java explanations and their 

English counterparts. The objective during training is 

to minimize the difference between the predicted 

Input Embedding 

Positional Encoding 

Attention 

Multi-Head Attention 

Query, Key, Value 

Add & Norm 

Masked Multi-Head 
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Inferencing 

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

158



translations and the actual translations, achieved 

through a loss function and the optimization of the 

model’s parameters via backpropagation. This phase is 

iterative, allowing the model to gradually improve its 

translation accuracy and contextual understanding. 

 

 

Fig. 5. Illustration of the attention mechanism in a Transformer model, 

emphasizing its ability to capture long-range dependencies and selectively 

focus on various segments of an input sequence. 

• Inferencing: In the inferencing stage, the trained 

model is applied to new input sequences, translating 

them with high accuracy. When presented with a 

Sinhala explanation, the model generates the 

corresponding English Java explanation, enabling 

Sinhala-speaking students to engage with Java 

programming in a language they understand. This 

inclusive approach ensures that the educational tool 

meets its primary objective of bridging the language 

gap in programming instruction. 

• Final Model Architecture: Fig. 6 showcases the 

complete transformer model architecture, illustrating the 

flow from input embeddings through multi-head 

attention, feed-forward networks, and positional 

encoding layers, culminating in the generation of output 

probabilities via a Softmax function. This architecture is 

specifically designed to handle the complexities of 

language translation within the Java programming 

domain, ensuring that the output is both contextually 

appropriate and semantically precise. 

• Closing the Language Gap: By leveraging cutting-

edge AI and transformer technology, this research 

provides Sinhala-speaking novice programmers with 

real-time, contextually accurate translations and 

programming diagrams. The integration of these 

advanced methodologies ensures that the tool not only 

addresses the immediate language barrier but also 

contributes to a more inclusive and equitable learning 

environment in the field of computer science. 

 
Fig. 6. Diagram of a Transformer model, showcasing the progression from input embeddings through multi-head attention, feed-forward networks, and 

positional encoding, culminating in output probabilities via a SoftMax function. 

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

159



D. Front End Development 

The front-end of the system serves as the primary user 

interface, designed to facilitate a seamless interaction 

experience for novice programmers. Built using the Flask 

framework, the front-end prioritizes ease of use, ensuring 

that users can effortlessly submit their programming queries 

or Java code snippets. The interface processes user inputs 

and transmits them via HTTP requests to the back-end API, 

which then returns the relevant output—either Java code 

generated from Sinhala queries and diagrams of Java code 

translated into Sinhala. 

The user interface is intentionally designed to reduce 

cognitive load and language barriers by providing direct, 

contextually appropriate code outputs. As depicted in Fig. 7, 

the interface of the Sinhala-based Java assistance tool 

enables users to input queries in Sinhala and receive real-

time Java code along with corresponding visual diagrams. 

This feature allows learners to instantly visualize the 

structure and logic of their code, reinforcing conceptual 

understanding. The tool automatically converts the 

generated code into Mermaid diagram code, which is then 

rendered as visual diagrams on the front end. This user-

centric design ensures that the interface not only meets 

functional requirements but also enhances the overall 

learning experience by catering to the specific linguistic 

needs of Sinhala-speaking users.  

 

 

To further demonstrate the tool’s versatility and its 

applicability to advanced programming tasks, the following 

examples highlight its ability to generate code for data 

structure operations, recursive functions, and object-

oriented design patterns. 

Fig. 8 illustrates the tool’s capability to find the second 

largest element in an array by sorting the array and 

comparing elements in reverse order. The operation 

emphasizes the importance of array manipulation in data 

structures, showcasing the tool’s effectiveness in handling 

tasks related to sorting and array traversal. The approach 

ensures the identification of the second largest element, 

demonstrating the tool's practical use in real-world 

programming scenarios. 

Fig. 9 showcases how the tool generates Java code for 

recursive functions based on user input. Recursion is a 

fundamental yet challenging programming concept, often 

used for problems like factorial calculation, Fibonacci 

sequence generation, and tree traversals. By successfully 

generating recursive solutions, the tool demonstrates its 

capability to handle complex algorithmic problems. 

Fig. 10 showcases the tool generating Java code for the 

Singleton design pattern. Design patterns are critical in 

software development, providing reusable solutions to 

common problems. The Singleton pattern ensures a class 

has only one instance and provides a global access point to 

it. Successfully generating this pattern demonstrates the 

tool’s ability to support OOP principles and best practices. 

 

 

 Fig. 7. User interface of the Sinhala-based Java assistance tool enabling real-time code and diagram generation. 
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Fig. 8. User interface displaying a Java code to find the second-largest element in an array, generated based on a Sinhala-language user query. 

 

Fig. 9. User interface displaying a Java code for a recursive function, generated based on a Sinhala-language user query. 
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Fig. 10. User interface displaying a Java code to understand the Singleton design pattern, generated based on a Sinhala-language user query. 

E. User Testing and Quality Assurance Integration 

To ensure the robustness, reliability, and user-friendliness 

of the proposed tool, a comprehensive user testing and 

quality assurance protocol was meticulously designed and 

implemented. This protocol was critical in validating that 

each system component—the front-end interface, the back-

end API, and the custom transformer-based translation 

model—performed optimally and met predefined standards 

for functionality, accuracy, and user satisfaction. 

The testing process began with functional tests, aimed at 

verifying the technical performance of each system 

component. These tests assessed the translation accuracy of 

the Java-specific Sinhala-English model, the responsiveness 

and intuitiveness of the front-end interface, and the 

robustness of the back-end API in processing and managing 

user queries and code snippets. Ensuring that each 

component was individually effective was essential in 

achieving a cohesive and reliable overall user experience. 

Following the functional testing phase, a series of 

usability tests were conducted with a targeted group of 122 

novice programmers who were fluent in Sinhala. These 

participants were asked to engage with the tool by inputting 

Java code and queries in Sinhala, allowing the development 

team to assess the tool’s ease of use, intuitiveness, and 

effectiveness in assisting programming tasks. The feedback 

gathered from these sessions was invaluable, highlighting 

areas for improvement in user interaction and satisfaction. 

The usability testing also provided insights into how the tool 

could be optimized to better meet the needs of its target 

audience. 

Quality assurance was integrated into the development 

process through continuous iterative cycles. These cycles 

involved refining the tool’s functionality, enhancing the user 

interface, and improving translation accuracy based on real-

time feedback. This iterative approach ensured that the tool 

evolved in response to user needs and external changes, 

such as updates to services like ChatGPT or modifications in 

the Java programming environment. The iterative testing 

and refinement process played a crucial role in maintaining 

the tool’s relevance, reliability, and effectiveness, ensuring 

that it could be seamlessly deployed in a variety of 

educational contexts. 

User feedback was a driving force behind the iterative 

development of the tool. Adjustments such as optimizing 

translation accuracy, refining code generation algorithms, 

and improving the user interface were directly influenced by 

the experiences and suggestions of the target user base. This 

ongoing process of enhancement ensured that the tool 
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remained attuned to the needs of Sinhala-speaking novice 

programmers, delivering a high-quality, user-friendly 

learning experience. The rigorous approach to user testing 

and quality assurance not only confirmed the tool’s 

readiness for broader deployment but also underscored its 

potential to significantly enhance the programming 

education landscape for non-English speaking learners. 

V. RESULTS AND DISCUSSION 

A. DBR Methodology in Tool Development 

The development of the Sinhala-based Java assistance 

tool followed the DBR methodology, which emphasizes 

iterative design, collaboration, and real-world testing to 

address practical challenges in educational contexts. This 

approach ensured that the tool effectively mitigated 

language barriers and cognitive load experienced by 

Sinhala-speaking novice programmers. The DBR 

methodology was implemented through the following four 

key phases, which guided the tool’s design, development, 

and refinement: 

• Phase 1: Identifying Practical Problems: The initial 

phase focused on identifying the challenges faced by 

Sinhala-speaking novice programmers in 

understanding English-based programming resources. 

Authors collaborated with practitioners, including 

educators and novice programmers, to identify specific 

obstacles, such as language barriers and cognitive load 

associated with translating and interpreting Java 

programming content. Through this process, the 

problem was clearly defined, laying the foundation for 

the development of the Sinhala-based Java assistance 

tool. 

• Phase 2: Analyzing Data and Developing Solutions: 

Once the problem was identified, researchers analyzed 

learner experiences and existing design principles to 

develop a suitable solution. Data was collected from 

real-world settings to understand the difficulties 

Sinhala-speaking learners face while interacting with 

Java programming materials. Leveraging insights from 

machine translation technologies and educational tools, 

the team designed a Sinhala-based Java assistance tool 

that provides real-time programming support in the 

native language. The tool’s design prioritized ease of 

use and effectiveness in improving learning outcomes. 

• Phase 3: Testing and Refining the Solution: The tool 

underwent usability testing with 122 Sinhala-speaking 

novice programmers, who interacted with it by 

entering Java code and Sinhala queries. User feedback 

played a crucial role in refining interface design, 

translation accuracy, and interaction mechanisms. 

Several iterations were conducted to enhance 

functionality, ensuring that the tool effectively 

supports programming tasks and meets user needs. 

• Phase 4: Evaluating the Effectiveness of the Solution: 

Following iterative testing and refinement, the final 

phase involved evaluating the tool’s overall 

effectiveness. The analysis focused on user feedback, 

usability, and the tool’s impact on reducing language 

barriers and cognitive load. Results demonstrated that 

the tool successfully addressed the identified 

challenges and significantly improved programming 

comprehension for Sinhala-speaking learners. 

Additionally, areas for further development and 

optimization were identified, ensuring continuous 

improvement. While the solution was deemed effective, 

ongoing user feedback and refinements will be crucial 

for maintaining long-term success and adaptability.  

B. Training, Validation, and Testing Data 

Table 2 presents a detailed breakdown of the dataset used 

for training, validation, and testing the transformer-based 

model. Comprising 223,334 sentences, the dataset ensures 

that the model is exposed to a wide range of linguistic 

structures and contexts, strengthening its ability to handle 

diverse translation tasks. The careful allocation of data 

across these phases supports the model’s generalization 

capability, enabling accurate performance in real-world 

scenarios. 

Table 2. Breakdown of sentences across the training, validation, and testing 
datasets 

Dataset Type Sentence Count 

Training set size 156,334 

Validation set size 33,500 

Testing set size 33,500 

Total Sentences 223,334 

C. Impact of Sentence Structure on Translation Quality 

The effectiveness of the dataset distribution is evaluated 

through BLEU scores, a key metric for assessing machine 

translation quality. Sentence length and complexity 

significantly influence BLEU scores, as observed in model 

testing. 

• Shorter sentences with common structures tend to 

achieve higher BLEU scores, as they pose less 

linguistic ambiguity and are easier to translate. 

• Longer and structurally complex sentences, 

particularly those in the Sinhala dataset, present greater 

challenges, often resulting in lower BLEU scores. 

This analysis underscores the importance of dataset 

composition in translation accuracy.  

D. Model Performance and Accuracy 

The transformer-based model developed in this study 

achieved an overall accuracy of 91.37%, demonstrating its 

effectiveness in translating Java programming content 

between Sinhala and English. The BLEU scores indicate 

that the model produces translations that closely align with 

reference outputs, ensuring both accuracy and fluency. 

Given the linguistic differences between Sinhala and 

English, as well as the technical nature of programming 

content, this performance is significant. The model 

successfully adapts to complex sentence structures, 

maintaining syntactic accuracy and semantic coherence in 

Java-related translations. These results highlight the 

potential of transformer-based models in mitigating 

language barriers for Sinhala-speaking programmers. 

E. Dataset Distribution Analysis 

Fig. 11 provides a visual representation of the dataset 

distribution, offering insights into the sentence structures in 

both Sinhala and English. The dataset was analyzed using 

two key visualization techniques: 
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• Box Plot: Illustrates variation in sentence lengths and 

highlights differences between Sinhala and English 

datasets. 

• Histogram: Displays the frequency distribution of 

sentence lengths, identifying common patterns and 

anomalies in dataset composition. 

The analysis reveals that most sentences in both 

languages fall within the 5 to 10-word range, ensuring 

consistency in linguistic complexity across training, 

validation, and testing sets. However, the presence of 

outliers, particularly longer Sinhala sentences, suggests that 

translation quality may be affected by complex syntactic 

structures. 

This dataset composition analysis is critical for refining 

translation models, as it ensures balanced training data that 

can enhance the model’s ability to handle both common and 

complex sentence structures effectively. Additionally, a 

statistical evaluation was conducted to measure the tool’s 

effectiveness in bridging the language barrier and improving 

Java programming comprehension. The evaluation also 

included a pre- and post-tool user performance comparison, 

validating its impact on learning outcomes. 

 

Fig. 11. Distribution of words per sentence in English and Sinhala. 

 

F. Usability Test Evaluation Methodology 

• Participant Selection: To ensure a diverse 

representation of students with varying educational 

backgrounds, participants were recruited from two 

distinct categories of universities in Sri Lanka that 

offer University Grants Commission (UGC)-affiliated 

IT degrees: 

o UGC-affiliated government universities 

o UGC-affiliated private universities  

An initial target of at least four students per institution 

was set, covering 25 universities across these two categories, 

with the aim of recruiting 100 participants. However, 122 

responses were successfully collected, exceeding the 

anticipated sample size. 

Participants were further categorized into three groups 

based on their programming proficiency:  

o Group A (Minimal programming experience):  

First and second semester students with limited 

prior exposure to programming. 

o Group B (Moderate programming experience): 

Third to fifth semester students with intermediate 

programming knowledge. 

o Group C (Advanced programming experience): 

Sixth semester and beyond students with 

substantial programming experience. 

• Testing Procedure: The evaluation was conducted in 

three phases to systematically assess the effectiveness 

of the tool: 

o Pre-Test: Participants were assigned a set of Java 

programming tasks in English to establish their 

baseline understanding and performance. These 

tasks included writing Java code snippets, 

interpreting existing code, and solving fundamental 

programming problems. 
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o Tool Interaction: Participants were introduced to 

the tool and given two weeks to explore its 

functionalities. During this period, they utilized the 

tool to translate Sinhala programming queries into 

Java code and visualize corresponding diagrams. 

o Post-Test: After the tool interaction phase, 

participants completed a new but comparable set of 

Java programming tasks in Sinhala, requiring them 

to use the tool. Performance was assessed based on 

three key metrics: task accuracy (percentage of 

correctly solved problems), completion time (time 

taken to complete assigned tasks), and perceived 

difficulty (self-reported ease of use).  

• Data Collection: To evaluate user performance and 

tool usability, the following quantitative data points 

were collected: 

o Task accuracy  

o Average task completion time 

o Self-reported ease of use (measured using a 5-point 

Likert scale) 

• Statistical Analysis: To assess the significance of 

performance improvements, paired t-tests were 

conducted, comparing pre-test and post-test scores 

across participant groups. The statistical findings, 

detailed in Tables 3–5, highlight the tool’s impact on 

task accuracy, completion time, and user experience. 

Table 3. Task accuracy metrics before and after using the proposed tool across participant categories  

Metric Pre-Test Post-Test Progress 

Task Accuracy 

(Students belonging to UGC-affiliated government universities in Group A) 
59.26% 77.78% 18.52% 

Task Accuracy 

(Students belonging to UGC-affiliated private universities in Group A) 
55.17% 79.31% 24.14% 

Task Accuracy 

(Students belonging to UGC-affiliated government universities in Group B) 
66.67% 83.33% 16.67% 

Task Accuracy 

(Students belonging to UGC-affiliated private universities in Group B) 
76.19% 80.95% 4.76% 

Task Accuracy 

(Students belonging to UGC-affiliated government universities in Group C) 
78.95% 89.47% 10.53% 

Task Accuracy 

(Students belonging to UGC-affiliated private universities in Group C) 
76.92% 84.62% 7..69% 

Table 4. Task completion time metrics before and after using the proposed tool across participant categories 

Metric Pre-Test (Minutes) Post-Test (Minutes) Progress (Minutes) 

Task Completion Time 

(Students belonging to UGC-affiliated government universities in Group A) 
40 32 8 

Task Completion Time 

(Students belonging to UGC-affiliated private universities in Group A) 
51 38 13 

Task Completion Time 

(Students belonging to UGC-affiliated government universities in Group B) 
28 22 6 

Task Completion Time 

(Students belonging to UGC-affiliated private universities in Group B) 
32 28 4 

Task Completion Time 

(Students belonging to UGC-affiliated government universities in Group C) 
25 20 5 

Task Completion Time 

(Students belonging to UGC-affiliated private universities in Group C) 
23 19 4 

Table 5. User experience metrics before and after using the proposed tool across participant categories  

Metric Pre-Test Post-Test Progress 

User Experience  

(Students belonging to UGC-affiliated government universities in Group A) 
3 4 1 

User Experience  

(Students belonging to UGC-affiliated private universities in Group A) 
2 4 2 

User Experience  

(Students belonging to UGC-affiliated government universities in Group B) 
3 4 1 

User Experience  

(Students belonging to UGC-affiliated private universities in Group B) 
2 3 1 

User Experience  

(Students belonging to UGC-affiliated government universities in Group C) 
3 5 2 

User Experience  

(Students belonging to UGC-affiliated private universities in Group C) 
4 5 1 
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G. Connecting BLEU Scores to Translation Performance 

and User Improvement 

The BLEU score, a widely recognized metric for 

evaluating translation quality, was utilized to measure the 

effectiveness of Sinhala-to-Java translations produced by the 

tool.  

The analysis revealed a strong correlation between higher 

BLEU scores and improved student performance, indicating 

that superior translation quality directly enhances 

programming comprehension. Specifically, translations with 

higher BLEU scores resulted in fewer syntactic and 

semantic errors, enabling students to understand Java 

programming concepts more effectively. 

By incorporating BLEU score-based evaluation, this 

study establishes a robust relationship between translation 

accuracy and learning outcomes, further validating the tool’s 

practical effectiveness in improving programming education 

for Sinhala-speaking learners. The results underscore the 

importance of high-quality translations in reducing cognitive 

load, facilitating knowledge retention, and improving 

students’ ability to write Java code accurately. To 

contextualize these findings, the following section compares 

BLEU scores from related studies and highlights how the 

proposed model outperforms existing approaches. 

H. BLEU Score Comparison Across English–Sinhala 

NMT Models 

To contextualize the performance of the proposed 

transformer-based model, this section compares its BLEU 

score with those reported in previous English–Sinhala NMT 

studies. These comparisons highlight advancements in 

dataset size, model design, and translation accuracy over 

time. 

Sen et al. [26] introduced two multilingual NMT models 

based on the Transformer architecture—one for English-to-

Indic language translation and another for the reverse 

direction. Sinhala was among the supported languages, and 

their English-to-Sinhala bilingual baseline model achieved a 

BLEU score of 12.75. 

Expanding on this foundation, Guzman et al. [27] 

developed an NMT system trained on open-domain datasets 

using both supervised and semi-supervised methods. 

However, due to a domain mismatch between the training 

and test data, the English-to-Sinhala translation yielded a 

significantly lower BLEU score of just 1.2, revealing the 

sensitivity of translation accuracy to domain-specific data. 

To address this challenge, Nguyen et al. [28] employed a 

data diversification strategy using backward and forward 

peer models to enrich the dataset. This method improved the 

BLEU score to 2.2, surpassing the result reported by 

Guzman et al., yet still reflecting limitations due to dataset 

quality and volume. 

A notable improvement was achieved by Fonseka et 

al. [29], who trained an English-to-Sinhala NMT model 

using BPE and a Transformer architecture on a closed-

domain dataset comprising 18,000 official Sri Lankan 

government document pairs. This model attained a BLEU 

score of 28.28, marking a significant step forward in 

domain-specific translation quality. 

Building upon these efforts, Naranpanawa et al. [30] 

explored the impact of various sub-word segmentation 

techniques, including BPE, Unigram Language Model, and 

Character Segmentation. Their best-performing model, 

trained on a dataset of 54,000 sentences, achieved a BLEU 

score of 29.92 using BPE, demonstrating the effectiveness 

of sub-word techniques in handling morphologically rich 

languages like Sinhala.  

While these studies have contributed meaningfully to the 

development of English–Sinhala NMT, they are often 

constrained by limited training data and scope. In contrast, 

the proposed model in this study achieves a BLEU score of 

33.17—substantially higher than previously reported results. 

This improvement is attributed primarily to the 

significantly larger dataset of 156,334 training sentences, 

complemented by balanced validation and test sets of 33,500 

sentences each. The larger training corpus enables better 

learning of grammar patterns, contextual alignments, and 

vocabulary distributions, while the expansive test set 

enhances the statistical reliability of performance evaluation. 

The use of BPE, coupled with task-specific tuning and 

transformer-based architecture, further contributes to the 

model’s high accuracy and fluency in translation.  

Table 6 summarizes the BLEU scores and methodologies 

of the reviewed English–Sinhala NMT models for quick 

reference and comparison. 

This comparative analysis underscores the effectiveness 

of the proposed model in delivering superior translation 

quality for English–Sinhala NMT tasks. By overcoming 

limitations in dataset size and leveraging advanced 

transformer techniques, the model sets a new benchmark in 

BLEU score performance for this language pair. 

Table 6. Comparison of BLEU Scores for English–Sinhala NMT Models 

Model 
BLEU 

Score 
Methodology 

Sen et al.’s Model 

[26] 
12.75 

Multilingual NMT using 

Transformer 

Guzman et al.’s 

Model [27] 
1.2 

Open-domain NMT, 

supervised training 

Nguyen et al.’s 

Model [28] 
2.2 

Data diversification with peer 

models 

Fonseka et al.’s 

Model [29] 
28.28 Transformer with BPE 

Naranpanawa et al.’s 

Model [30] 
29.92 

Transformer with various sub-

word techniques 

Proposed Model 33.17 

Transformer with BPE and 

enhanced training on a 

significantly larger dataset 

(156,334 sentences) 

I. Significance and Practical Applications 

This research makes a significant contribution to 

programming education by addressing the unique challenges 

faced by Sinhala-speaking novice programmers. By 

developing a transformer-based Sinhala-to-Java 

programming assistance tool, this study bridges a critical 

gap in educational resources for non-English-speaking 

learners.  

Beyond resolving immediate linguistic challenges, this 

tool establishes a scalable model that can be adapted for 

other linguistic communities worldwide, breaking language 
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barriers in programming education and fostering a more 

inclusive and equitable learning experience. 

By enabling the generation of Java code and visual 

representations in Sinhala, the tool democratizes 

programming education, ensuring that non-English-speaking 

learners have access to high-quality learning resources. This 

innovative approach has the potential to transform 

programming education for underrepresented linguistic 

groups, making technical knowledge more accessible and 

empowering.  

J. Key Finding and Pedagogical Benifits 

• Enhanced Learning and Code Quality: 

o Students demonstrated substantial improvements in 

writing syntactically correct Java code.  

o The tool contributed to a reduction in common syntax 

errors, leading to cleaner and more efficient coding 

practices. 

• Improved Programming Comprehension: 

o By allowing students to articulate problems in Sinhala, 

the tool enhanced their understanding of Java 

programming concepts. 

o Code structure visualization and logic diagrams 

reinforced conceptual clarity, resulting in better 

learning outcomes. 

• Reduction in Cognitive Load: 

o Eliminating the language barrier enabled students to 

focus on programming logic, rather than struggling 

with English-based syntax and terminology. 

o This was particularly impactful for first and second-

semester students, who had limited exposure to 

English-based programming resources. 

• Increased Engagement and Confidence: 

o The tool significantly boosted student motivation, with 

post-test surveys reporting higher confidence levels. 

o A structured two-week interaction period allowed 

students to gain familiarity with the tool, fostering 

greater competence in Java programming.  

K.  Technical Soundness and Reliability 

The technical robustness of the research is demonstrated 

through the meticulous development and seamless 

integration of a custom transformer-based translation model. 

Specifically trained on a curated dataset tailored for Java 

programming, the model ensures translations that are both 

accurate and contextually relevant.  

The system architecture, encompassing a front-end 

interface, back-end API, and integration with ChatGPT, 

underwent rigorous testing to guarantee optimal 

performance. Comprehensive user testing and quality 

assurance protocols further validate the tool’s reliability and 

effectiveness, positioning it as a valuable resource for both 

educational institutions and professional programming 

environments.  

VI. CONCLUSION AND FUTURE WORK 

A. Conclusion 

This research has successfully developed and validated a 

transformer-based programming assistance tool designed to 

overcome language barriers faced by Sinhala-speaking 

novice Java programmers. With a translation accuracy of 

91.37% and strong BLEU scores, the tool demonstrates its 

ability to generate precise and contextually relevant Java 

code from Sinhala queries. The integration of GPT-3.5 

Turbo for code generation, combined with a transformer-

based translation model, has proven to be an effective 

solution for bridging linguistic gaps in programming 

education. 

Beyond its immediate educational benefits, this tool 

enhances inclusivity and accessibility by enabling real-time 

code and diagram generation. By fostering a more equitable 

learning experience, it democratizes access to technology 

education, particularly in regions where English proficiency 

poses a barrier. Its technical robustness and reliability have 

been validated through rigorous testing and iterative 

refinements, making it a valuable resource for both 

academic institutions and industry professionals. The tool’s 

applications extend beyond classrooms, benefiting self-

learners, educators, and software developers. 

Furthermore, this research establishes a scalable 

framework that can be adapted to support other non-

English-speaking communities, setting a precedent for the 

development of similar educational technologies. By 

fostering inclusivity and expanding access to programming 

knowledge, this study contributes to a more diverse and 

innovative technology landscape. 

While the tool significantly enhances accessibility in 

programming education, several limitations must be 

addressed in future iterations. A key area for improvement is 

expanding the dataset to further improve translation 

accuracy and model robustness. Additionally, increasing the 

response count during testing is essential to validate the 

tool’s performance across a broader range of scenarios and 

use cases, ensuring its effectiveness in diverse real-world 

applications. 

B. Future Work 

The future directions for this research offer significant 

advancements and broader applications beyond its current 

scope. The following key areas highlight promising avenues 

for further development:  

1) Enhanced language support 

Expanding the tool’s language capabilities to include 

additional languages such as Tamil, Arabic, and Hindi 

would make programming education accessible to a broader 

demographic. By offering multilingual support, the tool 

could effectively bridge the language barrier in 

programming education, particularly in regions where 

English is not the first language. This enhancement would 

foster greater inclusivity and increase global adoption. 

2) Integration with specialized models 

Instead of relying solely on ChatGPT, integrating 

multiple specialized AI models could enhance performance. 

Incorporating models for code completion, error detection, 

and algorithm optimization would provide task-specific 

support and improve accuracy. This approach would create a 

more robust system capable of addressing diverse 

programming needs and styles. 
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3) Broader Programming Language and Domain Support 

Adapting the tool to support other programming 

languages (e.g., Python, C++, JavaScript) would increase its 

relevance to a wider audience. Additionally, extending its 

capabilities to domains like web development, mobile app 

development, and machine learning would enhance its 

versatility and scalability, making it a comprehensive 

resource for learners across various fields. 

4) Integration with development tools and platforms 

Connecting the tool with popular Integrated Development 

Environments (IDEs) such as IntelliJ IDEA, Eclipse, and 

Visual Studio Code, as well as version control systems like 

Git, could streamline programming workflows. Additionally, 

integration with online learning platforms would further 

enhance its educational value, providing real-time feedback, 

personalized recommendations, and a seamless learning 

experience. 

5) Improved usability and user experience 

Enhancing the tool’s user interface and incorporating 

personalized feedback based on user progress would 

improve accessibility and engagement. An intuitive design 

with targeted guidance would empower learners to better 

understand their mistakes, boost confidence, and accelerate 

skill development. 
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