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Abstract—This research presents an approach for real-time 

detection of rubber leaf diseases using the YOLOv8 deep 
learning model, integrated with the LINE messaging platform. 
The system enables users to submit rubber leaf images via LINE, 
where they are processed by an Artificial Intelligence (AI)—
powered backend hosted on Heroku, utilizing Docker and Flask 
for scalability and efficiency. The YOLOv8 model was trained 
on a dataset comprising three classes: Healthy, New Disease, and 
Powdery Mildew. It achieved an overall mAP50 of 57.9% and 
an mAP50-95 of 42.8%, demonstrating strong performance in 
detecting healthy leaves (mAP50: 98.3%) but lower accuracy in 
identifying Powdery Mildew (mAP50: 22.4%), likely due to 
significant class imbalance. User testing involved 50 beta testers 
who submitted 500 images through the chatbot, yielding a 
detection accuracy of 72.4%, a misclassification rate of 5.4%, 
and an average response time of 2.5 seconds. Key performance 
metrics included a macro-average precision of 78.2%, recall of 
73.0%, and an F1 score of 75.5%. User feedback highlighted 
satisfaction with the system’s ease of use and response speed, 
though improvements were suggested in handling 
misclassifications and providing treatment recommendations. 
These results indicate that the system offers a robust and 
scalable solution for rubber leaf disease detection, with potential 
for further optimization. 
 

Keywords—image data processing, image data diagnosis, 
image detection, deep learning, rubber leaf disease 

I. INTRODUCTION 

The Hevea brasiliensis Muell, commonly known as the 
rubber tree, is a vital component of both the agricultural and 
timber sectors, particularly in Southeast Asia. Originally 
native to the Amazon Basin, it was introduced to Southeast 
Asia in the early 20th century, where it now thrives as a major 
plantation crop. Key rubber-producing countries such as 
Indonesia, Malaysia, and Thailand collectively supply 
approximately 72% of the world’s rubberwood. Rubber trees 
are typically tapped for latex for 25 to 30 years before being 
harvested for their wood. Rubberwood is highly valued in 
woodworking due to its favorable properties, light colour, and 
cost-effectiveness, making it a popular alternative to other 
tropical hardwoods in the furniture and construction 
industries. Despite being a by-product of latex production, 
rubberwood has become a significant export commodity, 
particularly in Malaysia, where it plays a crucial role in the 
national economy. The ongoing expansion of rubberwood 
plantations and advances in Hevea clones are expected to 
sustain supply levels and meet the growing demand for 
rubberwood products. However, challenges remain, 
particularly regarding the availability of high-quality logs and 
the effective management practices among smallholders [1]. 

The rubber industry has evolved significantly, especially 
following the early 20th-century boom driven by trading 
companies [2]. Natural rubber remains globally significant 
due to its widespread applications across various sectors. 
Extensive studies by [3] have examined trends in natural 
rubber production, consumption, and pricing both in 
Association of Southeast Asian Nations (ASEAN) countries 
and globally. Rubber plantations are crucial in agriculture, 
providing latex and supporting livelihoods [4, 5]. However, 
their expansion has negatively impacted biodiversity and 
ecosystems [6], with evidence of reduced ecosystem 
functionality, including lower biomass and plant diversity 
compared to forests. Leaf diseases also affect rubber 
production; in China, for example, climate factors and 
powdery mildew have reduced latex yields by 20% [7], while 
in Cameroon, diseases caused by Fusarium oxysporum and 
Pestalotiopsis microspora have led to similar reductions [8]. 
Corynespora leaf fall, caused by Corynespora cassiicola, is 
particularly severe, reducing yields by up to 45% [9]. 
Effective management of foliar diseases such as crown rust 
and leaf spot is essential for minimising yield losses and 
maintaining crop quality [10]. 

Global climate change, along with rising disease and pest 
outbreaks, poses significant risks to rubber production. A 
shortage of plant disease specialists and limited access to 
advanced diagnostic tools exacerbate these challenges for 
rubber farmers, who often lack the expertise for timely 
interventions. Consequently, there is a critical need for simple 
and effective tools to help farmers manage these issues. The 
widespread use of camera-equipped mobile devices has 
spurred the development of numerous mobile applications for 
image analysis, including those focused on agricultural and 
plant diseases, available on platforms like the Google Play 
Store. Several applications use artificial intelligence for 
disease diagnosis; for instance, Planty-Plant Disease  
Detector [11] allows users to capture images of affected 
plants for analysis, providing diagnostic results and 
recommendations. Similarly, Plantix-Your Crop Doctor [12] 
aids in identifying pests and diseases across 30 major crops, 
detecting over 400 types of plant damage. Despite these 
advancements, automated plant disease diagnosis apps 
remain limited, with many designed for specific countries’ 
plant species and diseases, addressing diverse needs and 
purposes. 

Developing and maintaining a standalone mobile 
application can be challenging due to potential variations in 
behaviour based on the user’s device OS version. This study 
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explores the development of a system that leverages the LINE 
mobile application, a widely used social communication 
platform in Thailand, to avoid Operating System (OS) version 
dependency. The system employs a LINE Bot—an automated 
chatbot integrated into a LINE account—for diagnosing 
rubber leaf diseases. This bot serves as an automated interface 
for user interaction, with information sent to the LINE Bot 
processed by a disease diagnosis engine that detects disease 
indicators in images. While previous research, such as that 
by [13], has examined various image processing techniques 
for object detection, contemporary studies emphasise deep 
learning methods using neural networks. Training these 
models involves adjusting weights to minimise a loss 
function, typically binary cross-entropy for binary 
classification or categorical cross-entropy for multi-class 
problems. For detection tasks requiring both classification 
and localisation, a regression loss is combined with cross-
entropy loss. 

This paper extends our previous research [14], which 
evaluated object detection techniques for diagnosing and 
predicting rubber leaf diseases. Our study found that 
YOLOv8 outperformed other deep learning models—Faster 
Region-based Convolutional Neural Networks (R-CNN), 
RetinaNet, and Mask R-CNN—in classifying rubber leaf 
diseases. We introduce a rubber leaf disease diagnosis system 
that utilizes images captured in field settings via the LINE 
mobile application. This user-centric system enables rubber 
farmers to detect diseased areas from field images without 
requiring sample preparation or specialized tools. 
Additionally, the system fosters a communication network 
between farmers and researchers, facilitating knowledge 
exchange and improving diagnostic accuracy. Our system 
provides preliminary disease diagnoses in real-time, 
operating continuously, 24 hours a day. 

II. LITERATURE REVIEW 

The rapid advancement of deep learning and image 
processing technologies has revolutionised plant disease 
detection, offering innovative solutions to enhance 
agricultural productivity and disease management. 
Traditional methods of diagnosing plant diseases relied 
heavily on manual inspections and basic image analysis via 
mobile applications. However, the introduction of 
sophisticated deep learning models has enabled more 
accurate, efficient, and real-time detection capabilities. This 
transition from rudimentary diagnostic tools to advanced AI-
driven systems marks a pivotal development in precision 
agriculture, empowering farmers to respond to disease 
outbreaks more effectively and sustainably. In this section, 
we review the evolution of plant disease detection 
technologies, focusing on the progression from early mobile 
applications to the integration of cutting-edge deep learning 
models, such as YOLO and Mask R-CNN, into modern 
agricultural practices. 

The implementation of deep learning models for the 
automated diagnosis of Thai rubber leaf diseases through the 
LINE platform aims to improve agricultural productivity and 
disease management. Early mobile applications, such as Rice 
Doctor and riceXpert, provided essential diagnostic tools by 
offering farmers text-based information and basic image 
analysis. However, these applications lacked advanced 

interactivity and automation [15, 16]. With the rise of deep 
learning, more sophisticated models like Convolutional 
Neural Networks (CNNs) have been adopted, enabling more 
precise and faster disease detection from images. Specifically, 
the YOLO (You Only Look Once) model, particularly its 
YOLOv8 version, represents a significant advancement in the 
field, offering real-time object detection capabilities that 
surpass the speed and accuracy of models such as Faster R-
CNN and RetinaNet [17, 18]. 

One notable example is the LINE Bot-based rice disease 
detection platform, which leverages YOLOv3 to assist Thai 
farmers by diagnosing diseases directly from images taken in 
the field. This system not only provides real-time diagnoses 
but also facilitates communication between farmers and 
specialists, enhancing overall disease management [13]. 
Similar advancements have been made with the Mask R-
CNN model, which extends object detection capabilities by 
incorporating instance segmentation, making it a powerful 
tool for identifying and localizing plant diseases within 
images [19]. Furthermore, refining training datasets and 
improving model parameters have been crucial in enhancing 
detection accuracy. For example, systematic data 
augmentation and the removal of noisy data have improved 
the performance of models like YOLOv3, making them more 
reliable under diverse environmental conditions [20]. 
Additionally, research into IoT-based systems for plant 
disease monitoring has gained momentum, with real-time 
data from sensors and cameras being analyzed by AI models 
to provide continuous monitoring and early warning systems 
for disease outbreaks [21]. 

III. MATERIALS AND METHODS 

In this section, we outlined the process for preparing the 
training data for rubber leaf disease detection. Section III-B 
covers the training of the object detection model and the 
refinement process. Finally, Section III-C provides an 
overview of the LINE Bot system, followed by detailed 
explanations of its components. 

A. Data Preparation 

The Rubber Leaf Disease Dataset was meticulously 
compiled, consisting of 734 rubber leaf samples collected 
from various sources, including the Rubber Authority of 
Thailand, the Rubber Research Center, and the Faculty of 
Natural Resources at Prince of Songkla University. Each 
sample was carefully evaluated by domain experts with 
specialized knowledge of rubber leaf diseases, ensuring 
accurate labeling and classification. The classification of 
different rubber leaf diseases was based solely on their 
distinct external visual characteristics. Images were 
systematically captured in natural settings, with many 
samples photographed using a variety of smartphone models 
with different operating systems. This study focused on three 
specific categories of rubber leaves: those affected by new 
diseases, those with powdery mildew disease, and healthy 
leaves [14], as shown in Table 1. 

Our dataset consists of 734 images divided into three 
categories: 205 images of powdery mildew disease, 259 
images of a newly identified disease, and 270 images of 
healthy leaves. The images were then annotated by the rubber 
specialists or researchers trained by them, with the diseased 

International Journal of Computer Theory and Engineering, Vol. 17, No. 3, 2025

127



  

areas clearly labeled. For the training phase, we organized the 
dataset into distinct subsets, allocating 70% of the data for 
training, 20% for validation, and 10% for testing. An 
examination of sample distribution across categories 
emphasizes the dataset’s considerable scope. To further 
enhance the training set, we applied an image data 
augmentation technique, creating modified versions of 
existing images to increase the dataset size to 1536 images. 
This augmentation process serves a dual role, expanding the 
dataset while also acting as a regularization method to reduce 
the risk of overfitting. 

Table 1. Typical symptoms of rubber leaf 

Rubber Leaf Typical Symptom 

Healthy 

Vibrant and disease-free rubber leaves are 
characterized by a rich green hue, showcasing a 
smooth surface devoid of any pathological 
markings, with well-defined veins readily 
discernible 

Powdery Mildew 
Disease 

At the onset, these lesions manifest as diminutive, 
dispersed silver-white spots, characterized by a 
web-like arrangement of hyphae, distributed across 
the leaf’s upper or lower surface. Subsequently, 
these lesions progress to encompass the entire leaf. 
As the lesions mature, the powdery mildew spots 
transform into circular, ringworm-like formations 
with a white appearance. Concurrently, the leaf’s 
surface undergoes desiccation and takes on a yellow 
hue, culminating in its eventual detachment. 

New Disease 

In the early stages of symptom development, a 
discernible bruised lesion emerges beneath the leaf, 
accompanied by the appearance of a circular 
yellowing on the leaf’s upper surface within the 
same vicinity. Subsequently, this area undergoes 
expansion, with the wound edges darkening and 
transitioning into a brown, desiccated tissue that 
ultimately fades into pale white lines. The wound 
typically maintains a roughly circular shape, 
without a surrounding yellow halo; multiple points 
of affliction may converge, forming a larger wound. 
In cases of severe symptomatology, the leaves will 
exhibit yellowing and eventual abscission. 

B. Rubber Leaf Disease Detection Using Deep Learning 
Models 

An overview of the object detection model’s training and 
refinement process is illustrated in Fig. 1. The process began 
with planning how to prepare the data and selecting the 
appropriate model. For simplicity, this paper refers to the 
deep learning model as “the model.” The initial planning 
phase was informed by a review of relevant literature. 
Subsequently, models were selected, a training dataset was 
prepared, and experiments were conducted, leading to 
iterative refinements of the model’s performance. 

Data preparation began with gathering images of infected 
rubber leaves from actual rubber fields or by cultivating 
infected leaves in a controlled environment, such as a paddy 
field. The data collection process was influenced by seasonal 
factors. The Rubber Authority of Thailand’s Rubber 
Research Center (hereafter referred to as rubber specialists) 
was responsible for ensuring data quality. They provided, 
examined, and validated the disease images, categorizing 
them based on typical symptoms displayed on the leaves. 
Rubber leaf diseases, such as Powdery Mildew Disease and 
New Disease, can generally be classified by common 
symptoms. However, different pathogens often cause distinct 
physical signs, which the specialists could visually 
differentiate. 

In object classification, model performance is typically 
measured using accuracy, which compares the predicted class 
to the ground-truth class. However, object detection models 
must not only classify objects correctly but also localize them 
accurately within an image. To evaluate this, several 
performance metrics are commonly used. Precision, defined 
as TP / (TP + FP), measures the proportion of detected objects 
that are correct, whereas recall, calculated as TP / (TP + FN), 
assesses the model’s ability to detect all relevant objects in an 
image [22]. Additionally, the F1-score, a harmonic mean of 
precision and recall, provides a single performance measure 
that balances both metrics. 

Mean Average Precision (mAP) is another crucial metric 
for object detection, particularly mAP@0.5 and 
mAP@0.5:0.95, which evaluate detection performance 
across different Intersection over Union (IoU) thresholds. 
While mAP@0.5 considers a fixed IoU threshold of 0.5, 
mAP@0.5:0.95 averages performance over multiple IoU 
values from 0.5 to 0.95, offering a more comprehensive 
evaluation of model robustness [23, 24]. Beyond these 
metrics, it is essential that the predicted bounding box closely 
aligns with the actual object’s location. IoU measures the 
ratio of overlap between the predicted and ground-truth 
bounding boxes relative to their union and is widely used for 
this purpose [25]. 

The PASCAL Visual Object Classes Challenge (VOC) 
challenge introduced the concept of mAP, which computes 
precision and recall for each object class at an IoU threshold 
of 0.5. Later, the Common Objects in Context (COCO) 
dataset introduced stricter evaluation standards with 
mAP@0.5:0.95, reflecting real-world performance more 
accurately [22, 26]. 

Additionally, inference speed is a key consideration for 
real-time applications and is typically measured by Frames 
Per Second (FPS), which determines how many images can 
be processed per second. Faster models with higher FPS are 
preferable for real-time chatbot applications, where latency is 
a concern. Together, these evaluation metrics provide a 
comprehensive assessment of an object detection model’s 
accuracy, efficiency, and real-world applicability, guiding 
researchers in selecting the most suitable model for 
deployment. 
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C. Model Evaluation 

For model selection, we trained YOLO models using our 
dataset, and the results are presented in Table 2. 

Table 2. Yolo models metrics comparison 

Metrics 
YOLOv1

1n 
YOLOv1

0n 
YOLO

v9t 
YOLOv

8n 
mAP@0.5 0.6949 0.6459 0.6974 0.6863 

mAP@0.5:0.95 0.4944 0.4740 `0.5015 0.4946 

Precision 0.6520 0.6214 0.6552 0.6402 

Recall 0.6889 0.6467 0.7290 0.7206 

F1-Score 0.6700 0.6338 0.6901 0.6780 

Inference Time 2.9056 2.6304 3.5094 6.2885 

FPS 0.3442 0.3802 0.2850 0.1590 

Model Size (MB) 5.2304 5.4980 4.4349 5.9718 

Training Time (s) 1800.0 2188.8 3290.4 1526.4 

An object detection model within a chatbot application 
necessitates careful evaluation of several critical factors, 
including accuracy, inference speed, and computational 
efficiency. The comparison of YOLO models is shown in 
Figs. 1–4. 

 
Fig. 1. mAP@0.5 comparison. 

 
Fig. 2. mAP@0.5:0.95 comparison. 

 
Fig. 3. Precision comparison. 

 
Fig. 4. Recall comparison. 

Among the evaluated models, YOLOv8n emerges as the 
most suitable choice due to its optimal balance across key 
metrics. It achieves an mAP@0.5 of 0.6863 and an 
mAP@0.5:0.95 of 0.4946, demonstrating competitive 
detection performance while maintaining a strong balance 
between precision (0.6402) and recall (0.7206). Furthermore, 
its F1-score of 0.6780 affirms its robust detection capability, 
ensuring reliable performance in real-world chatbot 
applications. While YOLOv9t offers marginally higher 
accuracy (mAP@0.5 = 0.6974), its increased inference time 
and computational overhead render it less efficient for 
deployment. In contrast, YOLOv8n features a lightweight 
architecture, reduced processing time, and storage 
efficiency—crucial attributes for real-time chatbot  
operations [24, 25]. 

A key advantage of YOLOv8n is its suitability for real-
time applications that demand low-latency responses. Despite 
having the highest inference time among the evaluated 
models (6.29 ms), its overall efficiency is enhanced by a 
compact model size of 5.97 MB, making it ideal for 
deployment in cloud-based or edge environments where 
memory constraints are a concern. Additionally, its training 
time of 1526.4 seconds, the shortest among the tested models, 
indicates a lower computational burden, allowing for faster 
retraining and adaptation to evolving datasets. Moreover, its 
seamless integration into chatbot frameworks via the 
Ultralytics package simplifies deployment, making it an 
attractive choice for researchers and developers [27]. 

YOLOv8n has also demonstrated high adaptability across 
various computer vision tasks, including object detection, 
image segmentation, and classification. Its ability to maintain 
high detection accuracy even with relatively small training 
datasets further enhances its applicability in research settings, 
where extensive labeled data may be unavailable [28]. While 
YOLOv9t achieves the highest detection performance, it 
comes at the cost of increased training time (3290.4 seconds) 
and higher inference latency (3.51 ms), which may hinder its 
suitability for chatbot interactions requiring immediate 
responses. Therefore, YOLOv8n presents the most balanced 
option, offering an optimal trade-off between accuracy, 
efficiency, and real-time processing capability for our dataset. 
An example of testing with unseen images is presented in  
Fig. 5. 
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Fig. 5. Example of rubber leafs disease detection with unseen images.

In the present study, the dataset was refined by expanding 
data diversity and eliminating low-quality or erroneous 
samples. Details of this refinement process are discussed in 
the experimental results section. Following these 
enhancements, the model was retrained and its performance 
rigorously evaluated with feedback from rubber disease 
specialists. Once the specialists approved the model’s 
performance, it was deployed. This refinement process is 
iterative, and further improvements are anticipated based on 
the model’s performance in real-world conditions, where 
rubber farmers will use the LINE Bot system in the field. 

D. Design and Model Deployment 

This section explains how the LINE Messaging API 
enables users to submit images of rubber leaves, which are 
then sent as detection requests to an API endpoint hosted on 
Heroku. The backend infrastructure, containerised with 
Docker, runs a Flask application that handles image 
processing and interacts with an AI model trained for disease 
classification. 

 
Fig. 6. LINE Messaging API architecture. 

After the inference process is complete, the Flask 
application sends the detection results back to the LINE API, 
which then relays the information to the user as illustrated in 
Fig. 6. This architecture ensures scalability, efficiency, and 
provides a real-time, user-friendly solution for detecting 

rubber leaf diseases. 

IV. RESULT AND DISCUSSION 

The YOLOv8n model was trained on a plant health dataset 
containing three classes: Healthy, New Disease, and Powdery 
Mildew. The model achieved an overall mAP50 of 57.9% and 
an mAP50-95 of 42.8%. Class-wise, the model performed 
best on the Healthy class, with high precision (86.2%), recall 
(96.4%), and an mAP50 of 98.3%. Performance was 
moderate for the New Disease class, with a precision of  
55.4% and recall of 58.9%, yielding an mAP50 of 53.1%. 
However, the model struggled with Powdery Mildew, 
exhibiting lower precision (40.1%) and recall (26.5%), with 
an mAP50 of just 22.4%. These results are likely influenced 
by significant class imbalance in the training dataset, which 
contains 1451 labeled instances for Powdery Mildew, 1298 
for New Disease, and only 310 for the Healthy class. This 
imbalance may explain the high precision and recall for the 
underrepresented Healthy class, while the relative abundance 
of Powdery Mildew instances resulted in poorer performance 
for that category. 

For testing on the LINE platform, 50 beta testers evaluated 
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the rubber leaf disease detection model. The model 
demonstrated promising results, categorizing images into 
three classes: Healthy, Powdery Mildew, and New Disease. 
A total of 500 images were processed, yielding an overall 
accuracy of 72.4% and a misclassification rate of 5.4%. The 
model excelled in identifying New Disease, with 140 true 
positives, while common misclassifications occurred 
between Powdery Mildew and New Disease, highlighting 
visual similarities that impacted performance, as shown in 
Fig. 2. 

Response time metrics indicated an average response time 
of 2.5 seconds, with the fastest responses at 1.3 seconds under 
low server load and a maximum of 4.1 seconds during peak 
usage. User feedback was overwhelmingly positive, with an 
average satisfaction rating of 4.5 out of 5. Most users found 
the chatbot easy to use, rated the response speed favorably, 
and expressed confidence in the prediction quality, 
particularly after removing background classifications, as 
shown in Table 3. 

Table 3. Beta testing results 

Metric Results 

Total users 50 

Total images processed 500 

accuracy 72.4% 

Average response Time 2.5 seconds 

Misclassification Rate 5.4% (27 images) 

User Satisfaction 4.5/5 

Precision (Macro avg) 78.2% 

Recall (Macro avg) 73.0% 

F1 Score (Macro avg) 75.5% 

Constructive feedback focused on the need for improved 
clarity in misclassifications, particularly between “Powdery 
Mildew” and “New Disease.” Users expressed a desire for 
additional resources regarding treatment options for detected 
conditions. These insights suggest potential avenues for 

enhancing model usability and user experience in future 
iterations. 

The beta testing results table provides an overview of key 
performance metrics for a deep learning model designed for 
leaf disease diagnosis. The test involved 50 users and 
processed a total of 500 images, providing a reasonable 
sample size to evaluate the model’s functionality in 
identifying and classifying diseases. The model achieved an 
accuracy of 72.4%, indicating that 72.4% of its predictions 
were correct. Although this represents a promising initial 
performance, there is room for improvement, particularly if 
higher accuracy is essential for practical deployment in 
agricultural settings where precision is critical. 

Moreover, the model demonstrated an average response 
time of 2.5 seconds, which highlights its efficiency—a key 
factor for real-time applications. Additionally, the 
misclassification rate was relatively low, at 5.4%, suggesting 
that the model is effective in reducing errors. Nevertheless, 
further reducing this rate would enhance the model’s 
reliability. In terms of user experience, satisfaction scored 
high at 4.5 out of 5, indicating that the model was generally 
well-received, especially regarding ease of use, reliability, 
and practical benefits from an end-user perspective. 

Regarding the model’s classification performance, 
precision on a macro average basis was recorded at 78.2%, 
reflecting the model’s capacity to minimize false positives. 
This attribute is particularly important in scenarios where 
false positives—incorrectly identifying healthy leaves as 
diseased—could result in unnecessary interventions. 
Furthermore, the recall rate, at 73.0% (macro average), 
reflects the model’s ability to identify true positives or 
correctly detect diseased leaves, which is essential to prevent 
undiagnosed infections from spreading. The F1 score, which 
balances precision and recall, was calculated at 75.5%, 
indicating a reasonable trade-off between detecting true 
positives and avoiding false positives. 

Fig. 7. Example of chatbot rubber disease detection results using LINE platform. 
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The beta testing results suggest that the model performs at 
a satisfactory level, exhibiting moderate accuracy, high user 
satisfaction, and a balanced F1 score. However, there remains 
potential to improve accuracy, recall, and misclassification 
rates to enhance the model’s reliability for practical use in 
detecting leaf diseases. The efficient response time of 2.5 
seconds further supports its suitability for real-world 
applications, where timely detection and action are crucial. 
Nonetheless, it is important to acknowledge certain 
limitations of this beta test. For example, the devices used for 
testing varied significantly in quality, especially in terms of 
the cameras and processors used. Furthermore, many of the 
testers were farmers who may lack the technical skills 
required to effectively utilize the rubber leaf disease 
diagnosis application, which could have influenced the 
evaluation results. Fig. 7 provides an example of the chatbot’s 
detection results on the LINE platform, illustrating how users 
receive real-time feedback on disease identification. These 
results demonstrate a solid foundation for the model, with 
potential areas for enhancement identified through its 
performance metrics. 

V.  CONCLUSION 

In conclusion, this research successfully demonstrated the 
feasibility of integrating a YOLOv8-based model into the 
LINE platform for real-time rubber leaf disease detection. 
The model achieved an overall accuracy of 72.4%, excelling 
in identifying “New Disease” but facing challenges in 
distinguishing between “Powdery Mildew” and “New 
Disease,” likely due to visual similarities and dataset 
imbalance. Performance metrics, including a macro-average 
precision of 78.2%, recall of 73.0%, and an F1 score of 75.5%, 
highlight the model’s solid foundation. The deployment 
architecture, utilizing the LINE API, Docker, Flask, and 
Heroku, enabled efficient and scalable real-time responses, 
with an average response time of 2.5 seconds. User testing 
with 50 beta testers yielded positive feedback, with a 
satisfaction rating of 4.5 out of 5. While the overall results 
were promising, improvements in handling misclassifications 
and providing clearer treatment guidance were identified as 
areas for future enhancement. 

For future work, we plan to implement individual chat 
functionality and integrate a location tagging feature to better 
utilize disease spread information. Additionally, we are 
acquiring more diverse training data and refining the disease 
detection model to analyze a broader range of disease types, 
with the goal of covering most diseases commonly found in 
Thailand. As system usage continues to grow, both 
anticipated and unforeseen challenges may arise. To address 
this, we are developing a system maintenance assistant 
application to facilitate the management of the LINE Bot and 
chat community for system administrators. Furthermore, we 
are designing a feature to automatically extract and analyze 
dialogues from rubber specialists, using this information to 
enhance the model’s performance further. 
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