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Abstract—This study evaluates the integration of Bloom’s 

Taxonomy into OneClickQuiz, an Artificial Intelligence (AI) 
driven plugin for automating Multiple-Choice Question (MCQ) 
generation in Moodle. Bloom’s Taxonomy provides a structured 
framework for categorizing educational objectives into 
hierarchical cognitive levels. Our research investigates whether 
incorporating this taxonomy can improve the alignment of AI-
generated questions with specific cognitive objectives. We 
developed a dataset of 3691 questions categorized according to 
Bloom’s levels and employed various classification models—
Multinomial Logistic Regression, Naive Bayes, Linear Support 
Vector Classification (SVC), and a Transformer-based model 
(DistilBERT)—to evaluate their effectiveness in categorizing 
questions. Our results indicate that higher Bloom’s levels 
generally correlate with increased question length, Flesch-
Kincaid Grade Level (FKGL), and Lexical Density (LD), 
reflecting the increased complexity of higher cognitive demands. 
Multinomial Logistic Regression showed varying accuracy 
across Bloom’s levels, performing best for “Knowledge” and less 
accurately for higher-order levels. Merging higher-level 
categories improved accuracy for complex cognitive tasks. Naive 
Bayes and Linear SVC also demonstrated effective classification 
for lower levels but struggled with higher-order tasks. 
DistilBERT achieved the highest performance, significantly 
improving classification of both lower and higher-order 
cognitive levels, achieving an overall validation accuracy of 91%. 
This study highlights the potential of integrating Bloom’s 
Taxonomy into AI-driven assessment tools and underscores the 
advantages of advanced models like DistilBERT for enhancing 
educational content generation. 
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I. INTRODUCTION 

Educational assessment frameworks are foundational in 
shaping how educators evaluate student learning processes 
and outcomes. Bloom’s Taxonomy [1], introduced in 1956 by 
Benjamin Bloom and his collaborators, is one of the most 
influential frameworks in educational theory. Its hierarchical 
structure organizes cognitive learning objectives into six 
levels: Knowledge, Comprehension, Application, Analysis, 
Synthesis, and Evaluation. Each level represents increasingly 
complex cognitive processes, guiding educators in designing 
curricula, instructional methods, and assessment strategies. 
The taxonomy’s continued relevance reflects its versatility 
across disciplines and educational settings [2]. 

However, contemporary education, driven by 
technological advances and evolving pedagogical paradigms, 
requires new methods for integrating such frameworks into 
teaching and assessment. Artificial Intelligence (AI), 
particularly generative AI, offers promising solutions by 

automating complex tasks like question generation and 
content creation [3]. AI has gained considerable traction in 
educational technology, enabling tools that support 
personalized learning, adaptive assessments, and efficient 
resource generation. Generative AI models such as GPT-4 
have been used to create quizzes, essays, and other 
instructional materials, showcasing their potential to 
transform traditional education [4, 5]. 

Despite these advancements, the alignment of AI-
generated content with established educational frameworks 
like Bloom’s Taxonomy remains under-explored. While AI-
driven assessment tools generate varied and contextually 
relevant questions, their adherence to hierarchical cognitive 
levels hasn’t been rigorously assessed. Integrating Bloom’s 
Taxonomy into AI-based question generation ensures that AI-
generated assessments are pedagogically sound and aligned 
with educators’ cognitive objectives [6]. 

This study explores whether integrating Bloom’s 
Taxonomy into OneClickQuiz, an AI-powered Moodle 
plugin for automated MCQ generation, enhances the 
alignment of AI-generated questions with specific cognitive 
levels. OneClickQuiz has been used in prior research [7] to 
generate diverse quiz content for Moodle, but it lacked a 
systematic approach to aligning questions with Bloom’s 
cognitive framework. This study investigates the extent to 
which generative AI can produce questions reflecting the 
taxonomy’s structured cognitive demands. 

We address two primary research questions: 
RQ1: To what extent can AI-generated questions, 

categorized according to Bloom’s Taxonomy, accurately 
represent different cognitive levels?  

RQ2: How effective are different AI models, including 
traditional classification algorithms and advanced 
Transformer-based models, in classifying and generating 
questions aligned with the higher-order cognitive processes 
outlined in Bloom’s Taxonomy? 

The findings will inform the design of AI-driven 
educational tools, offering insights into refining AI models to 
support assessments promoting critical thinking and higher-
order learning. By integrating Bloom’s Taxonomy into 
OneClickQuiz, we contribute to discussions about AI’s role 
in enhancing the quality and cognitive depth of automated 
assessments. This work provides both theoretical insights and 
practical recommendations for improving AI-driven 
assessment technologies. 

The paper is organized as follows: Section II presents the 
literature review; Section III details the methodology and 
experimental setup; Section IV presents and analyzes the 
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results; and Section V discusses the implications and 
concludes with recommendations for future research. 

II. LITERATURE REVIEW 

This section provides a comprehensive overview of 
Bloom’s Taxonomy and other relevant educational 
taxonomies, including Webb’s Depth of Knowledge (DOK), 
the Structure of Observed Learning Outcomes (SOLO) 
Taxonomy, and Bloom’s Digital Taxonomy. It also explores 
the integration of AI and generative AI in education, 
highlighting their impact on quiz and MCQ creation, and 
discusses ethical considerations and challenges associated 
with AI in educational contexts. 

A. Bloom’s Taxonomy and Other Educational Taxonomies 

Bloom’s Taxonomy [1], first published in 1956 by 
Benjamin Bloom and colleagues, remains a seminal 
framework in educational theory and practice. It organizes 
cognitive learning objectives into a hierarchical structure with 
six levels, each representing different degrees of complexity: 

1. Knowledge: This foundational level involves the 
recall of factual information, basic concepts, and 
definitions. Objectives at this level include listing, 
naming, and recalling information. 

2. Comprehension: At this level, learners are expected 
to understand and interpret information. This includes 
explaining, summarizing, and discussing concepts. 

3. Application: This level requires learners to apply 
knowledge to new situations or problems. Objectives 
include using information in practical contexts, 
solving problems, and making decisions. 

4. Analysis: Learners at this level are expected to break 
down information into its constituent parts and 
understand relationships. This involves 
differentiating, analyzing, and examining 
components. 

5. Synthesis: This higher-order level focuses on 
combining parts to form a new whole. Objectives 
include creating, designing, and proposing new 
solutions or structures. 

6. Evaluation: The highest level involves making 
judgments about the value or quality of information 
or solutions. Objectives include critiquing, evaluating, 
and justifying decisions. 

Bloom’s Taxonomy has been widely used in curriculum 
development, instructional design, and assessment. It helps 
educators create learning objectives that promote higher-
order thinking and ensures that assessments align with 
learning goals. 

In 2001, Lorin Anderson and David Krathwohl [2, 8] 
revised Bloom’s Taxonomy to reflect contemporary 
educational practices. The revised taxonomy introduced 
several changes: 

 Revised Categories: The original categories were 
updated to reflect active learning processes. The 
revised levels are Remembering, Understanding, 
Applying, Analyzing, Evaluating, and Creating. 

 Cognitive Process Dimension: The revised 
taxonomy emphasizes cognitive processes, such as 
recalling (Remembering), explaining 
(Understanding), and designing (Creating), reflecting 
a more dynamic view of learning. 

 Knowledge Dimension: The revised taxonomy also 
includes a Knowledge Dimension, which classifies 
knowledge into Factual, Conceptual, Procedural, and 
Metacognitive categories. 

Webb’s Depth of Knowledge (DOK) [9], developed by 
Norman Webb, provides an alternative framework for 
categorizing cognitive tasks. It focuses on the complexity of 
tasks rather than hierarchical levels: 

1. Level 1: Recall and Reproduction—Simple recall of 
facts and basic skills. 

2. Level 2: Skills and Concepts—Applying skills and 
concepts to solve problems. 

3. Level 3: Strategic Thinking—Higher-order thinking 
requiring reasoning and planning. 

4. Level 4: Extended Thinking—Complex tasks that 
involve extended research and investigation. 

Webb’s DOK framework emphasizes the depth of 
understanding required for various cognitive tasks, providing 
a different perspective on instructional design and assessment. 

SOLO’s Taxonomy [10], developed by John Biggs and 
Kevin Collis, categorizes learning outcomes into levels of 
complexity, including Pre-Structural, Uni-Structural, Multi-
Structural, Relational, and Extended Abstract. 

Bloom’s Digital Taxonomy is an adaptation of Bloom’s 
Taxonomy that incorporates digital tools and technologies. It 
reflects the impact of digital media on learning processes and 
includes categories such as Remembering with digital tools, 
Understanding through multimedia, and Creating with digital 
content. 

We chose Bloom’s Taxonomy over newer frameworks due 
to its established and widely recognized hierarchical structure, 
which provides a clear, time-tested method for categorizing 
cognitive objectives and assessing learning outcomes. Its 
broad acceptance and historical significance in educational 
practice make it an ideal benchmark for evaluating the 
effectiveness of AI-generated questions. 

B. The Integration of AI and Generative AI in Education 

The following subsection investigates the integration of 
generative AI in educational contexts, focusing on 
advancements, limitations, and the influence on assessment 
and curriculum development, particularly as it relates to our 
OneClickQuiz plugin. 

Generative AI technologies, such as Large Language 
Models (LLMs) like GPT-4 and PALM2, are revolutionizing 
educational practices by enhancing quiz and MCQ creation. 
Eager and Brunton [11] and Trust et al. [3] highlight the 
transformative impact of these models on teaching, 
assessment, and curriculum design. Pack and Maloney [12] 
demonstrate how OpenAI’s ChatGPT assists in language 
education through effective information compilation and 
summarization, while Zhai and Nehm [13] argue for a 
broader application of AI in formative assessment, 
advocating its use for feedback and diversified assessment 
methods. 

Recent research underscores the importance of 
understanding factors influencing the adoption of AI tools in 
education. A study on the determinants of AI application 
usage among Humanities and Social Sciences students 
reveals that expected performance, habit, and enjoyment are 
key factors influencing students’ intentions to use AI 
applications [14]. This finding is crucial for ensuring that AI 
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tools like OneClickQuiz meet users’ needs and expectations. 
Generative AI’s role in personalizing education is further 

exemplified by Olga et al. [15], who explore its application 
in tailoring learning experiences. Doughty et al. [16] illustrate 
GPT-4’s potential in generating high-quality, contextually 
relevant programming MCQs, while Van Campenhout  
et al. [17] assess AI-generated questions in Psychology, 
considering student data and perceptions. Additionally, a 
study on how teaching interventions improve students’ 
information-seeking behaviors demonstrates the value of 
targeted educational support in enhancing AI tool 
effectiveness [18].  

A comprehensive book on innovative technologies in 
education, including AI, IoT, and ICT, highlights various 
applications and case studies showcasing how these 
technologies are integrated into educational settings to 
address diverse needs [6]. 

These discussions underscore AI’s potential to produce 
engaging and pertinent educational content, aligning with the 
objectives of our OneClickQuiz plugin for automated quiz 
generation. 

Despite the advancements, several challenges persist. 
Akgun and Greenhow [19] emphasize the importance of 
addressing ethical considerations in AI applications within K-
12 education. Dai and Ke [20] stress the need for careful 
integration of AI with educational principles in simulation-
based learning, while Bahroun et al. [21] point out concerns 
regarding bias, transparency, and equity in AI tools. These 
ethical issues highlight the necessity for responsible AI 
deployment, ensuring fairness and transparency in 
educational tools like our plugin. 

Moreover, a recent comprehensive review of AI in primary 
education illustrates the broad scope of AI applications, 
categorizing research objectives, learning content, activities, 
and outcomes [22]. This review emphasizes the diverse 
pedagogical approaches and learning outcomes facilitated by 
AI tools, reinforcing the need for AI applications to align with 
established educational frameworks like Bloom’s Taxonomy. 

AI’s potential to enhance assessment methods and 
curriculum development is significant. Grévisse [23] assesses 
the alignment of GPT-based MCQs with best practices, while 
Jain [24] explores automated quiz generation for 
programming languages.  

Ryan Lau [25] developed a task complexity classifier using 
Transformer-based NLP model based on Bloom’s Taxonomy. 
Lau deployed an architecture where users can submit a query 
as a string, and the application returns the corresponding 
Bloom’s category. 

C. Integrating AI and Bloom’s Taxonomy in Educational 
Technology 

In the digital age, the integration of AI with Bloom’s 
Taxonomy has emerged as a significant research focus, given 
its potential to transform educational practices, especially in 
assessment and personalized learning. 

Recent advancements, such as the BloomGPT project [26], 
have demonstrated how AI tools like ChatGPT can be 
integrated with Bloom’s Taxonomy to support cognitive 
development across multiple educational levels. In a 
university setting, BloomGPT facilitated discussions and 
reflections that improved students’ conceptual, procedural, 

and metacognitive knowledge, highlighting the utility of AI 
in enhancing learning through Socratic dialogues and essay 
evaluations. 

The AIEd Bloom’s Taxonomy model [27] presents an AI-
driven framework designed to enhance the effectiveness of 
educational tools. This model adapts Bloom’s Taxonomy to 
modern AI capabilities, incorporating levels like collecting, 
processing, and innovating to align with the digital learning 
environment. This approach not only augments learning 
efficiency but also aligns AI functionalities with Bloom’s 
cognitive levels, offering personalized and adaptive learning 
experiences. 

In design education, AI tools have started to challenge 
traditional learning sequences. Studies on AI in robotic 
design projects reveal that students sometimes engage in 
higher-order tasks, like Creating, before mastering 
foundational knowledge. This potential shift in learning 
paradigms calls for a re-evaluation of how Bloom’s 
Taxonomy might be applied in AI-driven environments, 
where the traditional progression of cognitive skills may be 
reversed [28]. Such findings suggest that AI might require 
adjustments to fit pedagogical models that prioritize 
foundational skills before advanced cognitive tasks. 

In primary education, the integration of Bloom’s 
Taxonomy in AI-supported learning environments has shed 
light on how AI tools influence student cognition [29]. For 
instance, students using chatbots tended to rely on higher-
order skills, such as Evaluating and Creating, during tasks 
involving complex problem-solving. However, in scenarios 
of increased task uncertainty, they reverted to lower-order 
thinking, such as Remembering and Understanding. 

AI tools like SACITED [30], which combines AI with 
Bloom’s Digital Taxonomy, have shown promise in creating 
didactic sequences for various educational disciplines. 
SACITED enhances learning by personalizing content and 
adapting it to the cognitive needs of learners, demonstrating 
the broad potential of AI to align with and extend the 
capabilities of Bloom’s framework across diverse fields. 

Further exploration of AI in educational assessments 
includes research on automated Multiple-Choice Question 
(MCQ) generation using GPT-4 aligned with Bloom’s 
Taxonomy [31]. This study focuses on MCQ generation 
through a few-shot prompting approach and evaluates how 
well the generated questions align with Bloom’s cognitive 
framework. A key challenge identified is GPT-4’s difficulty 
in generating questions that target higher-order cognitive 
skills such as Analyzing and Evaluating. The research 
highlights the limitations of GPT-4 in aligning with these 
advanced cognitive demands. 

Recent research has also applied Bloom’s Taxonomy to job 
tasks in AI-related fields. A semi-supervised model for AI-
related job tasks demonstrated the taxonomy’s relevance 
beyond educational contexts, where it was used to classify 
technical and cognitive requirements [32]. This approach 
showed how Bloom’s hierarchical model could assist in 
analyzing the complexity of tasks in emerging fields like AI, 
further reinforcing the taxonomy’s adaptability. 

These studies underscore the necessity of integrating 
Bloom’s Taxonomy into AI-driven educational tools, both to 
ensure pedagogical soundness and to enhance learning 
efficiency. The combination of AI with structured cognitive 
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frameworks offers a new dimension for personalized, 
adaptive learning, although further refinement is required for 
AI to fully capture the complexities of higher-order thinking 
as outlined by Bloom, supporting the development of a model 
that bridges existing gaps in AI-generated assessments. 

III. MATERIALS AND METHODS 

This section details the methodology used for generating 
and evaluating AI-generated questions. It describes the data 
creation process using Google’s Vertex AI, the metrics used 
for evaluating question quality, and the classification 
techniques employed, including Multinomial Logistic 
Regression, Naive Bayes, Linear Support Vector 
Classification (SVC), and Transformer-Based Deep Learning 
Models. 

A. Data Creation and Description 

To construct a comprehensive dataset for evaluating AI-
generated questions in relation to Bloom’s Taxonomy, we 
utilized Google’s Vertex AI’s Text Generation Model (text-
bison-32k), chosen for its ability to generate contextually 
relevant and diverse questions based on pre-defined prompts. 
The sampling of generated questions focused on the six 
cognitive levels of Bloom’s Taxonomy within the field of 
computer science, ensuring coverage of each cognitive level: 
Knowledge, Comprehension, Application, Analysis, 
Synthesis, and Evaluation. The action verbs were selected 
from established references [2] and resources from 
educational institutions such as Iowa State University’s 
Revised Bloom’s Taxonomy 1  and Andrew Churches’ 
Bloom’s Digital Taxonomy [33]. 

Survey Design: The design of the questions for each 
cognitive level was carefully curated. For each level of 
Bloom’s Taxonomy, we incorporated specific action verbs 
commonly associated with that level to guide the question 
generation. The following examples outline how questions 
were formulated for each construct: 

 Knowledge: Questions aimed at recalling basic facts 
or definitions (e.g., “Define the primary functions of 
an operating system”). Verbs like “define,” “list,” and 
“describe” were used to ensure questions focused on 
simple recall. 

 Comprehension: Questions requiring students to 
explain concepts in their own words (e.g., 
“Summarize the differences between Transmission 
Control Protocol (TCP) and User Datagram Protocol 
(UDP)”). Verbs such as “summarize,” “explain,” and 
“interpret” were chosen. 

 Application: For this level, the questions focused on 
applying knowledge to new situations (e.g., “Apply 
the binary search algorithm to the following list of 
numbers”). Verbs like “apply” and “solve” were 
utilized. 

 Analysis: Questions required breaking down 
concepts to understand their components (e.g., 
“Analyze the components of a cloud computing 
system”). Verbs like “analyze” and “differentiate” 
guided the prompts. 

 
1 https://iowaascd.org/all-about-learning/approaches-to-learning/revised-
bloom-taxonomy 

 Synthesis: Questions at this level asked for the 
creation of something new (e.g., “Propose an 
optimized algorithm for sorting data in real-time 
systems”). Verbs such as “create” and “design” were 
used. 

 Evaluation: These questions involved making 
judgments or assessing the effectiveness of different 
approaches (e.g., “Critique the efficiency of different 
sorting algorithms”). Verbs like “assess,” “evaluate,” 
and “judge” were employed. 

Sampling and Validation: The dataset consists of 3691 
observations, each representing a generated question (Text) 
and its corresponding Bloom’s cognitive level (Label). To 
ensure the validity and alignment of the generated questions, 
a two-stage validation process was implemented: 

 Expert Review: A random sample of questions from 
each cognitive level was evaluated by subject matter 
experts specializing in educational assessment and 
Bloom’s Taxonomy. These experts reviewed whether 
the questions accurately represented the cognitive 
skill they were intended to measure, offering 
qualitative feedback on both the content and cognitive 
alignment. 

 Survey Instrument Design: Specific constructs within 
the survey were developed based on expert 
recommendations and prior research. Each construct 
aimed to assess the respondent’s perception of 
question difficulty, relevance, and cognitive demand. 
The feedback provided by experts allowed for 
iterative refinement of the prompts, enhancing the 
consistency and precision of the generated questions 
across all cognitive levels. 

Ethical considerations were important in this study, 
particularly regarding the potential biases in AI-generated 
content. We conducted a thorough analysis of the generated 
questions to ensure they did not perpetuate stereotypes or 
biases. This involved examining the language and context of 
the questions for neutrality and inclusivity, and making 
adjustments to the prompt design where necessary to mitigate 
any identified biases.  

The data is distributed as shown in Table 1. 

Table 1. Data distribution 

Bloom’s Level Count 
Knowledge 757 

Comprehension 787 

Application 792 

Analysis 455 

Synthesis 449 

Evaluation 451 

Total 3691 

B. Calculated Metrics 

To ensure that the questions generated by our system align 
with educational standards and are suitable for their intended 
Bloom’s Taxonomy levels, we calculated several key metrics: 
Question length (L), Flesch-Kincaid Grade Level (FKGL), 
Vocabulary Richness (Type-Token Ratio—TTR), and 
Lexical Density (LD). These metrics provide quantitative 
measures of readability and complexity, which are crucial for 
evaluating the appropriateness of educational content. 
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1) Question Length (L) is defined as the total number 
of words in a question. It serves as a preliminary indicator of 
its complexity. Longer questions may indicate a higher level 
of complexity or verbosity, while shorter questions tend to be 
more straightforward. It is expressed as: 

 𝐿 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛       (1) 

Analyzing question length helps determine whether the 
questions adhere to the desired level of conciseness or detail 
appropriate for the Bloom’s Taxonomy level they target. 

2) Flesch-Kincaid Grade Level is a readability test 
designed to estimate the U.S. school grade level required to 
comprehend a text. This metric is calculated using the 
following formula:  

 𝐹𝐾𝐺𝐿 = 0.39 ቀ
ேೢ

ேೞ
ቁ + 11.8 ቀ

ேೞ௬

ேೢ
ቁ − 15.59       (2) 

where: 
 𝑁௪ is the total number of words in the text; 
 𝑁௦ is the total number of sentences; 
 𝑁௦𝑦  is the total number of syllables.  

A lower FKGL indicates that the text is easier to read, 
while a higher level suggests greater complexity. This 
measure is particularly useful for determining if questions are 
appropriately challenging for the Bloom’s Taxonomy level 
they are intended to assess. For example, questions targeting 
higher-order skills such as “Analysis” or “Evaluation” might 
be expected to have a higher FKGL compared to those aimed 
at “Knowledge.” 

3) Vocabulary Richness (Type-Token Ratio—TTR) is 
an indicator of the lexical diversity within a text. This metric 
is calculated using the following formula:  

 𝑇𝑇𝑅 =
ேೠೠ

ேೢ
 (3) 

where: 
 𝑁௨௨ is the number of unique words in the text; 
 𝑁௪ is the total number of words in the text. 

A higher TTR indicates greater lexical diversity, meaning 
a larger proportion of the words in the text are unique. This 
measure is useful for evaluating the complexity and variety 
of the vocabulary used in the questions. For instance, 
questions intended to assess higher-order cognitive skills, 
such as “Synthesis” or “Evaluation,” might exhibit higher 
TTR values due to the necessity of using more varied and 
sophisticated language.  

4) Lexical Density (LD) is a measure of the proportion 
of content words (nouns, verbs, adjectives, and adverbs) to 
the total number of words in a text. It provides an indication 
of the informational content and complexity of the text. This 
metric is calculated using the following formula:  

 𝐿𝐷 =
ே

ேೢ
   (4) 

where: 
 𝑁௧௧  is the number of content words in the text; 
 𝑁௪ is the total number of words in the text.  

Content words are those that carry significant meaning and 

are essential for understanding the text, excluding common 
stop words such as “the,” “is,” and “and.” A higher LD 
indicates a text rich in meaningful words, which is often 
associated with higher complexity. This measure is 
particularly valuable for determining the appropriateness of 
questions for different Bloom’s Taxonomy levels. Questions 
designed to assess complex cognitive processes, such as 
“Analysis” or “Evaluation,” are expected to have higher LD 
compared to questions aimed at lower-order skills like 
“Knowledge.” 

C. Classification Using Multinomial Logistic 
Regression 

Multinomial logistic regression is a statistical technique 
used for classifying observations into multiple categories by 
estimating the probabilities of each class based on the input 
features [34]. This is an extension of binary logistic 
regression to handle cases where there are more than two 
possible outcomes, providing a way to model the relationship 
between categorical response variables and predictor 
variables. In this paper, we used multinomial regression to 
predict the question label based on several independent 
variables mentioned in the previous subsection. 

D. Classification Using Naive Bayes 

Naive Bayes is a probabilistic classification technique 
based on Bayes’ Theorem, which provides a mathematical 
framework for updating the probability of a hypothesis as 
more evidence becomes available. The “naive” aspect of the 
algorithm assumes that all input features are independent of 
each other, which simplifies the computation but may not 
fully capture the complexity of real-world data [35]. Despite 
this simplifying assumption, Naive Bayes is widely used for 
text classification due to its efficiency and effectiveness, 
especially in high-dimensional datasets with sparse features. 
In this study, Naive Bayes was applied to classify questions 
into categories based on their textual content, leveraging its 
strength in handling multiclass problems and providing a 
straightforward probabilistic interpretation of the results. 

E. Classification Using Linear Support Vector 
Classification (SVC) 

Support Vector Machines (SVM) are a powerful set of 
supervised learning methods used for classification and 
regression tasks. Linear Support Vector Classification (SVC) 
is a variant of SVM that seeks to find a hyperplane in a high-
dimensional space that best separates the classes, maximizing 
the margin between data points of different categories [36]. 
The linear nature of SVC makes it particularly suitable for 
cases where the classes are linearly separable or nearly so. 
This method is known for its robustness in handling high-
dimensional data and providing clear decision boundaries. In 
the context of this study, Linear SVC was employed to 
classify questions by learning the optimal hyperplane that 
distinguishes between different cognitive categories, relying 
on the textual features of the questions. 

F. Classification Using Transformer-Based Deep 
Learning Model 

Transformers represent a significant advancement in 
natural language processing, using self-attention mechanisms 
to capture long-range dependencies and contextual 
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information within text sequences [37]. DistilBERT, a variant 
of the original BERT model, is a distilled, smaller version 
designed to retain much of the performance while being more 
efficient in terms of speed and computational resources. 
Transformers have been particularly successful in tasks 
requiring deep understanding of language semantics and 
context, making them highly effective for text classification 
problems. In this research, DistilBERT was fine-tuned to 
classify questions into different cognitive categories as 
defined by Bloom’s Taxonomy.  

G. Hypotheses 

To address the research questions, we propose the 
following hypotheses: 

H1: AI-generated questions will accurately reflect lower-
order cognitive levels (Knowledge, Comprehension, and 
Application) when categorized by traditional machine 
learning models such as Multinomial Logistic Regression, 
Naive Bayes and Support Vector Machines. 

Prior studies have demonstrated the efficacy of Naive 
Bayes in classifying questions into Bloom’s Taxonomy levels. 
For instance, Naive Bayes with Laplace Smoothing improved 
accuracy by 39.6% when applied to high school biology 
questions, achieving up to 75.94% accuracy when tested with 
mixed data samples [38]. Similarly, Naive Bayes achieved a 
classification accuracy of 91% when categorizing quiz 
questions according to Bloom’s revised cognitive levels [39]. 
These findings support the hypothesis that traditional 
classifiers like Naive Bayes can perform well in categorizing 
questions into lower-order cognitive tasks. 

H2: Traditional classifiers like Naive Bayes will struggle 
with higher-order cognitive levels (Analysis, Synthesis, 
Evaluation), while advanced models such as Support Vector 
Machines and deep learning methods will improve 
classification accuracy for these levels. 

Studies comparing Naive Bayes with other classifiers, such 
as Support Vector Machines (SVM), have shown that SVM 
performs better in classifying questions into higher-order 
cognitive levels. In one study, SVM with SMOTE achieved a 
98% accuracy, significantly outperforming Naive Bayes, 
which reached 91% [39]. This supports our hypothesis that 
Naive Bayes, while useful for lower-order tasks, may not be 
sufficient for complex cognitive levels. Another study 
demonstrated that normalizing TF-IDF variants further 
enhances SVM’s accuracy for higher-level questions, which 
supports our methodology of including advanced 
classification models [40]. Additionally, research on 
classification using modified TF-IDF and word2vec methods 
achieved significant results, showing improvements in 
classification performance with features like TFPOS-IDF and 
pre-trained word2vec [41]. Additionally, research on 
automatic classroom question classification using TF-IDF 
features reported an accuracy of 86% [42]. This further 
supports the inclusion of advanced classification models. 

H3: Deep learning models, such as LSTM and CNN, will 
significantly enhance classification accuracy, especially for 
complex cognitive tasks involving higher-order levels of 
Bloom’s Taxonomy. 

Recent studies have shown the advantages of deep learning 
techniques in classifying questions into Bloom’s 
Taxonomy [43, 44]. For example, Long Short-Term Memory 

(LSTM) models achieved 87% accuracy in classifying 
learning outcomes into Bloom’s cognitive levels, with 
particular improvement in higher-order classifications [45]. 
Convolutional Neural Networks (CNN) have similarly 
demonstrated success in categorizing questions across 
various cognitive levels, achieving high levels of precision 
and recall [46]. This evidence supports our hypothesis that 
deep learning models are more capable of handling the 
complexity of higher-order cognitive levels, providing 
significant improvements over traditional methods. 

IV. EXPERIMENTS & RESULTS  

This section presents the results of experiments designed 
to evaluate the effectiveness of AI-generated questions. To 
test our hypotheses, we employed Multinomial Logistic 
Regression, Naive Bayes, Support Vector Machines (SVM), 
and transformer-based models (DistilBERT) to classify these 
questions according to Bloom’s Taxonomy. These models 
were chosen for their proven efficacy in text classification 
tasks, particularly within educational contexts. We conducted 
a detailed analysis and comparison of these models, 
measuring performance using accuracy, F1-score, and other 
classification metrics. This analysis focuses on each model’s 
ability to categorize questions across both lower- and higher-
order Bloom’s levels, providing insights into the alignment of 
AI-generated questions with Bloom’s Taxonomy. The results 
directly address the three hypotheses proposed at the outset 
of this study. 

A. Exploratory Results  

The analysis of our experiments revealed several important 
patterns. As observed in Fig. 1, there is a clear trend where 
the length of questions increases with the Bloom’s level. This 
pattern reflects the nature of higher cognitive processes, 
which often require more elaborate and detailed questions. 
For example, questions designed to evaluate higher-order 
skills such as “Analysis” or “Evaluation” generally involve 
multiple facets of information, thereby increasing their length. 
This trend aligns with our expectations, as higher Bloom’s 
levels involve more complex cognitive demands. 

 
Fig. 1. QL by Bloom’s taxonomy level. 

In addition to question length, FKGL and LD also show a 
general increase with higher Bloom’s levels, although this 
trend is less pronounced for LD as shown in Figs. 2 and 3. 
respectively. Higher FKGL values suggest that questions 
targeting advanced cognitive levels are more challenging in 
terms of readability, consistent with the complexity expected 
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at these levels. Similarly, higher LD indicates a greater 
proportion of content words, reflecting increased 
informational complexity in these questions. 

 

 
Fig. 2. FKGL by Bloom’s taxonomy level. 

 
Fig. 3. LD by Bloom’s taxonomy level. 

Interestingly, as shown in Fig .4, no significant correlation 
was found between Type-Token Ratio (TTR) and Bloom’s 
levels. This suggests that while questions at higher cognitive 
levels may involve more detailed content, the diversity of 
vocabulary used does not necessarily follow a predictable 
pattern.  

 
Fig. 4. TTR by Bloom’s taxonomy level. 

Furthermore, a strong positive correlation of 0.84 between 
question length and FKGL was identified, indicating that 
longer questions are generally associated with a higher 
readability grade level. This supports the notion that more 
detailed questions tend to be more complex. 

B. Multinomial Logistic Regression Classification 
Performance 

In Experiment 1, we employed multinomial logistic 

regression to classify questions into the six Bloom’s 
Taxonomy levels using a balanced dataset. The multinomial 
logistic regression model aimed to predict the cognitive level 
of each question based on its features. The results, shown in 
Table 2, revealed significant variability in the model’s 
performance across different cognitive levels. Specifically, 
the model achieved the highest accuracy for the “Knowledge” 
level, with an F1-score of 0.83. This indicates that the model 
was particularly effective at classifying straightforward recall 
tasks. Conversely, the performance for higher-order cognitive 
skills such as “Synthesis” and “Analysis” was notably lower, 
with F1-scores of 0.44 and 0.52, respectively. This variability 
highlights the model’s challenges in accurately classifying 
questions that require more complex cognitive processing. 

Table 2. Performance rates for each class for Experiment 1 

Level Precision Recall F1-score 

Analysis 0.54 0.50 0.52 

Application 0.46 0.53 0.49 

Comprehension 0.64 0.67 0.65 

Evaluation 0.60 0.60 0.60 

Knowledge 0.84 0.82 0.83 

Synthesis 0.46 0.42 0.44 

Accuracy   0.59 

These findings partially support Hypothesis 1, as 
traditional models like multinomial logistic regression 
effectively classify lower-order tasks but are less effective for 
higher-order levels, confirming Hypothesis 2. 

C. Merging Higher-Level Bloom’s Categories 

Building on the insights from Experiment 1, Experiment 2 
involved a strategic adjustment where we merged the three 
highest levels of Bloom’s Taxonomy—Analysis, Evaluation, 
and Synthesis—into a single class labeled “Higher-Order” [2, 
8]. This approach was designed to simplify the classification 
task by reducing the number of categories and potentially 
enhancing the model’s accuracy. We retrained the 
multinomial logistic regression model with this revised 
category structure. 

The results, shown in Table 3, from this experiment 
showed a marked improvement in classification accuracy. 
The F1-score for the merged “Higher-Order” class increased 
to 0.68, reflecting the model’s enhanced ability to classify 
complex cognitive tasks more effectively after the 
consolidation. The “Knowledge” class continued to perform 
well, with an F1-score of 0.83, demonstrating that the 
model’s proficiency in handling lower-order questions 
remained strong. Improvements were also observed in the F1-
scores for the “Application” and “Comprehension” categories, 
suggesting that the simplified classification task positively 
impacted the accuracy for these intermediate cognitive skills. 
Overall, the model’s accuracy increased to 0.68, indicating 
that merging higher-level categories effectively improved 
performance by reducing classification complexity. 

Table 3. Performance rates for each class for Experiment 2 

Level Precision Recall F1-score 

Higher-Order 0.72 0.65 0.68 

Application 0.59 0.64 0.61 

Comprehension 0.59 0.63 0.61 

Knowledge 0.85 0.81 0.83 

Accuracy   0.68 
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D. Further Refinement and Performance 

In Experiment 3, we further refined the approach by 
consolidating “Comprehension” and “Application” into a 
single “Mid-Order” class. This refinement aimed to optimize 
the classification of these cognitive levels even further using 
multinomial logistic regression. 

The results, as shown in Table 4, demonstrated significant 
improvements in performance metrics. The “Higher-Order” 
class, now representing the combined higher-order levels, 
achieved an F1-score of 0.78. This indicates a substantial 
enhancement in the model’s ability to handle complex 
cognitive tasks after refining the merging strategy. The 
“Knowledge” class also saw a slight increase in its F1-score 
to 0.86, reflecting the model’s continued strength in 
identifying recall-based questions. The “Mid-Order” 
category improved to an F1-score of 0.65, suggesting that the 
refined merging approach positively impacted the 
classification of application-based questions. Overall, the 
model’s accuracy rose to 0.76, demonstrating that the refined 
consolidation strategy not only improved performance for 
higher-level categories but also enhanced the model’s overall 
classification capabilities.  

Table 4. Performance rates for each class for Experiment 3 

Level Precision Recall F1-score 

Higher-Order 0.81 0.76 0.78 

Mid-Order 0.62 0.65 0.65 

Knowledge 0.86 0.86 0.86 

Accuracy   0.75 

E. Naive-Bayes Algorithm for Multi-Class 
Classification 

In Experiment 4, we applied the Naive-Bayes algorithm, a 
common choice for multi-class classification problems, to our 
dataset. The Naive-Bayes classifier achieved an overall 
accuracy of 0.79 as shown in Table 5. It demonstrated high 
precision and recall for the “Knowledge” class, with an F1-
score of 0.95, indicating strong performance in classifying 
basic recall questions. The “Application” class also showed 
good results with an F1-score of 0.89. However, the model 
struggled with the higher-order cognitive levels, such as 
“Analysis” and “Synthesis,” which had lower F1-scores of 
0.66 and 0.62, respectively. This suggests that while the 
Naive-Bayes algorithm performs well with simpler categories, 
its effectiveness diminishes for more complex cognitive tasks. 

Table 5. Performance rates for each class for Experiment 4 

Level Precision Recall F1-score 

Knowledge 0.97 0.93 0.95 

Comprehension 0.77 0.80 0.78 

Application 0.88 0.90 0.89 

Analysis 0.68 0.64 0.66 

Synthesis 0.67 0.58 0.62 

Evaluation 0.62 0.74 0.68 

Accuracy   0.79 

These results reinforce Hypothesis 1 by demonstrating 
Naive Bayes’ efficacy for lower-order tasks, but also support 
Hypothesis 2, indicating that traditional models falter at 
higher cognitive levels. 

F. Linear Support Vector Classifier (SVC) for Multi-
Class Classification 

Experiment 5 employed a Linear Support Vector Classifier 

(SVC) to tackle the multi-class classification problem. The 
SVC achieved a notable accuracy of 0.83. The model excelled 
in classifying “Knowledge” and “Application” levels, with 
F1-scores of 0.92 and 0.93 respectively as shown in Table 6. 
It also showed improved performance for “Comprehension” 
and “Evaluation,” with F1-scores of 0.80 and 0.76. However, 
the “Analysis” and “Synthesis” levels still presented 
challenges, with F1-scores of 0.70 and 0.66. This suggests 
that while SVC is effective for many cognitive levels, further 
refinements may be needed to enhance its performance for 
higher-order tasks. 

Table 6. Performance rates for each class for Experiment 5 

Level Precision Recall F1-score 

Knowledge 0.91 0.94 0.92 

Comprehension 0.75 0.85 0.80 

Application 0.93 0.94 0.93 

Analysis 0.78 0.64 0.70 

Synthesis 0.77 0.58 0.66 

Evaluation 0.73 0.78 0.76 

Accuracy   0.83 

These results continue to validate Hypothesis 2: although 
SVC improves performance over Naive Bayes, it still 
struggles to classify higher-order tasks effectively, 
particularly those requiring synthesis and evaluation. 

G. Deep Learning with DistilBERT 

In Experiment 6, we utilized DistilBERT, a transformer-
based model, to handle the classification task. DistilBERT, 
known for its efficiency and speed compared to the original 
BERT model, was fine-tuned on our dataset. The deep 
learning model achieved a validation accuracy of 0.91 and a 
validation loss of 0.28. The confusion matrix shows that the 
model performed exceptionally well across all levels, with 
high precision for “Knowledge” (0.97) and “Comprehension” 
(0.88). The model also demonstrated improvements in the 
higher-order levels, with F1-scores of 0.79 for “Analysis” and 
0.84 for “Synthesis”. The results from this experiment, shown 
in Table 7, highlight the superior performance of deep 
learning models in understanding and classifying complex 
cognitive tasks compared to traditional methods. 

Table 7. Performance rates for each class for Experiment 6 

Level Precision Recall F1-score 

Knowledge 0.97 0.96 0.97 

Comprehension 0.88 0.90 0.89 

Application 0.94 0.91 0.93 

Analysis 0.80 0.78 0.79 

Synthesis 0.86 0.82 0.84 

Evaluation 0.87 0.86 0.87 

Accuracy   0.91 

These findings fully support Hypothesis 3, confirming that 
deep learning models outperform traditional classifiers across 
all levels of Bloom’s Taxonomy, particularly in handling 
higher-order cognitive processes. 

V. DISCUSSION 

The findings of this study provide significant insights into 
the performance of AI-driven models in generating and 
classifying Multiple-Choice Questions (MCQs) according to 
Bloom’s Taxonomy. Our results are consistent with earlier 
studies but also offer new perspectives on the challenges and 
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opportunities in aligning AI-generated content with 
established educational frameworks. By comparing the 
performance of traditional machine learning models 
(Multinomial Logistic Regression, Naive Bayes, and Linear 
Support Vector Classification) and a transformer-based deep 
learning model (DistilBERT), we observed trends that both 
corroborate and challenge prior research. 

Table 8. Comparative results 

Experiment Method Accuracy Notes 

Exp 1 
Multinomial Logistic 

Regression 
0.63 

Baseline model, struggled 
with higher-order levels 

like Synthesis and 
Analysis. 

Exp 2 
Multinomial Logistic 
Regression (Merged 

Categories) 
0.68 

Merged Analysis, 
Synthesis, and Evaluation; 

improved performance. 

Exp 3 
Multinomial Logistic 
Regression (Refined 
Merged Categories) 

0.75 

Further merging; better 
accuracy and F1-scores, 

especially for Knowledge 
and Mid-Order. 

Exp 4 Naive-Bayes 0.79 

High performance in 
lower-order levels, 

struggled with higher-order 
tasks. 

Exp 5 
Linear Support 

Vector Classifier 
0.83 

Strong performance 
overall, challenges with 
Analysis and Synthesis 

levels. 

Exp 6 
DistilBERT (Deep 

Learning) 
0.91 

Highest accuracy, excellent 
across all levels, 

particularly effective with 
higher-order tasks. 

 
Fig. 5. Precision across different cognitive levels and experiments. 

The results, as shown in Table 8 and Fig. 5, indicate that 
while the AI model could generate questions that align well 
with lower-order cognitive levels, such as Knowledge and 
Comprehension, it struggled with higher-order levels, 
including Analysis, Synthesis, and Evaluation. The precision 
of classification varied significantly across different levels, 
with lower-order levels achieving higher accuracy. This 
discrepancy suggests that while AI can generate content that 
matches the surface features of Bloom’s Taxonomy, 
capturing the deeper, more abstract cognitive skills required 
for higher-order levels remains a challenge. This points to a 
need for further refinement in AI models to improve their 
capability to generate and classify questions that truly reflect 
the complexity of higher-order thinking. 

A. Main Findings and Comparative Analysis 

The most notable finding of this study is the superior 
performance of the transformer-based model, DistilBERT, 
across all Bloom’s Taxonomy levels, particularly in higher-

order cognitive tasks (Analysis, Synthesis, and Evaluation). 
This result aligns with prior studies that have demonstrated 
the advantages of deep learning models in capturing 
contextual and semantic nuances in text-based tasks [45]. For 
instance, recent work on LSTM and CNN models supports 
our findings, showing that deep learning techniques 
significantly outperform traditional models in complex 
cognitive classifications [43]. However, our study extends 
these insights by applying them specifically to the context of 
AI-generated MCQs, reinforcing the idea that deep learning 
can enhance the educational content generation process. 

In contrast, traditional models performed well in 
classifying lower-order cognitive tasks, such as Knowledge 
and Comprehension. This is consistent with previous research, 
which has shown that simpler machine learning algorithms 
are sufficient for classifying recall-based tasks. For example, 
the Naive Bayes classifier achieved high accuracy for the 
“Knowledge” level, which mirrors findings from earlier 
studies in text classification [38, 39]. However, these models 
struggled with higher-order levels, as expected, due to their 
reliance on surface-level lexical patterns rather than deep 
semantic understanding. 

Table 8 compares the results across these experiments and 
reveals several insights. Multinomial logistic regression, 
while effective, showed variability in performance, 
particularly with higher cognitive levels. The consolidation 
strategies improved performance but still left room for further 
refinement. In contrast, the Naive-Bayes algorithm provided 
high accuracy for lower-order tasks but struggled with 
higher-order levels. The Linear SVC demonstrated strong 
overall performance but faced challenges with complex 
cognitive classifications. Finally, the deep learning approach 
with DistilBERT significantly outperformed traditional 
methods, achieving the highest accuracy and demonstrating 
strong performance across all Bloom’s levels. This 
comparison further supports Hypothesis 3 and highlights the 
need for advanced deep learning techniques to classify 
complex cognitive levels effectively. 

The performance gap between traditional and deep 
learning models suggests that while traditional models can 
serve as a baseline for simple cognitive tasks, advanced 
models are essential for more complex assessments. This 
finding is particularly important in educational contexts 
where promoting higher-order thinking is a key objective. AI 
tools must be capable of generating questions that reflect not 
only surface-level cognitive processes but also deeper, more 
abstract cognitive skills. 

B. Relation to Previous Studies 

The challenges encountered by traditional models in 
classifying higher-order tasks align with prior research, 
particularly studies that emphasize the limitations of machine 
learning models in handling complex educational content. 
For instance, studies using Naive Bayes and SVMs have 
reported similar difficulties in distinguishing between higher-
order cognitive processes, such as Analysis and  
Synthesis [39]. These models often rely on word frequency 
and simple feature extraction methods, which are not 
adequate for capturing the intricacies of questions designed 
to assess critical thinking and problem-solving. 

However, our study contributes to the literature by 
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demonstrating that combining or merging higher-order 
categories (as we did in Experiments 2 and 3) can moderately 
improve classification accuracy. While this approach does 
not fully address the complexities of higher-order cognitive 
tasks, it suggests that reducing the classification burden for 
traditional models can yield marginal performance gains. 
This finding offers a practical recommendation for improving 
traditional classification methods, although it underscores the 
need for more sophisticated models. 

Furthermore, our results support the growing body of 
literature advocating for the integration of AI with structured 
educational frameworks such as Bloom’s Taxonomy. Recent 
studies, including those on GPT-4’s potential in generating 
contextually relevant questions, have highlighted the 
importance of aligning AI-generated content with established 
cognitive frameworks [31]. Our study adds to this 
conversation by empirically validating the effectiveness of 
such integrations, particularly in enhancing the pedagogical 
value of AI-generated assessments. 

C. Critical Reflection and Limitations 

While our findings are encouraging, it is essential to 
recognize the limitations of the current study. One key 
limitation is the reliance on pre-defined prompts and action 
verbs for question generation. As noted in previous studies, 
the choice of action verbs can significantly influence the 
quality and cognitive level of the generated questions. 
Although we selected verbs based on established references, 
it is possible that the variability in verb selection may have 
introduced biases in the classification outcomes. Future 
research could explore the use of more dynamic prompt 
engineering techniques to mitigate this issue. 

Another important consideration is the representativeness 
of the dataset. Our dataset focused on questions within the 
domain of computer science, which may limit the 
generalizability of the findings to other disciplines. Previous 
research has shown that domain-specific features can impact 
the performance of AI models in educational contexts [4]. 
Therefore, it would be valuable to extend this research to 
other fields of study to determine whether the observed trends 
hold across different subject areas. 

Finally, although DistilBERT outperformed traditional 
models, it is important to note that even advanced models 
exhibited challenges in fully capturing the complexity of 
higher-order cognitive tasks. As shown in our analysis, the 
F1-scores for higher-order levels, while improved, were still 
lower than those for lower-order levels. This suggests that 
further refinement of AI models is necessary to enhance their 
ability to generate and classify questions that target deep, 
abstract thinking. Future research could investigate hybrid 
models that combine the strengths of both traditional and 
deep learning approaches. 

D. Implications for Educational Practice 

Thus, the integration of Bloom’s Taxonomy into AI-driven 
tools like OneClickQuiz not only enhances the alignment of 
questions with educational objectives but also offers 
educators a powerful resource for designing assessments that 
promote higher-order thinking. This capability allows for 
more targeted assessments, ensuring that students are 
evaluated across a range of cognitive skills, from basic recall 
to complex analysis and synthesis. Furthermore, the ability to 

automatically generate such questions can significantly 
reduce the time and effort required for educators to develop 
comprehensive assessments, allowing them to focus more on 
personalized instruction and feedback. 

The implications of this study are significant for educators 
and developers of AI-driven educational tools. By integrating 
Bloom’s Taxonomy into AI-based question generation, 
educational technologies can better align with cognitive 
objectives that promote higher-order thinking. However, our 
findings also suggest that educators should be cautious when 
relying solely on traditional machine learning models for 
content generation, particularly for complex tasks. Instead, 
advanced models such as transformers should be prioritized 
for tasks that require deep cognitive engagement. 

For AI to truly transform educational practices, further 
advancements in model architecture and prompt engineering 
will be required. By addressing these challenges, AI-driven 
tools like OneClickQuiz can play a pivotal role in promoting 
critical thinking and deeper learning in educational 
environments. 

E. Extending the Generalizability of the Proposed 
Framework 

The methodologies and classification models developed in 
this study, while initially applied to OneClickQuiz within the 
Moodle platform, are inherently adaptable to a wide range of 
educational contexts and tools. The underlying framework 
leverages Bloom’s Taxonomy as a universal structure for 
cognitive classification, enabling its deployment across 
various domains and platforms. The machine learning models, 
particularly the Transformer-based architecture of 
DistilBERT, can be fine-tuned for diverse datasets and 
subject areas, allowing for scalable implementation. This 
generalizability positions the framework as a flexible solution 
for aligning AI-generated questions with cognitive objectives, 
enhancing its potential impact on automated assessments and 
personalized learning in broader educational settings. 

VI. CONCLUSION 

In this study, we investigated the alignment of AI-
generated questions with Bloom’s Taxonomy, using data 
created through Google’s Vertex AI Text Generation Model. 
Our findings revealed that while the AI model was effective 
in generating questions that adhered to the surface 
characteristics of lower-order cognitive levels, it faced 
challenges in accurately aligning questions with higher-order 
cognitive skills. Through a series of classification 
experiments, we demonstrated that the precision of AI models 
varied across cognitive levels, with advanced models like 
DistilBERT showing notable improvements, yet still 
encountering difficulties in fully capturing the complexities 
of higher-order thinking. 

The main contribution of this research lies in the 
integration of Bloom’s Taxonomy into AI-driven assessment 
tools, providing insights into how AI models can be adapted 
to educational frameworks. This work underscores the 
potential of AI in automating quiz creation, particularly by 
tailoring content to specific cognitive objectives. However, a 
key limitation of this study is the model’s limited ability to 
consistently align with higher-order cognitive levels, such as 
Synthesis and Evaluation, which highlights the need for 
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further refinement in AI training and modeling techniques. 
Future research should address these limitations by 

focusing on enhancing AI algorithms and expanding training 
datasets to better support the accurate generation and 
classification of questions across all cognitive levels. 
Moreover, the development of hybrid AI models or more 
advanced language understanding mechanisms could 
improve the pedagogical effectiveness of AI-generated 
educational content, making it more adaptable to the nuances 
of higher-order cognitive tasks. By addressing these gaps, AI-
driven educational technologies can further contribute to the 
advancement of automated assessment tools that foster 
critical thinking and deeper learning. 

To extend the applicability of our findings, we also propose 
the development of a generic AI-driven question 
classification framework. This framework would integrate 
the principles outlined in this study and be adaptable to 
various Learning Management Systems (LMS) and 
standalone applications. By designing a modular architecture, 
the framework can accommodate different cognitive 
frameworks, including Bloom’s Taxonomy, Webb’s Depth of 
Knowledge, and others. The core components would include 
a model selection module, customizable prompts, and a 
feedback mechanism for continuous improvement. Such a 
system would support educators in creating and categorizing 
questions dynamically, ensuring pedagogical relevance 
across disciplines and learning contexts. 
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