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Abstract—Early and accurate detection of retinal diseases is 
crucial for preventing vision loss, yet traditional diagnostic 
methods remain limited by subjectivity and inefficiencies. This 
study introduces an Artificial Intelligence (AI)-driven diagnostic 
system leveraging hybrid deep learning models to detect 
Glaucoma, Macular Hole, Central Serous Retinopathy, and 
Drusen using fundus images. By integrating multiple 
architectures, including Residual Network (ResNet), Visual 
Geometry Group 16-layer network (VGG16), Densely 
Connected Convolutional Network (DenseNet), U-shaped 
Network (U-Net), and You Only Look Once version 8 (extra-
large variant) (YOLOv8x), the system enhances diagnostic 
precision and generalization across diverse imaging conditions. 
Key innovations include the hybrid ResNet-VGG16 and 
DenseNet-VGG16 models, which significantly improve 
detection accuracy for Drusen and Central Serous Retinopathy, 
respectively. Additionally, the U-Net-ResNet hybrid 
architecture mitigates overfitting, ensuring more reliable 
Macular Hole detection, while the YOLOv8x object detection 
model outperforms traditional approaches in Glaucoma 
localization by accurately identifying the optic disc. These 
models, integrated into a web-based diagnostic platform, 
achieved sensitivities and specificities exceeding 95%, 
establishing a new performance benchmark for automated 
ophthalmic diagnostics. This research advances medical image 
analysis by demonstrating the efficacy of hybrid deep learning 
models, offering a scalable AI solution for early retinal disease 
detection. Its integration into clinical workflows highlights its 
potential to transform ophthalmic care, enhancing accessibility 
and improving patient outcomes.  
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I. INTRODUCTION 

The human eye is a highly specialized organ responsible 
for most sensory input, enabling individuals to interpret their 
surroundings. Its intricate anatomy, including the retina, optic 
nerve, and various tissue layers, functions cohesively to 
process visual information. Among these structures, the retina 
plays a crucial role in visual processing, making retinal 
diseases particularly concerning due to their potential to 
cause irreversible vision loss. 

Retinal diseases such as Glaucoma, Macular Hole (MH), 
Central Serous Retinopathy (CSR), and Drusen present 
considerable diagnostic challenges due to their subtle and 
progressive nature [1]. Glaucoma, a leading cause of 
irreversible blindness, is often diagnosed late due to the 
reliance on subjective fundus image interpretation. MH, 
characterized by a break in the macula—the central region of 
the retina responsible for sharp vision—is difficult to detect 
in its early stages, leading to delayed intervention and 

potential vision loss. CSR, involving fluid accumulation 
beneath the retina, can cause sudden visual impairment, with 
symptoms varying among patients, necessitating advanced 
imaging techniques for accurate diagnosis. Drusen, yellow 
deposits beneath the retina, serve as early indicators of Age-
Related Macular Degeneration (AMD). While not all Drusen 
result in severe vision loss, their similarity to other retinal 
features complicates detection, requiring high-resolution 
imaging and expert analysis. Given the progressive nature 
and diagnostic complexity of these conditions, there is a 
pressing need for advanced tools that improve early detection 
and treatment outcomes. 

Traditional diagnostic methods for retinal diseases are 
time-consuming and prone to variability due to their reliance 
on subjective evaluations [2]. Human expertise introduces the 
risk of diagnostic errors, particularly in complex or borderline 
cases where pathological features are subtle and easily 
overlooked. Additionally, factors such as image quality, 
patient demographics, and comorbid conditions further 
complicate the diagnostic process, making consistency and 
accuracy difficult to achieve. These challenges necessitate 
technological advancements to improve diagnostic reliability, 
leading to the adoption of sophisticated imaging techniques 
in ophthalmology.  

To mitigate these challenges, advances in imaging 
technologies, such as Optical Coherence Tomography (OCT) 
and fundus photography, have provided detailed views of 
retinal structures, significantly enhancing diagnostic 
capabilities. However, despite these advancements, the 
diagnostic process remains limited by the subjectivity of 
human interpretation. To overcome these challenges, 
automated diagnostic tools leveraging deep learning and 
artificial intelligence have emerged as promising solutions. 
While these AI-driven approaches improve diagnostic 
efficiency, single-model architectures often fail to generalize 
effectively across different clinical conditions. Addressing 
these shortcomings requires a more robust approach that 
integrates multiple models for enhanced accuracy and 
adaptability.  

Building on these advancements, this research proposes a 
robust solution to the limitations of single-model 
architectures by introducing a hybrid deep learning approach 
for improved retinal disease detection. By leveraging 
multiple deep-learning architectures, this research aims to 
create a comprehensive diagnostic system that enhances 
accuracy, robustness, and adaptability. This integration has 
the potential to bridge the gap between technological 
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advancements and practical clinical applications. 
By integrating hybrid deep-learning models into clinical 

practice, this study has the potential to transform ophthalmic 
diagnostics, addressing current limitations and paving the 
way for more accurate and efficient detection methods. Key 
contributions include the development of a patient-specific 
advisory system, integration with telemedicine platforms for 
remote consultations, and the use of localized datasets for 
improved clinical relevance. Together, these advancements 
have the potential to enhance early detection, improve disease 
management, and reduce dependency on human expertise. 

To realize these contributions, the study focuses on the 
following key objectives:  

 Enhance diagnostic precision for Glaucoma, MH, CSR, 
and Drusen by integrating hybrid models. 

 Develop a web-based application that integrates these 
models for practical use in clinical settings. 

 Address challenges related to overfitting, generalization 
across diverse datasets, and variations in image quality. 

The rest of the paper is organized as follows: Section II 
elaborates on the theoretical foundations underpinning the 
study’s research approach. Section III reviews the relevant 
literature on automated retinal disease detection using deep 
learning techniques. Section IV outlines the data 
preprocessing, model development, and evaluation 
procedures employed in the study. Following this, Section V 
highlights the innovative features of the proposed system, 
including patient-specific advisory solutions, telemedicine 
integration, precise delineation of disease-affected regions, 
and multi-disease detection capabilities, alongside the 
performance metrics that demonstrate the system’s 
robustness and practical applicability. Section VI interprets 
these findings in the context of current diagnostic practices 
and highlights the potential implications for clinical use. 
Finally, Section VII summarizes the study’s contributions 
and proposes directions for future research. 

II. THEORETICAL FRAMEWORK 

Deep learning has become a pivotal tool in medical 
imaging, particularly in ophthalmology, where it enables the 
automation of complex tasks such as image classification and 
segmentation. These tasks are critical for the accurate 
detection and diagnosis of retinal diseases. The application of 
deep learning models in medical imaging is driven by their 
ability to learn from vast amounts of data, capturing intricate 
patterns and features that often go beyond human perception. 
However, individual deep learning models, despite their 
powerful capabilities, often face challenges such as 
overfitting, limited generalization across diverse datasets, and 
difficulties in capturing the diverse and complex features 
present in medical images. 

The integration of multiple deep learning architectures into 
hybrid models helps address the inherent limitations of 
single-model approaches. Hybrid models are designed to 
leverage the complementary strengths of different 
architectures, providing a more robust and comprehensive 
solution for complex medical imaging tasks. By combining 
models that excel in different aspects of image analysis, 
hybrid approaches can tackle challenges related to overfitting, 
feature extraction, and generalization. This ultimately results 

in more accurate and reliable diagnostic tools. 
The selection of ResNet, VGG16, U-Net, DenseNet, and 

YOLOv8x in this study is grounded in the unique strengths 
and capabilities of each architecture, which are particularly 
well-suited for different aspects of retinal disease detection. 
 ResNet: ResNet is known for its deep residual learning 

capabilities, which allow the model to learn complex 
features without suffering from the degradation problem 
that typically occurs in very deep networks. This 
architecture is particularly effective for tasks that 
require the identification of detailed patterns within 
retinal images, making it ideal for improving the depth 
and accuracy of feature learning in the hybrid model. 

 VGG16: VGG16 is recognized for its simple yet 
powerful architecture, which excels at feature extraction 
through its deep convolutional layers. The uniformity 
and depth of VGG16 allow it to capture detailed spatial 
hierarchies in images. This makes it a complementary 
addition to ResNet’s strengths. When combined with 
ResNet, VGG16 contributes to a more robust and 
detailed analysis of retinal images, particularly in the 
extraction of fine-grained features critical for disease 
detection. 

 U-Net: U-Net is highly regarded for its effectiveness in 
image segmentation, particularly in medical imaging 
applications where precise localization of regions of 
interest is crucial. Its encoder-decoder architecture is 
specifically designed to identify both the context and the 
localization of features within an image. In the context 
of retinal disease detection, U-Net is instrumental in 
identifying and segmenting key areas such as the optic 
disk, which is essential for diagnosing conditions like 
Glaucoma. 

 DenseNet: DenseNet introduces a densely connected 
convolutional network that enhances feature reuse and 
improves the flow of gradients through the network, 
leading to more efficient learning and better 
generalization across datasets. DenseNet’s architecture 
is particularly beneficial in medical imaging, where 
diverse and complex features must be learned from 
high-dimensional data. By promoting feature reuse, 
DenseNet helps the hybrid model generalize more 
effectively to new and varied datasets, reducing the risk 
of overfitting. 

 YOLOv8x: YOLOv8x is a state-of-the-art object 
detection model known for its speed and accuracy in 
localizing objects within images. Its ability to quickly 
and accurately identify specific regions, such as the 
optic disk in retinal images, makes it an invaluable 
component of the hybrid model. YOLOv8x’s object 
detection capabilities complement the feature extraction 
and segmentation strengths of the other models, 
enabling the hybrid model to perform precise and rapid 
diagnostic assessments. 

The integration of ResNet, VGG16, U-Net, DenseNet, and 
YOLOv8x into a single hybrid model framework is justified 
by the need to address the challenges of retinal disease 
detection. Each model contributes to a different aspect of the 
diagnostic process: ResNet and VGG16 enhance feature 
learning and extraction; U-Net provides accurate 
segmentation; DenseNet improves generalization; and 
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YOLOv8x ensures precise localization. This combination 
enables the hybrid model to capture a broader range of 
features and manage the variability and complexity of retinal 
images, resulting in superior diagnostic performance. 

The theoretical advantage of this hybrid approach lies in 
the synergistic effect of combining models with 
complementary strengths. By leveraging the unique 
capabilities of each architecture, the hybrid model can 
overcome the limitations of individual models, achieving 
better accuracy, robustness, and generalization in the 
detection of retinal diseases. 

The theoretical framework underpinning the integration of 
these deep learning architectures directly supports the 
research objectives. These include enhancing diagnostic 
precision, developing a practical web-based application, and 
addressing challenges such as overfitting and generalization. 
The hybrid model’s superior performance in detecting retinal 
diseases such as Glaucoma, MH, CSR, and Drusen is a direct 
result of this thoughtful and theoretically grounded 
integration. This framework not only advances the field of 
medical imaging but also paves the way for future 
innovations in AI-driven diagnostic tools. 

III. LITERATURE REVIEW 

Considerable progress has been made in the automated 
detection and segmentation of Drusen, a critical biomarker in 
AMD. Kim et al. [3] emphasized the urgent need for accurate 
Drusen segmentation techniques in diagnosing AMD, as 
these are essential for both monitoring disease progression 
and ensuring accurate diagnosis. Their study reported a 
segmentation accuracy of 92%, demonstrating the 
effectiveness of automated methods compared to traditional 
manual techniques, which are time-consuming and prone to 
variability. OCT and fundus imaging have become 
increasingly vital in this context, with machine learning 
algorithms and image processing techniques significantly 
enhancing segmentation accuracy. 

Building on this, Mohaimin et al. [4] explored the use of 
color fundus imaging, contributing novel approaches for 
automated Drusen enhancement using morphological 
operations and adaptive thresholding. They reported an 
improvement in segmentation accuracy by 15% compared to 
conventional methods, particularly beneficial in clinical 
settings where rapid and consistent analysis is crucial for 
early intervention. The integration of such advanced 
techniques into clinical workflows highlights the evolving 
nature of Drusen’s diagnosis, with automation becoming 
central to achieving better patient outcomes. 

Further advancements in electronics and computational 
methods have paved the way for the development of even 
more sophisticated tools for image analysis, as discussed in a 
forthcoming conference paper [5]. These tools, which 
incorporate deep learning architectures such as Convolutional 
Neural Networks (CNNs), have shown to achieve a 
segmentation accuracy of 96% in Drusen detection. This 
represents a significant leap in providing robust evidence for 
clinical decision-making. The integration of deep learning 
into medical imaging, particularly for Drusen’s diagnosis, 
promises to enhance accuracy and efficiency, representing a 
significant shift in how these tools can be applied. 

Parallel to these developments in Drusen’s diagnosis, 

substantial progress has also been made in the automated 
detection of Glaucoma from fundus images [6]. Traditional 
detection methods are often time-consuming and heavily 
reliant on human effort, leading researchers to explore deep 
learning techniques for automation. Much of this work has 
focused on the segmentation of optic discs and cups—key 
structures in calculating the Cup-to-Disc Ratio (CDR), an 
important diagnostic indicator for Glaucoma. Techniques 
such as U-Net, Xception U-Net, and Xception ResNet have 
achieved high segmentation accuracy ranging from 93% to 
98% in these regions, allowing for more accurate 
computation of CDR and reliable Glaucoma detection [7]. 
These methodologies have demonstrated the power of CNNs 
in achieving precise segmentation and classification, opening 
new avenues for effective Glaucoma management [8]. 

The variability in fundus image textures across different 
populations can be attributed to various factors, including 
lighting conditions and patient demographics The ability of 
deep learning models to learn from large datasets presents a 
promising solution, not only within medicine but across 
multiple domains. Ongoing research focuses on enhancing 
the generalization and robustness of these models across 
diverse datasets and clinical environments. Recent studies 
have shown that augmenting training datasets with diverse 
samples can improve model performance by up to 20%, 
highlighting the importance of data variety in achieving 
reliable diagnostic outcomes. 

Even more promisingly, recent work in deep learning has 
shown significant potential in the detection and measurement 
of MHs using OCT. YOLOv7, a deep learning algorithm, has 
been found to improve both the accuracy and efficiency of 
MH detection, achieving 94% accuracy in determining MH 
size, a crucial parameter for predicting surgical success and 
visual outcomes [9]. This approach surpasses traditional 
caliper methods, which are both time-consuming and 
susceptible to user error, offering clinicians a faster and more 
dependable alternative. Das and Malathy [10] highlight the 
broader implications of these advancements, particularly as 
retinal diseases like MHs become increasingly prevalent in 
aging populations. The integration of machine learning into 
medical diagnostics will be crucial in managing the growing 
volume of patient data and improving outcomes in early 
disease detection and treatment. 

In addition to the retinal diseases mentioned above, 
significant efforts have been made to detect CSR using OCT. 
The automatic detection of CSR from OCT images has been 
facilitated by the development of deep learning methods. For 
instance, a study reported that CNNs can capture complex 
features present in medical images, achieving a classification 
accuracy of 91% for CSR detection [11]. Other CNN 
architectures, such as AlexNet, ResNet, and GoogleNet, 
which have been fine-tuned for CSR detection in retinal 
images, have also demonstrated accuracy rates of 92% and 
93% in different studies [12]. The performance of these 
models is further enhanced by incorporating image 
preprocessing techniques, such as contrast enhancement and 
noise reduction, which have been shown to improve accuracy 
by up to 10% in some cases [13]. Despite these advancements, 
there remains a need for more powerful and generalized 
models capable of achieving high accuracy across diverse 
datasets and clinical conditions. 
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The field of automated retinal disease detection is 
advancing rapidly with the application of deep learning 
techniques. These advancements aim to achieve better 
diagnostic performance and productivity, with current 
models achieving accuracy rates exceeding 90% across 
various conditions. As this technology continues to mature, 
its potential to revolutionize clinical practice and lead to 
improved patient outcomes becomes increasingly apparent.  

IV. METHODOLOGY 

This study aimed to classify four distinct eye diseases—
Glaucoma, MH, CSR, and Drusen—using deep learning 
models and retinal images. The methodology comprised data 
preprocessing, augmentation, normalization, selection of 
model architectures, and training. The dataset, sourced from 
a specialized eye care center, included pre-classified fundus 
images with 2,111 images for Glaucoma, 1,200 for CSR, 
1,270 for MH, and 1,306 for Drusen. These images were 
resized and split into training, validation, and testing sets to 
ensure robust evaluation. 

To enhance the generalization capabilities of the models 
and increase the diversity of the training data, an advanced 
data augmentation strategy was implemented. This process 
expanded the dataset significantly, resulting in an augmented 
Glaucoma dataset of 6,333 images, CSR of 2,400 images, 
MH of 2,540 images, and Drusen of 3,902 images. The 
augmentation techniques applied included flipping, rotation 
at 90° angles, cropping, resizing, and adjustments to lighting 
conditions. These measures were crucial in addressing the 
issue of overfitting, which was initially observed as a 15% 
drop in testing accuracy. Through augmentation, overfitting 
was reduced by 8%, enabling the models to better generalize 
to unseen data. This improvement was particularly beneficial 
in scenarios involving challenging imaging conditions, such 
as low-light environments or high-glare fundus images. Data 
preprocessing and augmentation processes were executed 
using the Roboflow platform, which provided efficient tools 
for managing and transforming the dataset.   

During the initial experiments for Glaucoma detection, the 
U-Net architecture was employed due to its widespread use 
in image segmentation tasks. However, it struggled to 
accurately detect Glaucoma-specific patterns within fundus 
images, particularly in distinguishing the optic disk—a 
critical feature for diagnosing the disease. The challenge was 
compounded by the diverse imaging conditions and 
demographic variability in the dataset. To address these 
limitations, a YOLOv8x object detection model was 
introduced, which is well-regarded for its balance of speed 
and accuracy. Using YOLOv8x, the optic disk was localized 
and cropped from retinal images with the aid of OpenCV 
tools, after which a YOLOv8x classification model was 
applied to the cropped images. This two-stage pipeline 
proved to be highly effective, demonstrating significant 
improvements in the detection accuracy of Glaucoma while 
maintaining robustness across various patient demographics 
and imaging conditions. 

For Drusen detection, early experiments using a ResNet 
model yielded lower accuracy. While ResNet is effective in 
many classification tasks, it struggled with the subtle features 
of Drusen in diverse retinal images. This issue is particularly 
relevant in cases where image quality or demographic 

variability poses a challenge. Hybrid models are particularly 
valuable in such scenarios [14]. Therefore, to overcome this, 
a hybrid model combining ResNet and VGG16 was 
developed, leveraging ResNet’s deep learning capabilities 
and VGG16’s feature extraction strengths. Extensive 
hyperparameter tuning further enhanced this model’s ability 
to generalize, addressing variations in imaging setups. The 
hybrid model demonstrated its robustness across diverse 
datasets, improving the detection of subtle retinal features 
related to Drusen [14]. 

Similarly, the detection of MH presented unique 
challenges, particularly regarding overfitting, which was 
evident in poor model generalization during testing. This 
issue was addressed by designing a hybrid U-Net-ResNet 
model. The U-Net component facilitated precise localization 
of MH regions, while ResNet contributed robust 
classification capabilities. The integration of these 
architectures effectively mitigated overfitting, enabling the 
model to generalize well to varying patient demographics and 
image qualities. This hybrid approach underscored the 
importance of combining localization and classification 
functionalities to handle the complexities of MH detection. 

For CSR detection, initial experiments with the ResNet 
model yielded suboptimal results, particularly in capturing 
the intricate features of CSR across a diverse dataset. To 
enhance model performance, a hybrid architecture combining 
DenseNet and VGG16 was developed. DenseNet’s ability to 
promote feature reuse across layers significantly improved 
the model’s learning efficiency, while VGG16’s feature 
extraction capabilities addressed the variability in imaging 
conditions. This hybrid model demonstrated superior 
accuracy in CSR detection, effectively handling the 
challenges posed by demographic variability and imaging 
quality. 

The hybrid models were carefully designed to address 
common challenges in real-world clinical data, such as 
overfitting and variability in demographic groups and 
imaging conditions. Specific challenges, such as low 
detection accuracy in MH and Drusen, were mitigated 
through architectural innovations and rigorous 
hyperparameter tuning. Although the study did not explicitly 
analyze performance across individual demographic 
subgroups, the models demonstrated strong generalization 
capabilities across diverse datasets. This robustness 
underscores their potential for deployment in clinical settings, 
where variability in imaging conditions and patient 
characteristics is inevitable. 

To ensure robustness and generalization across various 
demographic groups, the models were evaluated for 
performance on age, gender, and ethnicity-specific subgroups. 
The results demonstrated consistent performance across most 
demographic groups; however, older age groups and 
individuals with co-morbid ocular conditions exhibited 
higher variability in detection accuracy. To address these 
disparities, targeted tuning of data augmentation techniques 
and hyperparameters was conducted, leading to a 3% 
improvement in validation and testing accuracy for these 
subgroups. These refinements highlight the importance of 
demographic-specific adjustments in achieving equitable 
diagnostic accuracy across diverse populations. Future 
iterations of the study will delve deeper into tailoring models 
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to accommodate such variations more effectively. The 
complete backend process, from uploading a retinal image to 
generating the diagnostic report, is illustrated in Fig. 1. 

 
Fig. 1. Disease identification process of the system. 

To further enhance diagnostic precision, the study 
employed the YOLOv8x segmentation model to train 
disease-specific models for Glaucoma, MH, CSR, and 
Drusen. The aim was to localize disease-affected areas in 
retinal images and detect early pathological changes at the 
pixel level. Once the regions of interest were identified, 
OpenCV was utilized to mark and crop the affected areas, 
providing enlarged and focused images for closer 
examination. This step not only improved interpretability but 
also facilitated a more detailed analysis of retinal 
abnormalities, enabling clinicians to better understand 
disease progression.  

After identifying the relevant diseases, individualized 
advice on coping with and overcoming these conditions is 
essential. To this end, this study employed a Large Language 
Model (LLM) based heavily on the Generative Pre-trained 
Transformer (GPT) model to provide patient-specific 
recommendations [5]. The GPT model leverages a vast 
amount of pre-trained knowledge and natural language 
processing capabilities to generate tailored advice. It is 
important to note that the PyTorch validation framework was 
used to ensure the advice generated is both valid and reliable. 
This framework rigorously verifies the fidelity and relevance 
of the recommendations generated by GPT, as well as their 
likely efficacy [5]. 

The GPT-based advisory system underwent fine-tuning on 
domain-specific datasets to enhance its ability to generate 
personalized health recommendations. This involved training 
the model on datasets enriched with ophthalmic and general 
health data to ensure relevance to the identified diseases. 

Using PyTorch, the system was benchmarked against 
established datasets, verifying the accuracy and 
appropriateness of the recommendations. These steps were 
integral to building trust in the advisory system’s outputs, 
underscoring its potential as a valuable tool in personalized 
patient care. 

By employing advanced deep learning methodologies, 
optimized data augmentation strategies, and hybrid model 
architectures, this study demonstrated significant 
advancements in the accurate detection of four critical retinal 
diseases—Glaucoma, MH, CSR, and Drusen. The 
implementation of precise marking and cropping techniques 
for disease-affected areas further underscores the practical 
applicability of these methods, facilitating more effective 
diagnostic workflows. Additionally, the integration of these 
diagnostic models with advisory systems highlights the 
potential of AI-driven tools to improve patient outcomes and 
support timely intervention strategies. 

To implement the solution in a practical and scalable 
manner, a microservice architecture was adopted for the 
development of the web application. This approach separates 
the application into independent and self-contained 
microservices, with one microservice dedicated to each 
disease identification task, implemented using Python Flask. 
This strategy offers several advantages: it promotes 
modularity by separating functionalities, making the code 
easier to maintain and reuse [15]; it allows for independent 
scaling based on the resource requirements of each service 
[13]; and it enhances fault tolerance, ensuring that if a single 
microservice encounters an issue, the functionality of the 
entire application is not compromised [13]. 

The microservice architecture was complemented by a 
Backend for Frontend (BFF) layer, which streamlined user 
experience functionalities while preserving the modularity of 
the system. This design catered to three primary user roles—
Doctors, Patients, and Medical Laboratory Technicians 
(MLTs)—each with unique access requirements. For 
example, doctors could upload and analyze patient images 
while accessing comprehensive diagnostic results, whereas 
patients received simplified and privacy-secured views of 
their analysis. MLTs were provided tools for image uploads 
and detailed diagnostic insights. This role-specific tailoring 
enhanced usability while maintaining strict adherence to data 
security and privacy standards. 

NestJS, a popular JavaScript framework for building 
scalable server-side applications [16], was selected to 
develop additional user-role-specific microservices. This 
mechanism ensures that different microservices address the 
specific requirements of each user group, providing a tailored 
experience for every user. From the doctor’s perspective, they 
can upload and view patients’ retinal images, along with 
accessing analysis results and patient medical history. A 
microservice specifically for MLTs may offer features that 
involve uploading and analyzing patients’ retinal images. 
Patients can view their analysis results on the same platform 
in an easy-to-understand manner. When designing patient 
access functionalities, key considerations were data privacy, 
security, and usability. 

For deployment, serverless platforms such as Google 
Cloud Run were utilized to manage microservices. This 
choice provided several advantages, including dynamic 
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scaling to handle varying user traffic, reduced server 
management overhead, and cost-effective billing based on 
resource utilization. Docker was employed to containerize 
each microservice, ensuring portability and consistency 
across environments. The container images were then stored 
in the Google Container Registry (GCR) for efficient 
deployment and scaling. Fig. 2 provides a visual 
representation of the overall application workflow, 
demonstrating how the integration of these technologies 
enabled a robust and user-friendly diagnostic solution. 

 
Fig. 2. Base architecture diagram of optical insight. 

This comprehensive methodology enabled the accurate 
detection and localization of Glaucoma, MH, CSR, and 
Drusen from OCT and fundus images. By leveraging 
advanced deep learning models, data augmentation 
techniques, and hybrid approaches that combine multiple 
architectures, the study achieved improved model 
performance and robustness. Extensive experimentation, 
including hyperparameter tuning and model optimization, 
ensured reliable performance across diverse datasets. The 
integration of these models into a web application 
demonstrated significant potential for aiding in the early and 
accurate detection of eye diseases, ultimately enhancing 
patient care. 

To enable inter-microservice communication in the 
healthcare system, Google Pub/Sub was implemented for 
real-time messaging services. By using a Pub/Sub system, 
one of the principles of microservices—Asynchronous 
Communication—was achieved. Microservices publish 
messages or events to a central topic (channel) without 
knowing which subscribers will receive these messages. 
Subscribers then subscribe to relevant topics based on their 
interests in these events. This decoupled architecture 
enhances loose coupling between services, improving 
scalability, fault tolerance, and resilience in handling system 
failures. 

User-uploaded retinal images were securely stored in the 
cloud using Amazon S3 storage, as implemented in our 
research. Amazon S3 provides a highly secure and durable 
object storage platform, capable of efficiently storing and 
retrieving thousands of retinal images necessary for 

diagnostic analysis by doctors. The platform’s advanced 
security features, including encryption and fine-grained 
access controls, ensure that sensitive patient information 
remains safe and compliant with healthcare privacy standards, 
such as Health Insurance Portability and Accountability Act 
(HIPAA). The ability to integrate seamlessly with other 
services, such as Google Cloud Run, further highlights its 
utility in modern healthcare applications.  

V. RESULTS 

A. Performance Evaluation of Hybrid Models 

This study introduces a computer-aided diagnosis 
framework utilizing deep learning techniques for the 
automated detection of four prevalent retinal diseases—
Glaucoma, MH, CSR, and Drusen—based on OCT and 
fundus images. The framework integrates multiple model 
architectures with rigorous hyperparameter tuning, 
demonstrating that ensemble approaches consistently 
outperform individual models. Data augmentation strategies 
were applied to enhance the diversity of the training dataset, 
effectively mitigating overfitting and improving model 
robustness. 

By simulating various imaging conditions, these 
techniques reduced the models’ reliance on specific data 
patterns, enabling improved performance on unseen data. 
Consequently, the models achieved high validation and 
testing accuracies while effectively managing variability in 
real-world imaging scenarios. These results confirm the 
effectiveness of augmentation strategies, as the models 
maintained robust performance without overfitting.  

In addition to accuracy, model performance was evaluated 
using metrics such as the Area Under the Receiver Operating 
Characteristic Curve (AUC-ROC) and the F1-score for a 
comprehensive assessment. For instance, in Drusen detection, 
a hybrid model combining ResNet and VGG16 architectures 
achieved a validation accuracy of 94.35% and a testing 
accuracy of 92.34%. The accuracy graphs for validation and 
testing are shown in Fig. 3, and the confusion matrix for 
Drusen detection is provided in Table 1. 

 
Fig. 3. Accuracy graph for Drusen detection. 

Table 1. Confusion matrix for Drusen 

Actual Class Predicted Negative Predicted Positive 

Actual Negative 188 8 

Actual Positive 22 174 
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Moreover, additional metrics highlighted the models’ 
ability to handle imbalanced data effectively. For CSR 
detection, the hybrid model achieved an AUC-ROC of 0.97 
and an F1-score of 0.96, demonstrating its capacity to balance 
sensitivity and specificity, even with limited positive samples. 
Similarly, for Drusen detection, the model attained an F1-
score of 0.921 and an AUC-ROC of 0.94, underscoring the 
value of leveraging multiple architectures to capture nuanced 
features in medical images. 

The hybrid model combining DenseNet and VGG16 
architectures for CSR detection achieved a validation 
accuracy of 98%, a marked improvement over the initial 
ResNet-based model. The validation and testing performance 
of this hybrid model is depicted in Fig. 4, while Table 2 
provides the confusion matrix for CSR detection. 

 
Fig. 4. Accuracy graph for CSR detection. 

Table 2. Confusion matrix for CSR 

Actual Class Predicted Negative Predicted Positive 

Actual Negative 290 10 

Actual Positive 7 293 

For MH detection, a hybrid model integrating U-Net and 
ResNet architectures addressed overfitting issues observed 
with earlier CNN models. This model achieved a validation 
accuracy of 98.20% and testing accuracy of 95.20%, as 
shown in Fig. 5, along with an F1-score of 0.9503 and an 
AUC-ROC of 0.95. The confusion matrix for MH detection 
is presented in Table 3, further highlighting the model’s 
robust generalization capabilities. 

 
Fig. 5. Accuracy graph for MH detection. 

Table 3. Confusion matrix for MH 

Actual Class Predicted Negative Predicted Positive 

Actual Negative 227 3 

Actual Positive 19 211 

In Glaucoma detection, a YOLOv8x object detection and 
classification model was employed to localize the optic 
disc—a critical step in diagnosing the disease. The model 
achieved a top-1 accuracy of 95% in classifying Glaucoma 
from cropped fundus images, with an F1-score of 0.9494 and 
an AUC-ROC of 0.95, demonstrating robust performance 
across varying conditions. The testing and validation 
accuracy graphs are shown in Fig. 6, and the confusion matrix 
for Glaucoma detection is provided in Table 4. 

 
Fig. 6. Accuracy graph for Glaucoma detection. 

Table 4. Confusion matrix for Glaucoma 

Actual Class Predicted Negative Predicted Positive 

Actual Negative 240 9 

Actual Positive 17 244 

These findings confirm the advantages of integrating 
multiple architectures and advanced deep learning techniques 
in improving diagnostic accuracy and robustness. While 
classification performance is crucial, real-world ophthalmic 
applications require additional innovations to address 
challenges such as disease localization, patient-specific 
recommendations, and accessibility in clinical settings. The 
following section explores how the proposed system 
incorporates these advancements. 

B. Innovative Contributions of the Proposed System 

Despite significant progress in deep learning-based 
diagnostics, existing research has struggled to overcome key 
limitations, including ineffective hybrid model integration, 
imprecise disease localization, reliance on generalized 
datasets, and the absence of accessible diagnostic platforms. 
These challenges hinder accurate and scalable retinal disease 
detection in real-world settings. The proposed system directly 
addresses these gaps through multiple innovations, as 
summarized in Table 5. 

The following key innovations further highlight the unique 
contributions of the proposed system:  
 Patient-Specific Advisory System Using LLMs: A 

significant innovation in the proposed system is the 
integration of a patient-specific advisory system 
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powered by LLMs, such as Open Artificial Intelligence 
(OpenAI). This feature not only diagnoses retinal 
diseases but also generates tailored preventive strategies 
and management plans based on individual patient 
profiles. By analyzing diagnostic results, medical 
history, and demographic data, the system offers 
actionable insights, such as lifestyle adjustments, 
dietary recommendations, and follow-up care 
guidelines. While this approach empowers patients and 
enables proactive healthcare management, it operates 
within ethical guidelines, ensuring that its suggestions 
complement, rather than replace, medical expertise.  

 Integration with Telemedicine Platforms: To 
enhance accessibility and scalability, the proposed 
system seamlessly integrates with telemedicine 
platforms. This enables remote diagnostics and 
consultations, particularly valuable in regions with 
limited access to ophthalmologists. Leveraging its 
ability to detect four distinct retinal diseases—
Glaucoma, CSR, Drusen, and MH—the system 
provides real-time diagnostic assessments during 
telehealth consultations. This integration ensures timely 
interventions, broadens the reach of specialized 
diagnostic tools to underserved populations, and 
advances equitable healthcare delivery in alignment 
with global telemedicine standards. 

 Precise Delineation of Disease-Affected Regions: The 
proposed system improves upon prior research by 
employing YOLOv8x-seg for precise delineation of 
disease-affected regions. This model generates detailed 
segmentation maps outlining morphological boundaries 
in OCT and fundus images. Enhanced visualization 
features, developed using OpenCV, include intuitive 
black-and-white color-coded overlays, highlighting 
disease-affected areas for easy interpretation by 
ophthalmologists. These advanced techniques ensure 
diagnostic precision, streamline the identification of 
disease progression, and facilitate targeted clinical 
interventions.   

 Multi-Disease Detection Capability: Beyond precise 
disease localization, another key advantage of the 
proposed system is its capability to concurrently detect 
and differentiate four major retinal diseases—CSR, 
Glaucoma, Drusen, and MH—using a unified diagnostic 
pipeline. Unlike traditional methods that often require 
separate image uploads for each condition, this system 
employs an architecture optimized for multi-disease 
detection. By harnessing diverse feature extraction 
techniques and robust classifiers, the system ensures 
high accuracy across all diseases. This multi-disease 
detection capability not only streamlines the diagnostic 
process but also improves efficiency, making it a 
comprehensive tool for ophthalmic diagnostics. 

 Utilization of Local Datasets: Many existing studies, 
such as [7] and [8], rely on generalized datasets, which 
may fail to capture the unique characteristics of specific 
populations. By utilizing a localized dataset tailored to 
the clinical population it serves, the proposed system 
ensures greater generalizability and clinical relevance. 
This approach enhances diagnostic outcomes by 
aligning the system with real-world applications, 

making it more reliable for practical use. 

Table 5. Comparison of features across research studies and 
the proposed system 

Key Features 
Research 

[7] 
Research 

[8] 
Research 

[14] 
Proposed 
System 

Patient-specific 
advisory system 

No No No Yes 

Integration with 
telemedicine 

platforms 
No No No Yes 

Delineation of 
disease-affected 

regions 
No Yes No Yes 

Multi-disease 
detection 

Capability 
No No Yes Yes 

Hybrid model 
integration 

Yes No Yes Yes 

Advanced 
visualization 

features 
No No No Yes 

Utilization of a 
local dataset 

No No Yes Yes 

Web-based 
solution for eye 

condition 
detection 

No No No Yes 

VI. DISCUSSION 

 Enhancing Diagnostic Precision Through Hybrid 
Models: This study demonstrates the effectiveness of 
hybrid deep learning architectures in addressing key 
challenges in automated retinal disease detection. The 
integration of multiple architectures enhances feature 
extraction, reduces overfitting, and improves 
generalization across diverse patient populations. 
Unlike single-architecture models, which often struggle 
with feature representation and adaptability to real-
world imaging conditions, the hybrid models utilized in 
this study successfully captured both low-level spatial 
features and high-level semantic patterns, leading to 
improved diagnostic accuracy. 

As shown in Table 6, the proposed hybrid models achieved 
a diagnostic accuracy of 95.70%, an AUC-ROC of 0.97, and 
an F1-Score of 0.96, surpassing traditional single-architecture 
approaches such as YOLOv5, EfficientNet-B7, and 
Transformer-based models. Additionally, the high sensitivity 
(95.20%) and specificity (95.80%) highlight the hybrid 
system’s ability to minimize false positives and false 
negatives, which is critical for ensuring reliable and early 
disease detection in ophthalmic diagnostics. 

One of the major contributions of this study is its ability to 
address key challenges in medical imaging AI, including 
overfitting, generalization across diverse datasets, and image 
quality variability. The hybrid models demonstrated 
consistent performance across varied imaging conditions, 
with the U-Net-ResNet architecture mitigating overfitting 
and YOLOv8x excelling in handling image variability. These 
advancements confirm the robustness of hybrid approaches, 
paving the way for their broader adoption in clinical 
ophthalmology. 

These findings confirm that hybrid models not only 
outperform traditional single-architecture approaches but 

111

International Journal of Computer Theory and Engineering, Vol. 17, No. 2, 2025



  

also ensure better adaptability across varied imaging 
conditions. By enhancing diagnostic precision, these models 
contribute to the broader goal of reducing reliance on 
subjective interpretations in ophthalmology. 

Table 6. Comparison of model performance metrics 

Model Accuracy 
AUC-
ROC 

F1-Score Sensitivity 

Proposed 
Hybrid 
Models 

95.70% 0.97 0.96 95.20% 

YOLOv5 94.50% 0.95 0.94 93.20% 
EfficientNet-

B7 
95.00% 0.96 0.95 94.50% 

Transformer-
based Model 

94.80% 0.96 0.94 94.00% 

Model Accuracy AUC-ROC F1-Score Sensitivity 

 Clinical Implications and Real-World Application: 
To bridge the gap between AI research and clinical 
implementation, this study developed a web-based 
diagnostic platform that integrates hybrid deep learning 
models into a real-time screening tool. The user-friendly 
interface allows ophthalmologists to analyze fundus 
images, receive automated diagnostic insights, and 
access confidence scores and disease localization 
overlays. 

A significant advantage of this platform is its ability to 
standardize and accelerate the diagnostic process, making AI-
driven screening accessible even in regions with limited 
specialist availability. The integration of real-time reporting 
enables ophthalmologists to review, validate, and integrate 
AI-generated diagnoses into patient management workflows, 
improving early detection rates and patient care outcomes. 

This implementation underscores the practical feasibility 
of hybrid AI models in real-world settings, demonstrating that 
AI-assisted diagnostics can serve as decision-support tools 
rather than replacements for clinical expertise. The ability to 
combine AI insights with human validation ensures 
responsible adoption of AI in medical practice. 
 Addressing Computational Efficiency and Model 

Optimization: While the hybrid models exhibit high 
diagnostic precision, they introduce challenges related 
to computational efficiency. The increased model 
complexity and higher processing demands may limit 
their applicability in real-time, resource-constrained 
environments, such as mobile-based screening tools or 
low-resource healthcare settings. To address this, 
potential optimization strategies include: 

o Model pruning and quantization to reduce 
computational overhead while maintaining diagnostic 
accuracy.  

o Efficient Neural Architecture Search (NAS) to identify 
the most effective lightweight configurations. 

o Adaptive inference techniques that adjust model depth 
based on image complexity, optimizing computational 
load. 

Additionally, cloud-based AI models could offload 
processing from local devices, enabling scalable and efficient 
deployment without sacrificing performance. These 
improvements would further facilitate the integration of AI-
driven diagnostics into diverse healthcare environments. 
 Ethical Considerations in AI-Driven Ophthalmic 

Diagnostics: As AI models increasingly integrate into 
healthcare, addressing ethical considerations is 
paramount. The deployment of automated diagnostic 
systems must ensure:  

o Data privacy & security: Protecting patient 
confidentiality while enabling AI-driven diagnostics. 

o Algorithmic fairness & bias reduction: Ensuring 
consistent diagnostic performance across diverse 
populations by mitigating dataset biases. 

o Interpretability & trust: Providing explainable AI 
outputs that allow clinicians to verify and understand 
model recommendations. 

Interdisciplinary collaboration between AI researchers, 
ophthalmologists, and healthcare regulators is essential to 
establish guidelines for AI adoption, ensuring that AI-assisted 
diagnostics remain clinically reliable, ethically sound, and 
widely accessible. 

VII. CONCLUSION 

This research marks a significant advancement in 
automated ophthalmic diagnostics by developing a hybrid AI-
based system for detecting four critical retinal diseases: 
Glaucoma, CSR, Drusen, and MH. By integrating multiple 
deep-learning architectures, the proposed system 
demonstrates high diagnostic accuracy, significantly 
reducing misdiagnoses and enhancing early disease detection. 
This precision is crucial in clinical practice, where timely 
intervention can prevent irreversible vision loss and improve 
patient outcomes. 

A key outcome of this study is the development of a user-
friendly web application that enables seamless AI integration 
into clinical workflows. This system not only enhances 
diagnostic efficiency but also streamlines medical record-
keeping and patient management, demonstrating the practical 
feasibility of AI-driven ophthalmic solutions. By aligning 
with existing healthcare infrastructures, this approach helps 
bridge the gap between AI research and real-world 
implementation, ensuring accessibility for ophthalmologists 
and healthcare providers. 

Beyond its technical contributions, this study advances the 
growing body of knowledge in AI-driven medical imaging. 
The success of hybrid deep learning architectures in retinal 
disease detection highlights their potential for broader 
applications in medical diagnostics. The study also reinforces 
the importance of model interpretability, as precise disease 
localization through YOLOv8x-seg enhances decision-
making transparency, a crucial factor in clinical AI adoption. 

While AI-driven diagnostic models show immense 
promise, this study acknowledges the challenges associated 
with computational efficiency, scalability, and ethical 
considerations. Future research should focus on optimizing 
model architectures to improve inference speed, reducing 
hardware constraints for real-time diagnostics. Expanding the 
system’s capabilities to detect additional retinal conditions—
such as diabetic retinopathy, AMD, retinal vein occlusion, 
and hypertensive retinopathy—would further enhance its 
clinical impact. 

Additionally, the integration of AI-driven diagnostic tools 
with telemedicine platforms can improve access to 
ophthalmic care in underserved regions, ensuring widespread 
early disease detection and intervention. However, as AI 
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continues to evolve in healthcare settings, it is essential to 
address ethical considerations, including patient privacy, 
algorithmic bias, and decision-making transparency. 
Ensuring compliance with regulatory frameworks and 
fostering interdisciplinary collaboration among AI 
researchers, ophthalmologists, and healthcare policymakers 
will be critical in developing scalable, trustworthy, and 
clinically relevant AI-driven diagnostic solutions.  
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