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Abstract—Elliptic curves have proven to be a suitable 

foundation for cryptosystems, with Elliptic Curve 
Cryptosystems (ECC) offering strong security with smaller key 
sizes. Recent advancements in ECC design aim to create more 
efficient and secure curves. In this paper, we introduce a new 
digital signature scheme, named CP256-1299. It is a 256-bit 
scheme based on a cubic Pell curve where the arithmetic 
operations are efficient and straightforward. In previous works, 
cubic Pell curves have been used to design public key 
cryptosystems.  Our main motivation in proposing the new 
digital signature algorithm is to exploit the effectiveness of the 
arithmetic of cubic Pell curves, while maintaining reasonable 
keys and high security. We compare our new scheme to three 
widely-used digital signature algorithms based on ECC, namely 
ED25519, SECP256K1 and SECP256R1. It turns out that our cubic 
Pell curve based digital signature algorithm is designed to 
operate with a larger periodic order while maintaining at least 
similar computational requirements to most popular elliptic 
curve cryptosystems. Our new scheme is also suitable to support 
a central bank digital currency. 
 

Keywords—cubic pell equation, elliptic curve cryptosystem, 
digital signature 

I. INTRODUCTION 

Rivest-Shamir-Adleman (RSA) is the most widely used 
public key cryptosystems, with its security relying on the 
difficulty of factoring its modulus, N = pq, the product of two 
large primes. Traditionally, strong RSA [1] primes were 
considered highly secure, but the development of the Elliptic 
Curve Method (ECM) [2, 3] for factorization challenged this 
assumption. Since the early 2000s, the security of RSA has 
increasingly depended on the sheer size of its modulus. A 
need for larger modulus sizes has led many developers to shift 
from RSA to an Elliptic Curve Cryptosystem (ECC). ECC is 
favored for its compact key sizes and efficient operations, 
making it a preferred choice among technical developers. A 
variety of schemes based on ECC have been proposed in the 
last two decades, and even more, some of them are considered 
resistant to quantum computers, which makes them 
candidates for post quantum cryptography. ECC is employed 
for encryption such as EC-ElGamal, signatures such as EC-
DSA, and key exchange such as EC-DH. Several 
international agencies recommend to use ECC for present and 
near future applications. Most ECC based schemes rely on an 
arithmetic of elliptic curves, and on the hardness of an elliptic 
curve discrete logarithm problem. In parallel, several attacks 
have been proposed against ECC based schemes. This 
development pushes the cryptography community to 
investigate different arithmetic operations, and different hard 
problems for ECC security. 

Digital signatures have numerous advantages and  
benefits [4–6]. They are used to reduce bank fraud losses, to 

verify an authenticity and integrity of digital data, to provide 
authentication and non repudiation, to ensure secure 
communications and transactions. They are used in encrypted 
emails, banking, healthcare, signed contacts and agreements, 
and government communications. 

II. MOTIVATION 

This paper proposes a new 256-bit digital signature scheme 
based on a new family of cubic curves that are different from 
elliptic curves, but have similar arithmetic and properties. 
The goals of this new digital signature algorithm are 
numerous: 

1) The first goal is to present a technical support for a 
Central Bank Digital Currency (CBDC) implementation. 
We particularly focus on the digital ringgit for 
Malaysian central bank, namely, Bank Negara Malaysia 
(BNM).  

2) The second goal is to use the arithmetic of a cubic Pell 
curve, which presents an alternative solution to ECC. 

3) The third goal is to show that the proposed scheme has 
efficient implementation, reasonable keys, and security 
strength.  

It is known that ECC is more secure and more efficient than 
RSA. Typically, a 256-bit ECC provides a 128-bit security 
level, whereas RSA requires a modulus of at least 2048 bits 
to achieve the same level of security. Various types of curves 
can be employed in ECC, each with unique properties and 
advantages. Due to an efficiency of ECC and its variants, we 
have decided to use cubic Pell curves as the underlying 
arithmetic of our scheme. A cubic Pell curve has previously 
been proposed as an alternative to RSA cryptosystem [7] and 
cryptanalized in [8, 9]. Our new 256-bit ECC variant is based 
on a cubic Pell curve, named CP256-1299 which will double 
its periodic cycle from traditional ECC 256-bit to 512-bit. 

Several well-known elliptic curves are commonly referred 
to by their nicknames, such as ED25519, SECP256K1, and 
SECP256R1. A comparison between SECP256K1 and 
SECP256R1 is presented in [10]. SECP256K1 is a Koblitz 
curve defined over a finite field of characteristic 2, whereas 
SECP256R1 is a prime field curve. The “K” in SECP256K1 
refers to Koblitz, while the “R” in SECP256R1 stands for 
random. Before the rise of Bitcoin, SECP256K1 was rarely 
used but has since gained popularity due to its unique 
properties. This curve was generated by Certicom [11], while 
the SECP256R1 curve was created by the National Institute of 
Standards and Technology (NIST) [12]. 

Although these curves are part of the standard set, 
Certicom is known to hold extensive patents on many elliptic 
curve algorithmic properties. There has been speculation that 
the National Security Agency (NSA) previously leveraged its 
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influence over NIST to introduce a backdoor into a random 
number generator used in elliptic curve cryptography 
standards. 

-5

-4

-3

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2 3

SECP256K1: y2 = x3 +7 

 
Fig. 1. A visual elliptic curve y2 = x3 + 7. 

III. LITERATURE REVIEW 

A. The Elliptic Curve SECP256K1 

In designing a cryptosystem, an algebraic curve is chosen 
for its group computational efficiency without sacrificing its 
security. For instance, the elliptic curve SECP256K1: y2 = x3 + 
7 with fixed a = 0, as visually depicted in Fig. 1, is defined 
over a finite field Fp with a generalized Mersenne prime p for 
faster field arithmetic. 

This elliptic curve domain is recommended by the 
Standards for Efficient Cryptography Group. It is designed 
for a 256-bit prime. The elliptic curve SECP256K1 is defined 
over the finite field Fp with 

p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 – 1  
=1157920892373161954235709850086879078532
69984665640564039457584007908834671663, 

a generalized Mersenne prime number for faster field 
arithmetic. The defining equation of this elliptic curve is E: 
y2 = x3 + 7 as shown in Fig. 1 with an order #E(Fp) =  where 

 = 1157920892373161954235709850086879078 
52837564279074904382605163141518161494337. 
 
A base point is G(x, y) = 
(55066263022277343669578718895168534326250
603453777594175500187360389116729240, 
32670510020758816978083085130507043184471
273380659243275938904335757337482424). 

SECP256K1 is practically preferred to SECP256R1 due to its 
30% faster execution time in optimized fashion. SECP256R1 

uses a very suspicious seed C49D360886E704936A6 
678E1139D26B7819F7E90 without an explanation on why 
this seed is chosen which is strangely analogous to the case 
of a backdoor in Dual_EC_DRBG [13]. 
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Fig. 2. A sample elliptic curve for b = 7. 

B. The Elliptic Curve SECP256R1 

An elliptic curve SECP256R1: y2 = x3 – 3x + b with fixed a 
= –3, as visually depicted in Fig. 2, is defined over a finite 
field Fp with a generalized Mersenne prime p for faster field 
arithmetic. An elliptic curve SECP256R1 is defined over the 
finite field Fp with a generalized Mersenne prime p. Their 
powers are all multiples of 32. These properties give 
reduction algorithms that are particularly rapid on unsigned 
long 32-bit processing. 2256 ≡ 2128 +264 (mod p). 
 

p = 2256 – 2224 + 2192 + 296 – 1 =  
1157920892103562487626974469494075735300
86143415290314195533631308867097853951, 

 
a generalized Mersenne prime number for faster field 
arithmetic operation. The defining equation of this elliptic 
curve is E: y2 = x3 – 3x + b as shown in Fig. 2 with an order  
 

#E(Fp) =  = 
11579208921035624876269744694940757352999
6955224135760342422259061068512044369. 
 
A parameter b = 
41058363725152142129326129780047268409114
441015993725554835256314039467401291. 
 
A starting base point is G(x, y) = 
(4843956129390645175905258525279791420276
2949526041747995844080717082404635286, 
36134250956749795798585127919587881956611
106672985015071877198253568414405109). 

 
An ECC carry a preferably fixed base point G. This base 

point has an order . To gain an impression on how this curve 
might looks like a sample elliptic curve is presented in Fig. 2 
for a small integer b = 7. 
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The SECP256R1 curve, recommended by NIST, is 
considered similarly unsafe as SECP256K1 in several 
categories. While NIST’s P-256 curve passes the CM field 
discriminant check, it fails the rigidity test because the seeds 
used for curve generation are not fully explained, raising 
concerns about potential backdoors. In 2013, rumors 
suggested that the NSA may have been involved in generating 
weak curves. A significant concern is the possibility that an 
unverifiable random base point could provide a shortcut for 
point projection on the elliptic curve, compromising its 
security. 
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x2 + y2 = 1  (121665/121666) x2 y2

 
Fig. 3. An upper half of a twisted Edwards curve. 

C. The Elliptic Curve ED25519 

There has been a substantial recent progress on efficient 
implementation of elliptic curves. An elliptic curve 
cryptosystems based on Montgomery-form, 

EM: By2 = x3 + Ax2 + x 

has become more popular than a standard Weierstrass-form, 

EW: y2 = x3 + ax + b. 

Montgomery-form elliptic curves have been getting useful 
for public-key cryptosystems from the point of view of not 
only efficient implementation but also protection against 
timing-attacks [14]. 

Let p = 2255 −19, then Curve25519 in Fp
2 is an elliptic curve 

in Montgomery form,  

y2 = x3 + 486662x2 + x. 

This curve is birationally equivalent to a twisted Edwards 
curve ED25519: 

– x2 + y2 = 1 –
121666

121665
x2 y2. 

The upper half of the twisted Edwards curve ED25519 is 
depicted in Fig. 3. The transformation is easy: simply define 

x = 486664
v

u
and y = 

1

1




u

u
. Note that 486664 is a 

square modulo p. An inverse transformation is just as easy: 

simply define u =
y

y




1

1
and v = 486664

x

u
 [15]. It 

should be noted that 486664 is a square modulo p and d = 

121666

121665  is not a square modulo p. 

A cryptocurrency Monero uses a particular Twisted 
Edwards elliptic curve for cryptographic operations, 
ED25519, the birational equivalent of the Montgomery curve 
Curve25519. Curve ED25519 is not subject to any known 
patents.  

This Twisted Edwards curve has order  

#E = n =  
23723700557733226221397318656304299424085
7116359379907606001950938285454250989, 

where 
n = 2252 + 
27742317777372353535851937790883648493. 

Implementations of ED25519 (such as Monero) typically 

use the generator G = (x, 
5

4 ), where x is even, or parity b = 

0, variant based on point decompression of y = 
5

4  (mod q). 

A starting base point is G(x, y) = 
(151122213495354007725011514095885315114540126930
41857206046113283949847762202, 
4631683569492647816942839400347516314130799386625
6225615783033603165251855960). 
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Fig. 4. A visual instance on a cubic Pell curve for c = 7 at the level z = 0. 

III. BACKGROUND OVERVIEW ON A CUBIC PELL EQUATION 

In 1659, John Pell and Johann Rahn have written an 
algebra text on finding infinitely many positive integer 
solutions to a quadratic equation u2 − dv2 = 1. In 1909, Axel 
Thue has shown that a cubic equation u3 − dv3 = 1 has finitely 
many integer solutions. A sequence of solution points (un, vn) 
modulo a prime can be generated without bound as n 
increases without bound. This basic cubic equation is 
birationally equivalent to an elliptic curves of the form y2 = 
x3 – D [16]. 

Let p be a prime number, and c a cubic non-residue in F*
p. 

A necessary condition for an existence of a cubic non-residue 
in F*

p is p ≡ 1 (mod 3). For such moduli, a set of cubes is in 
the form; 

E3 = {g3, g6, …, 3

1
3 )(

p

g ≡ 1} (mod p); 

where g is a primitive root of F*
p. For each a E3, the 

equation t3 ≡ a (mod p) has three solutions, and no solution if 
a  E3. As a consequence, an integer c  Fp

* is a cubic residue 

if and only if 3

1p

c  ≡ 1 (mod p). 

A cubic Pell equation in the finite field Fp is given by the 
equation: 

x3 + cy3 + c2z3 – 3cxyz ≡ 1 (mod p). 

An equivalent elliptic curve is depicted in Fig. 4 at the level 
z = 0. A group of points (x, y, z) can be formed by points 
which satisfy the cubic Pell equation modulo p. The set C of 
all solutions of the cubic Pell equation form a finite group 
with an addition law  with following properties: 

 
i. The sum of two solutions (x1, y1, z1) and (x2, y2, z2) of 
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the Pell equation is defined by  
(x1, y1, z1)  (x2, y2, z2) = (x3, y3, z3)  

where 
x3 = cy1z2 + cy2z1 + x1x2, 
y3 = cz1z2 + x1y2 + x2y1, 
z3 = x1z2 + x2z1 + y1y2. 

ii. A neutral identity element is (1, 0, 0). 
iii.  An inverse of (x, y, z) is (x2 – cyz, cz2 – xy, y2 – xz). 
iv. The order of C is p2 + p + 1. 

The following result gives an explicit formula for the order 
of the group C. 

 
Lemma 1. Let p be a prime number such that gcd(p – 1, 3) = 
3. Let c be a cubic non-residue in F*

p. Then 
#{(x, y, z)  Z/pZ3 : x3 + cy3 + c2z3 – 3cxyz ≡ 1 (mod p)}  
= p2 + p + 1. 
 

Proof. Let p be a prime number such that gcd(p – 1, 3) = 3. 
Let c be a cubic non-residue in F*

p.  Let  be a real number 
such that  3 = c. Consider the group 

 C = {(x, y, z)  Z/pZ3: x3 + cy3 + c2z3 – 3cxyz ≡ 1 (mod p)}. 

Also, consider the set 

 G = {x + y + z 2: (x, y, z)  F3
p \ {(0, 0, 0)}}. 

If x1 + y1 + z1 2  G and x2 + y2 + z2 2  G then an addition 
operation is given as 

(x1 + y1 + z1 2)  (x2 + y2 + z22) = x3 + y3 + z3 2 

with 
x3 = cy1z2 + cy2z1 + x1x2, 
y3 = cz1z2 + x1y2 + x2y1, 
z3 = x1z2 + x2z1 + y1y2. 

A straight forward calculation shows that x1 + y1 + z1 2 
 G. Also (1, 0, 0) is an identity element in G, and an inverse 
of x + y + z 2  G is the element x2 – cyz + (cz2 – xy) + (y2 

– xz) 2  G. This makes G a subgroup of F*
p

3. Since the 
order of F*

p
3 is p3 – 1 = (p – 1) (p2 + p + 1), the order of G is 

a divisor of p3 – 1. Let x + y + z 2  G. Then since a
p
 ≡ a 

(mod p) for all a  Fp, we have  
12 2

)(  ppzyx   = 
2

)( 2 pzyx    


pzyx )( 2   

 )( 2 zyx  . 
We use  

p =  3

1
3 )(

p

 = 3

1p

c   
and  

2p =
p

pp

c  3

)1(
3 )(



= 3

1

3

1  pp

cc  

= 3

)1(2 p

c . 
Then 

   
12 2

)(  ppzyx  =
2

)( 2 pzyx    


pzyx )( 2   
 )( 2 zyx   

= )( 23

)1(4

3

)1(2





pp

zcycx  

 )( 23

)1(2

3

1





pp

zcycx  

 )( 2 zyx  . 

Observe that in Fp, we have 

  3

)1(4 p

c  = 13

1



p

p

cc = 3

1p

c . 
Hence,  

 12 2

)(  ppzyx   = )( 23

1

3

)1(2





pp

zcycx  

            )( 23

)1(2

3

1





pp

zcycx  

 )( 2 zyx  . 

Using 3 = c, cp−1 = 1, and 1+ 3

1p

c + 3

)1(42 p

c = 0 in Fp, 
we get 

 12 2

)(  ppzyx   = x3 + cy3 + c2z3 –3cxyz (mod p). 

This implies that 
2 zyx   is of order p2 + p + 1 if and 

only if (x, y, z)  C. From this we deduce #C = p2 + p + 1, and 
terminates the proof. 

IV. A CUBIC PELL DISCRETE LOGARITHM PROBLEM  

An addition law  in C can be used to define a scalar 
multiplication of a point P  C by an integer m. This 
multiplication is processed by adding P to itself m times; 

mP = P  P  …   P. 

The set of multiples of P is denoted as P. To compute 
mP, various algorithms can be used such as double and add 
point algorithm [17]. The scalar multiplication gives rise to a 
Cubic Pell Discrete Logarithm Problem (CPDLP) as follows. 

 
Definition 1. Let P and Q be two points of C such that Q 

 P. A difficult mathematical problem, CPDLP is to find an 
integer  such that Q = P. 

This intractable problem is a fundamental building block 
for elliptic curve cryptography. A point multiplication shall 
be defined as P= (x, y, z) = P1 = (x1, y1, z1). A 
discrete logarithm problem in cubic Pell field is defined as 
solving for an integer  from base point P1 = (x1, y1, z1) to a 
projection point P(x, y, z). CPDLP is presumably safe as 
intractable as an Elliptic Curve Discrete Logarithm Problem 
(ECDLP). 

An elliptic curve E over a finite field Fp has an order of the 
form #E = p + 1 – tp, where, according to Hasse’s Theorem, 0 

≤ | tp | ≤ 2 p . As consequence, a running time of the generic 

algorithms to ECDLP is O( p ). 

V.  AN ELLIPTIC CURVE CRYPTOSYSTEM DESIGN 

A choice of an elliptic curve and its parameter(s) plays an 
important role in both security and efficiency of ECC. A 
primary objective is to choose a curve with a reasonably high 
security level and at reasonably low computational cost. 
Constructive steps in designing a new ECC are as follows: 

i. Select an elliptic curve 
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ii. Choose a modulus prime 
iii. Count on arithmetic operation 
iv. Count a periodic cycle of points on the curve. 
v. Generate a system parameter and a base point 
vi. Select digital signature and verification scheme 

Selection of elliptic curves, prime modulus and potential 
adoption of the system have been listed in Table 1. This 
section will go through constructive steps in designing a new 
ECC nicknamed as CP256-1299. 
 

Table 1. A comparison on elliptic curves, prime modulus and adoption 
system among popular ECCs 

ECC Curve p Adoption 

SECP256K1 y2 = x3 +7 
2256 −232 −29 −28 

−27 −26 −24 –1 
Bitcoin 

Ethereum 

SECP256R1 y2 = x3 – 3x + b 
2256 – 2224 + 2192 

+ 296 – 1 
Hyperledger 

Fabric 

ED25519 
– x2 + y2 =1–

121666

121665  x2 y2 
2255 – 24 – 21 – 1 Monero 

CP256-1299 x3 + cy3 + c2z3 – 3cxyz = 1 
2256 – 210 – 28 – 

24 – 21 – 1 
Digital 
Ringgit 

A. Selection of an Elliptic Curve CP256-1299 

Elliptic curves can be expressed in many forms, and 
elliptic-curve computations can be carried out in many ways. 
Two popular options reigned supreme for 50 years of elliptic-
curve Elliptic Curve Cryptosystem (ECC). 

i. Short Weierstrass curves y2 = x3 + ax + b, with 
Jacobian coordinates (X:Y:Z) representing (X/Z2, 
Y/Z3), were the representation of choice for most 
computations.  

ii. Montgomery curves By2 = x3 + Ax2 + x, with 
Montgomery coordinates (X:Z) representing two 
points (X/Z, ±···), were the representation of choice 
for single-scalar multiplication. 

This trend has changed starting from an advent of Edwards 
curves in 2007. Edwards curves involve significantly fewer 
multiplications than short Weierstrass curves in Jacobian 
coordinates, and for sufficiently large scalar,  
fewer multiplications than Montgomery curves in 
Montgomery coordinates. Note that larger scalars  
benefit from larger windows, reducing the number of 
additions per bit for Edwards coordinates but not for 
Montgomery coordinates [18]. 

Selection of an elliptic curve in this paper concentrates on 
not only its simplicity but also its efficiency. Murru and 
Saettone, proposed a cubic Pell RSA variant [7]. It is intended 
to be more secure than RSA in broadcast applications. 
Working on a cubic field related to a cubic Pell equation, a 
group field can be constructed to ride on a much larger 
periodic cycle. 

B. Generating an Efficient Strong 256-bit Prime  

An RSA cryptosystem is the most popular and extensively 
analysed public key cryptosystem since its inception in 1978. 
Recent attack on a partial prime exposure should taken into 
consideration [19]. An attack on RSA starts on its periodic 
cycle which divides a prime factor of p – 1. One such popular 
classic attack was via Pollard’s p − 1 algorithm [20] which 
initially presented in 1974. Then comes another field arena 
which carry a periodic cycle p + 1. Williams’s p + 1 integer 

factorization algorithm via Lucas sequences has been 
presented [21]. 

A strong prime must consist of at least two large prime 
factors on both side of p – 1 and p + 1 respectively. A periodic 
cycle in a field modulo p has always been given by a totient 
function (p) = p – 1 back then. ECM is a generalization of 
Pollard’s p−1 algorithm. The complexity of Pollard’s p − 1 
algorithm is dominated by the largest prime factor of periodic 
cycle p – 1 over Fp. 

Then comes another field arena which carry a periodic 
cycle p + 1. A priority has always been given a slightly larger 
prime factor on p – 1 than on p + 1. This right-hand-side of 
strong prime criterion on p + 1 has been hardly taken into 
serious consideration yet in an elliptic curve cryptography. 
There is hardly new arena yet to make use of smaller a 
periodic cycle p + 1 in solving an intractable elliptic curve 
discrete logarithm problem yet. Even though there is no such 
need for a moment, this first author still think that a 
precaution should be taken here in designing a new elliptic 
curve cryptosystem. 

It is well-known that to avoid successful relevant attacks 
against an ECC system, the number of points on the chosen 
curve, called order of the curve n, must carry at least one very 
large prime factor. Let us take an overview on the ED25519 
prime modulus p = 2255 – 19. Its largest prime factor on p – 1 
is a 236-bit prime, 
740582127325613583022312264370627886761669664154

65897661863160754340907. 

This 236-bit prime is admirably large. However, when it 
comes to its largest prime factors on p + 1, there are two 95-
bit primes,  

31927947500766558008599290859 
and  

35408198551781170063534027037. 

Such periodic cycles are certainly within reach of current 
computing prowess. An invention of a ring which can attack 
an elliptic curve discrete logarithm from p+1 periodic cycle 
will have a clear direction to break many such elliptic curve 
ciphers.  

First, let us take an overview on an SECP256K1 prime 
modulus p = 2256 −232 −29 −28 −27 −26 −24 –1. Its largest prime 
factor on p–1 is a 237-bit prime, namely, 
205115282021455665897114700593932402728804164701

536103180137503955397371. 

This prime is admirably large. However, when it comes to its 
largest prime factors on p+1 is the 184-bit prime, namely,  
217595068931634267901835298040340582959315071310

47955271. 

This prime is practically large. 
Second, let us take an overview on SECP256R1 prime 

modulus p = 2256 – 2224 + 2192 + 296 – 1. The largest prime 
factor of p – 1 is a 160-bit prime,  
835945042244614951780389953367877943453916927241. 

This prime is reasonably large. However, when it comes to its 
largest prime factors in p+1, it is merely 94-bit prime,  

11318308927973941931404914103. 

A periodic cycle p+1 of this size will give a clear direction on 
to break this elliptic curve within reach of super computing 
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power. 
A choice of prime p will determine ECC algebraic 

efficiency in computing modulo p due to its friendly form to 
CPU word processing. Since the target here is 256-bit ECC, 
a prime modulus is preferably chosen as to a power of 256 for 
efficient modular reduction. The best candidate is in a tight 
form 2256 – k for some small integer k. An integer k = 1299 is 
chosen as the smallest positive integer for which 2256 – k 
satisfies strong prime criteria. It should be noted that k = 1299 
= 210 + 28 + 24 + 21 + 20 < 216. This prime is also well protected 
on the left and the right. 

p = 2256 – 1299 = 
1157920892373161954235709850086879078532699
84665640564039457584007913129638637. 

p – 1 = 
22379116121953494485625321271717174740349
2466102563859132633281404641106787369523. 

p + 1 = 
21073113857811173766614273427837579699871
663288827015055936164654544261019401447. 

On the left, its largest prime factor on p – 1 is a 188-bit 
prime while on the right its largest prime factor on p + 1 is a 
217-bit prime. 

An integer k = 2063 is another good candidate for which 
2256 – k satisfies strong prime criteria. It should be noted that 
k = 2063 = 211 + 23 + 22 + 21 + 1 < 216. Thus,  

p = 2256 – 2063 = 
1579208923731619542357098500868790785326998
4665640564039457584007913129637873. 

p – 1 = 
2472370055773322622139731865630429942408293
74041602535252466099000494570602367. 

p + 1 = 
23103700300553877237005577332262213973186
563042994240829374041602 
535252466099000494570602367. 

 
On the left, the largest prime factor of p – 1 is a 252-bit 

prime while on the right its largest prime factor on p + 1 is a 
211-bit prime.  

A comparison on bit sizes of largest prime factor p – 1, on 
the left and largest prime factor p + 1, on the right of prime 
modulus has been listed in Table 2.  
 

Table 2. A comparison on bit size on largest prime factor from prime 
modulus p, accompanying largest prime factors p–1 on the left and p+1 on 

the right together with point periodic order among popular ECCs 

ECC 
Bitsize of  

(p – 1) 
Bitsize of  p 

Bitsize of  
(p + 1) 

Bitsize of  
#E 

ED25519 236 255 95 253 

SECP256K1 237 256 184 256 

SECP256R1 160 256 94 256 

CP256-1299 188 256 217 512 

EC256-2063 252 256 211 509 

There are 2 strong prime candidates in this proposed 
cryptosystem, namely, p1 = 2256 – 1299 and p2 = 2256 – 2063. 
We have p1 ≡ 1 (mod 3) and have p2 ≡ 2 (mod 3). An ideal 
choice on p2 will have carry the largest 252-bit prime factor 
on the left and a modestly large 211-bit prime factor on the 

right. Unfortunately, this prime modulus is not suitable for 

our system since every element in 2p
F is a cube, and so is c. 

Moreover, it will ride on p
2
2 – 1 periodic cycle within a 

cubic Pell norm. A more practical choice on 2256 – 1299 will 
have carry a modest 188-bit prime factor on the left and the 
practically largest 217-bit prime factor on the right. At the 
same time, this prime modulus p will ride on p2 + p + 1 
periodic cycle within a cubic Pell norm. There are 3 more 
candidates have been found in this project namely, 2256 – 
5093, 2256 – 5097 and 2256 – 8939. Naturally, the smallest k = 
1299 is easier to gain popularity. 

Algorithm 1: Reduction modulo p = 2256 – k, k < 216. 
Input: An integer M = [M15, ..., M2, M1, M0] in base 232 with 0 ≤ M < p2.  
Output: C = M mod p 
define an integer array C = [C7, ..., C2, C1, C0] in base 264 
redefine an integer array M = [M15, ..., M2, M1, M0] in base 264 

for i=0, …, 7 do 
 Ci = Mi + kMi+8. 
 
Set an initial carry = 0. 
for i=0, …, 7 do 
 Mi = Ci + carry, 
 Ci = Mi mod 232, 

carry = Mi >> 32. 
 

If carry > 0 then  
M0 = C0 + kcarry, 
C0 = M0 mod 232, 
Carry = M0 >> 32. 
 

If carry > 0 then  
M1 = C1 + kcarry, 
C1 = M1 mod 232, 
Carry = M1 >> 32. 
 

redefine an integer array C = [C7, ..., C2, C1, C0] in base 232 
return C. 

A prime modulo is typically selected for a finite field to 
have a very special form facilitating efficient implementation.  
This particular prime p is chosen for its efficiency on modular 
operation. Algorithm 1 a pseudocode on a fast modulo 
reduction by this prime p = 2256 – k which cut down a modulo 
operation into half of modulo reduction by a random prime p. 
At the same time, this reduction modulo p can be easily 
adopted for a 32-bit processor down to a 16-bit processor 
since k = 1299 = 210 + 28 + 24 + 21 + 20 < 216. 

 

 
Fig. 5. Searching for an efficient count on arithmetic operations. 

C. Count on Arithmetic Operations  

Primary computational cost in a cryptosystem on each 
iteration are an inversion (I), multiplication (M), squaring (S), 
Greatest Common Divisor (GCD), multiplication by a small 

Affine 
Coordinate 

Projective 
Coordinate 

Inverted 
Coordinate 
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constant (m) and addition (A) listed in descending order. In 
searching for an efficient count on arithmetic operations, a 
transition from Affine coordinates to inverted coordinates is 
called for here as depicted in Fig. 5.  

Traditionally, an inversion cost six times the cost of 
multiplication on a small arithmetic field. To avoid an 
inversion, for instance, an efficient implementation has been 
proposed in [15] on a projective Edwards curve. 

Defining two points on an elliptic curve in a standard 
Weierstrass-form with an equation y2 = x3 + ax + b, as P1 = 
(x1, y1) and P2 = (x2, y2). Then P3 = P1  P2 = (x3, y3) is 
algebraically given by x3 = m2 – (x1 + x2) and y3 = m(x1 – x3) 
– y1 where a slope of a secant line intersecting the two points, 

m = 
12

12

xx

yy




for distinct point addition when P1 ≠ P2, and a 

slope of tangent line m = 
1

2
1

2

3

y

ax 

 
for point doubling when P1 

= P2. 
In this paper, we concentrate on a point addition only for 

simplicity. This classic addition P3 = P1  P2 requires 1I, 2M, 
1S and 6A. This computation is considered already efficient. 
However, there is still an inversion. A prime field inversion 
is the most expensive operation here.  

The elliptic curve ED25519 proposed by D. J. Bernstein in 
2006 is the most discussed alternative curve. It is convenient 
to compare computational cost in this new CP256-1299 
against ED25519. The Edwards curve ED25519 is defined 
over a pseudo-Mersenne prime field Fp with p = 2255 – 19 by 
means of the following general equation: 

E: ax2 + y2 = 1 + d x2y2 

where a = –1 and d = –
121666

121665  (mod p). A unified complete 

addition operation is given in 3 coordinates in [22] as follows. 
 

Affine coordinates: Let P1 = (x1, y1) and P2 = (x2, y2) be 
two points belonging to a Twisted Edwards curve. An 
addition operation on these 2 points is defined P1 + P2 as 
another point P3 = (x3, y3) = (x1, y1)  (x2, y2) on the curve 
where 

x3 = 
2121

1221

1 yyxxd

yxyx




, y3 = 
2121

1121

1 yyxxd

xxayy




 

These formulas for addition also apply for point doubling; 
that is, when P1 = P2. To subtract a point, invert its 
coordinates over the y-axis, (x, y) → (−x, y) and use a point 
addition. Recall that ‘negative’ elements −x of Fq are really 
−x (mod q). A point addition requires 2I, 5M, 2m and 4A. 
This computation appears to be compactly efficient. However, 
there are still two costly inversions. 

 
Projective coordinates: Given a set of projective points 

(X:Y:Z) where Z ≠ 0 corresponds to a set of affine points (x, 
y) = (X/Z, Y/Z), an equation E: ax2 + y2 = 1 + d x2y2 will be 
transformed into 

Ez: a(X/Z)2 + (Y/Z)2 = 1 + d (X/Z)2 (Y/Z)2 

Multiply on both sides by nonzero Z4: 

Z2 (aX2 + Y2) = Z4 + d X2Y2 

A neutral identity element is (0:1:1) and an inverse of 

(X:Y:Z) is (–X:Y:Z). An addition of point (X1:Y1:Z1) and 
(X2:Y2:Z2) on the curve Ez is  

(X1:Y1:Z1) + (X2:Y2:Z2) = (X3:Y3:Z3), 
where 

A = Z1Z2,  
B = A2,  
C = X1X2,  
D = Y1Y2,  
E = dCD,  
F = B – E, 
G = B + E, 
X3 = AF[(X1 + Y1)(X2 + Y2) – (C + D)],  
Y3 = AG(D − aC),  
Z3 = GF. 
 

A point addition requires 10M, 1S, 2m and 7A. In this 
projective coordinate, an inversion has been avoided at an 
expense of doubling multiplication. 

 
Inverted coordinates: Given the set of projective points 

(X:Y:Z) where XYZ ≠ 0 corresponds to the set of affine 
points (Z/X, Z/Y). Then take X = Z/x and Y = Z/y from an 
equation E becomes 

Ez': Z2 (X2 + Y2) = dZ4 + X2Y2 
where 

A= Z1Z2,  
B= dA2,  
C= X1X2,  
D= Y1Y2,  
E= CD,  
F= C – aD,  
G= (X1 + Y1)(X2 + Y2) – (C + D), 
X3 = (E + B)F,  
Y3 = (E − B)G,  
Z3 = AFG. 

 
Note that the requirement XYZ ≠ 0 means that we cannot 

represent an inverted coordinates points (x, y) such that xy = 
0. There are 4 points satisfying this condition: A neutral 
identity element (0, 1), the point of order 2 (0, −1) and the 
points of order 4 (±1, 0). Additions that involve these points 
must be handled separately. A point addition requires 9M, 1S, 
2m and 7A. In this inverted coordinate, 1M has been saved at 
an expense of a negligibly small order. 

Edwards curves makes an impact on ECC efficiency, not 
just in multiplication counts but also in real-world software 
speeds especially in a cryptocurrency ledger. An Edwards 
addition law is strongly unified where the same formulas can 
also be used for generic doublings. An identity point (0, 1) is 
the neutral element of the addition law. A negative of a point 
(x, y) is indeed just (−x, y) [18]. 

From the explicit formulas above, one can readily count on 
the number of arithmetic operation for point addition. They 
are listed in Table 3 for each coordinate system. 

 
Table 3. Count of arithmetic operations for a point addition 

Coordinate\Operation I M S m A 

Affine 2 5 0 2 4 

Projective 0 10 1 2 7 

Inverted 0 9 1 2 7 

Cubic Pell 0 9 0 2 6 

An addition of two point on a cubic Pell curve already 
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requires 9M, 2m and 6A which is already competitive among 
operational cost of Edwards curve in 3 coordinate systems. 
Montgomery endomorphism in a twisted µ4-normal form 
isomorphic to twisted Edwards curves and ordinary elliptic 
curves brings good reduction and efficient arithmetic [23]. 

D. Counting an Order as the Number of Points on the 
Cubic Pell Curve 

There are 3 cases in periodic CYCLES which satisfy a cubic 
Pell equation.  

Ep: x3 + cy3 + c2z3 – 3cxyz = 1 (mod p) 

Let p be a prime, a periodic cycle is mostly determined by 
a prime modulo p. These three CASES have been observed 
experimentally. A theoretical background on each cases is 
beyond the scope of this paper. 

 
i. #Ep = p – 1. 
ii. #Ep = p2 – 1. 
iii. #Ep = p2 + p + 1. 
 

Instances on these three cases are numerically given in 
Table 4–6 respectively. 

Table 4. Take p = 4099 and n = p – 1 = 4098 = 10000000000102, then a 
projection point is on the left n(4, 2, 1) = (xn, yn, zn) goes back to an 

identity (1, 0, 0) = (xL, yL, zL) 

i bi L xL yL zL R xR yR zR 

12 1 1 4 2 1 2 44 23 12 
11 0 2 44 23 12 3 505 264 138 
10 0 4 1701 3032 1585 5 1030 2031 1808 
9 0 8 2700 2645 952 9 1653 2149 3600 
8 0 16 3138 960 3785 17 2579 3819 3802 
7 0 32 3056 970 280 33 2439 3754 2017 
6 0 64 142 1020 207 65 2408 1714 3010 
5 0 128 250 3466 656 129 1654 2560 1608 
4 0 256 4024 2809 3166 257 2202 456 1811 
3 0 512 517 3156 490 513 2327 692 591 
2 0 1024 96 610 2249 1025 3348 1979 2114 
1 1 2049 1366 3329 3966 2050 2311 2763 3393 
0 0 4098 1 0 0 4099 3883 21 2901 

Table 5. Take p = 4133 and n = p2 – 1 = 17081688 = 
10000010010100101010110002, then a projection point is on the left n(4, 

2, 1) = (xn, yn, zn) goes back to an identity (1, 0, 0) 

i bi L xL yL zL R xR yR zR 

24 1 1 4 2 1 2 44 23 12 
23 0 2 44 23 12 3 505 264 138 
22 0 4 1667 3032 1585 5 486 1759 1672 
21 0 8 486 3163 3648 9 763 1963 739 
20 0 16 3046 1125 2451 17 644 2951 2701 
19 0 32 561 3651 4023 33 1463 2557 3290 
18 1 65 1605 2132 1789 66 927 3596 626 
17 0 130 878 2259 1077 131 1339 1799 1438 
16 0 260 3295 1415 1257 261 3486 384 2887 
15 1 521 2426 3898 1358 522 2273 1019 3255 
14 0 1042 37 2277 2510 1043 1631 1954 2232 
13 1 2085 418 2593 81 2086 292 3509 1795 
12 0 4170 3037 2520 846 4171 302 1411 3195 
11 0 8340 1000 2797 3397 8341 876 3903 3650 
10 1 16681 2373 1101 2011 16682 4023 2562 220 
9 0 33362 2037 3164 2341 33363 1075 53 1197 
8 1 66725 1960 365 1769 66726 2097 1231 1500 
7 0 133450 2762 1409 275 133451 4096 686 2547 
6 1 266901 3941 518 2124 266902 3663 24 1074 
5 0 533802 3357 2984 2397 533803 1746 2365 2381 
4 1 1067605 4069 3517 357 1067606 430 4040 132 
3 1 2135211 1622 679 3966 2135212 637 658 2312 
2 0 4270422 1866 759 1953 4270423 2922 3907 2930 
1 0 8540844 2755 1766 3711 8540845 942 1354 466 
0 0 17081688 1 0 0 17081689 4 2 1 

Table 6. Take p = 4111 and n = p2 + p + 1= 16904433 = 
10000000111110000111100012, then a projection point is on the left n(4, 

2, 1) = (xn, yn, zn) goes back to an identity (1, 0, 0) 

i bi L xL yL zL R xR yR zR 

24 1 1 4 2 1 2 44 23 12 
23 0 2 44 23 12 3 505 264 138 
22 0 4 1689 3032 1585 5 838 1935 1760 
21 0 8 3252 312 2436 9 4075 138 1287 
20 0 16 3192 3653 2741 17 2715 3184 907 
19 0 32 1039 2704 2231 33 875 3845 3038 
18 0 64 2791 4088 1068 65 1289 633 2906 
17 0 128 764 3972 1155 129 1809 835 995 
16 1 257 3554 3514 3806 258 1656 2585 1140 
15 1 515 1159 936 1178 516 3014 1975 3632 
14 1 1031 3451 993 1173 1032 178 2641 1907 
13 1 2063 3158 3674 2285 2064 453 8 3202 
12 1 4127 2060 1117 2715 4128 626 2927 2821 
11 0 8254 3921 3245 1825 8255 2284 709 1267 
10 0 16508 2314 1094 3013 16509 1542 1318 110 
9 0 33016 3207 1736 187 33017 2932 2334 3316 
8 0 66032 1320 239 3450 66033 1810 3080 3265 
7 1 132065 1212 1526 1614 132066 1127 3382 2498 
6 1 264131 2409 2110 1312 264132 1664 1887 3655 
5 1 528263 1392 468 1482 528264 815 2697 34 
4 1 1056527 3554 3259 1422 1056528 3494 1321 3427 
3 0 2113054 2294 4013 995 2113055 1865 2939 1967 
2 0 4226108 68 1615 3232 4226109 3382 443 3893 
1 0 8452216 3008 168 1526 8452217 1684 926 1226 
0 1 16904433 1 0 0 16904434 4 2 1 

In order to gain a better gain in general ECC, the third case 
will be chosen. We will take a small instance on each case on 
parameter c = 7. From an identity e = P0(x0, y0, z0) = (1, 0, 0) 
and a base point P1(x1, y1, z1) = (4, 2, 1), we can compute Pn(xn, 
yn, zn) via a BALANCED point projection algorithm [13].  

An instance on each case is given in Tables 4–6 
respectively. This cubic Pell cryptosystem has been designed 
to ride on a larger order at about the same computing 
requirement in an elliptic curve cryptosystem. 

E. Base Point and Parameter Selection 

Take a sequence starting from an identity point P0(x0, y0, 
z0) = (1, 0, 0) and an initial BASE point P1(x1, y1, z1) which 
satisfies a cubic Pell equation. The smallest sample point (x, 
y, z) ∈ G3 on small parameters c = 2, …, 7 are listed in  
Table 7. 

Table 7. The smallest point is an ideal base point on a cubic Pell equation 

c x y z 

2 1 1 1 

3 4 3 2 

4 5 3 2 

5 41 24 14 

6 109 60 33 

7 4 2 1 

 
Take P2(x2, y2, z2) = P1(x1, y1, z1)  P1(x1, y1, z1) and 

Pn+1(xn+1, yn+1, zn+1) = Pn(xn, yn, zn)  P1(x1, y1, z1) for n = 2, 
3, … and so on. Since there is an issue on a random base point 
of SECP256R1, a basepoint shall be prescribed from a 
fundamental solution of a cubic Pell equation and project it to 
a (p+1) point. For instance, let c = 7 then a fundamental 
solution is (4, 2, 1). Take a base point as  

(p + 1)(4, 2, 1) = 
(2,10157275726438095253509741252252377269949
1042803557044710886595566980934141402,0). 

In this Cubic Pell Cryptosystem, such a base point can be 
generated since a cubic Pell equation gives a luxury of riding 
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on a larger periodic order of p2+p+1. A random secret key in 
this ECC is within (2, p−2). In a DIGITAL signature scheme, a 
projection is done twice. First, it is done by a private key. 
Second, it is done by a secret session key. A double projection 
in this scheme will not go over bound beyond the periodic 
order p2+ p+1. 

 

 
Fig. 6. Point projection in a basic digital signing and verification. 

F. Selection on Digital Signature and Verification Scheme  

An Elliptic Curve Digital Signature Algorithm (ECDSA) 
is based on the Digital Signature Algorithm (DSA). 
SECP256R1 curve is the most popular elliptic curve as part of 
NIST standards (FIPS 186-4) [24]. In an open public ledger, 
for example, Bitcoin CAN process 7,000 transactions per 
second. A modern payment needs to process about 100,000 
transactions per second using SECP256R1. However, digital 
signing and verification using EdDSA on ED25519 is faster 
and more secure than ECDSA on SECP256R1.  

A digital signature scheme with anonymity and 
spontaneity are typically referred to as a ring of signatures. In 
the context of digital ringgit, they will ultimately allow for 
unforgeable, signer-ambiguous transactions that leave 
currency flows largely untraceable. 

System parameters in this cryptosystem initial proposal are 
as follows, 
i. a prime modulo p = 2256 – 1299, 
ii. an identity point P0(x0, y0, z0) = (1, 0, 0), 
iii. a parameter c = 7, 
iv. a periodic order #E(Fp) =  = p2 + p + 1, 
v. a base point G = P1(x1, y1, z1) = (p + 1)(4, 2, 1), 
vi. a public key G = P(x, y, z) = (x1, y1, z1). 

An output pair (αG, s) is expected to be a digital signature 
on a message m from an owner of public key G. It should 
be noted that  is a random 512-bit session number in a 
traditional digital signature algorithm. A digital signature 
here consists of an EC point αG, a signature scalar s and a 
public key G [25]. They are compactly represented in 
32+32+32 bytes. They will be visualized as 3 emblems in the 
near future. 
 

Digital Signature: Let G = P1(x1, y1, z1) be a base point 
generator and  be a private key. Then take precomputed 
G = P(x, y, z) as a public key. Computing a multiple  
of point G is considered as a one-way function. Given both 
base point G and G, it is intractable to extract  from them. 
i. Generate random scalar 512-bit  and compute G 

= P(x, y, z) 
ii. Compute  = SHA2(m). 
iii. Calculate a signature scalar s ≡  +  · (mod ).  

iv. Output a signature pair (G, s) of message m. 

An output pair (G, s) is expected to be a digital 
signature on a message m from AN owner of public key G. 
It should be noted that  is a random session number in a 
traditional digital signature algorithm. A digital signature 
here consists of an EC point αG, a signature scalar s from 
an owner of a public key G. They are represented in six 
32-bytes. They will be visualized as 6 emblems in future 
proposal. 

 
Signature Verification: From a signature pair (αG, s), 
public key G and a message m.  
i. Compute ′ = SHA2(m). 
ii. Compute Q = sG = s(x1, y1, z1) 
iii.  ′G = ′ (x, y, z) = (x′, y′, z′) 
iv Q′ = G  ′G = (x, y, z)  (x′, y′, z′) 
v. Check on validation whether Q = Q′. 

Referring to Fig. 6, there are 2 paths to compute and project 
from a base point G to a second point (α +  · )G. First, 
given a signature scalar s =  +  ·  and system parameter 
base point G, the second point can be computed directly via a 
point multiplication sG.  

Second, given a first point G as part of a signature, take 
a public key G and message m, then a scalar c can be 
independently computed as c′ = SHA2(m). Next, c′G will 
be projected from a public key G via a point multiplication. 
Thus, G and c′G will be added together to form G 
 ′ · G = ( + ′ · )G.  

In a case of both first and second paths will give the same 
answer, then the pair (αG, s) is considered a valid signature 
on a message m from an owner of public key G who must 
have used a private key  in computing s = s = + to 
digitally sign it. 

 
An Example on Digital Signature: Let us take an 

example. Let us take a sample 256-bit private KEY from the 
next prime of a 256-bit fraction of an exponential number e, 

= 
83171353578472409519651024131274511974299
080148110592010555215815306508292189. 

Then take precomputed public key, 
G = P(x, y, z) = 
(8065299791263142019038797837124574918491
1663089942002269536582833308066000638, 
14781155146764325842105941936507012120419
574794976430637883499412459121819899, 
10331671645360432302242651223816484639870
1950549496373847519367962844439688531). 

Take a 512-bit random session from a 512-bit fraction of a 
popular number , 

= 
18984471036228449207247464899418497228178
99851712074472424000756938513692055457989
38826247774701606337367572235687533276603
1268189759451703052827185580311. 

Compute the first projection point G = P(x, y, z) =  
(7819360357196179813219549635887445206977
7436011327297247055985179143770400755, 
58933705053663476286578595285430900140613

signature  
s = +c mod N random signing  

key 

Private key 


Base Point 
G = (x1, y1, z1) 

Public Key 
G = (x, y, z) 

First Point 
G = (x, y, z) 

Second Point 
(x2, y2) = (+)G  
= G  G 
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957738341869185239379173447439819297, 
10423227864793148517672585908193216725183
0451720619309555990090866448243192902). 

Take a simple message m= “abc”. Compute  
 = SHA2(m) = 
84342368487090800366523834928142263660104
883695016514377462985829716817089965. 

Calculate a signature scalar  
s =  +  · = 
89133160547084829443831285993992937680553
85110723954324713910792815497747633992632
61454688442346277736922519859717120787540
0266486447506271265888105363696. 

 
An Example on Signature Verification: From a signature 

pair (αG, s), PUBLIC key G and a message m.  
Compute ′ = SHA2(m) = 

84342368487090800366523834928142263660104
883695016514377462985829716817089965. 

Compute point Q = sG = s (x1, y1, z1) = 
(6700024843963191767474289848592036916022
3444648448268682885794783291628587962, 
84027019278154678998474883614044676081906
680375763487178245584063156859369215, 
42636317058827573429703393632571482481359
474039619547940844183895952203144427). 

Compute ′(G) = ′(x, y, z) = (x′, y′, z′) = 
(1071887198862710778103204748495089497309
92340009161311181513724026191950117752, 
78189457200157595846947313250786321533443
769992089125177141396126024688311018, 
72444716359751134594684675486446796463466
878218442773561268720190933009705879). 

Compute an addition point Q′ = G  ′G  
= (x, y, z) (x′, y′, z′) = 
(6700024843963191767474289848592036916022
3444648448268682885794783291628587962, 
84027019278154678998474883614044676081906
680375763487178245584063156859369215, 
42636317058827573429703393632571482481359
474039619547940844183895952203144427). 

Both point Q' and point Q are indeed equal. They are moving 
towards the SAME second point. Thus, this signature has been 
verified. 

VI. DISCUSSION 

A cubic Pell curve has been chosen to generate a new 256-
bit ECC. A strong prime has been chosen to the modulo of 
this cryptosystem Cp256-1299 guarded by two large prime 
factors on both side of p – 1 and p + 1 respectively. A prime 
modulo p = 2256 – 1299 is chosen for its efficiency on modular 
reduction as proposed in Algorithm 1. An addition of two 
point on a cubic Pell curve requires 9M, 2m and 6A which 
brings good reduction and efficient arithmetic. A base point 
is explicitly prescribed while a cubic Pell equation gives a 
luxury of riding on a larger periodic order of p2 + p+ 1. 

VII. CONCLUSION 

Elliptic curve cryptosystems are widely recognized for 
providing compact support with smaller key sizes compared 
to other traditional public-key cryptosystems. In this paper, 
we proposed a new digital signature scheme, called CP256-

1299. The new scheme is based on cubic Pell curves, a family 
of curves that are related to elliptic curves. The new scheme 
is designed to serve as a technical support for a Central Bank 
Digital Currency (CBDC) implementation. The new scheme 
is slightly more efficient. CP256-1299 has been securely 
designed and its security is comparable to traditional schemes 
based on elliptic curve cryptography such as ED25519, 
SECP256K1, and SECP256R1. 
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