
Exploring Effectiveness in Software Development: A

Comparative Review of System Analysis and Design

Methodologies

Edward Matthew T. Sanmocte* and Jefferson A. Costales

College of Computing and Information Technologies, National University, Philippines

Email: etsanmocte@national-u.edu.ph (E.M.T.S.); jacostales@national-u.edu.ph (J.A.C.)

*Corresponding author

Manuscript received June 18, 2024; revised August 9, 2024; accepted October 9, 2024; published March 6, 2025

Abstract—The effectiveness of system analysis and design

methodologies plays a pivotal role in the success of software

development projects. This research conducts a comparative

analysis of various methodologies, including the Waterfall

Model, Spiral Model, Prototyping Model, Iterative Model,

Unified Process, Object-Oriented Analysis and Design, Joint

Application Design, Computer Aided Software Engineering

Tools, Rapid Application Development / Rapid Systems

Development, Feature- Driven Development, Extreme

Programming, Agile Method, and DevOps, to explore their

respective strengths and considerations. The study examines

key aspects such as flexibility, documentation, risk

management, complexity, and suitability across these

methodologies. Findings reveal that each methodology offers

unique advantages and challenges, influencing their

applicability in different project contexts. The research

underscores the importance of aligning methodology choices

with project-specific requirements, organizational culture, and

environmental factors to optimize software development

outcomes. Moreover, it suggests that hybrid approaches,

combining elements from multiple methodologies, may offer a

balanced approach to address diverse project needs and

maximize effectiveness. By providing insights into the

comparative effectiveness of system analysis and design

methodologies, this research contributes to informed decision-

making and improved project success in software development

endeavors.

Keywords—Systems Analysis and Design Methodologies

(SADM), Life Cycle / Waterfall Model, Spiral Model, Agile

Model, Prototyping Model, Extreme Programming Model

(XPM), Unified Process Model (UPM), Iterative Model, Object-

Oriented Analysis and Design (OOAD), Computer Aided

Software Engineering (CASE), Joint Application Design (JAD),

Rapid Application Development (RAD), Rapid Systems

Development (RSD), Extreme Programming (XP), DevOps

I. INTRODUCTION

A. Research Background

In today’s software development, the selection and

application of System Analysis and Design (SAD)

methodologies are crucial to the success of software

development projects. These methodologies provide

structured frameworks for understanding, designing, and

implementing systems that align with organizational goals

and user needs. Properly designed systems streamline

processes and optimize workflows, in- creasing efficiency

and productivity by automating repetitive tasks and

minimizing human error. Additionally, effective SAD

methodologies focus on resource optimization and

operational efficiency, which can result in significant

cost savings by identifying and eliminating waste. In an

environment where technological advancements are

constant, systems must be adaptable to remain relevant, and

SAD methodologies ensure flexibility, scalability, and the

integration of new technologies, fostering innovation and

maintaining a competitive edge. Moreover, SAD provides a

systematic approach to problem-solving, allowing

organizations to address issues sustainably rather than

relying on ad-hoc fixes, ensuring that solutions are

durable and preventing problems’ recurrence. Involving

end-users in the design process is also essential for tailoring

systems to their needs and preferences, leading to higher

user satisfaction, increased adoption, improved usability,

and a more positive overall experience [1, 2].

B. Research Objective

The research aims to conduct a comprehensive

comparative study of these methodologies such as the

Waterfall Model, Spiral Model, System Prototyping,

Iterative Model, Unified Process, CASE Tools, Prototyping,

Rapid Application Development (RAD), Joint Application

Design (JAD), Object-Oriented Methodology, Feature-

Driven Development (FDD), Extreme Programming (XP),

Agile Method and DevOps approaches. By identifying their

fundamental principles, characteristics, and practical

implications, the study aims to provide valuable insights for

selecting the most suitable methodology for various

development scenarios.

C. Significance of the Study

The study seeks to provide insights into the effective-

ness, adaptability, and suitability in different project

contexts. Through this analysis, project leaders and teams

can make an informed decision to enhance the project

outcomes and align the methodology choice with the

organizational goals and project requirements.

D. Research Method

This study employs a systematic literature review

method- ology to conduct a comprehensive comparative

analysis of various software development methodologies.

The review aims to evaluate and synthesize existing research

to uncover the fundamental principles, characteristics, and

practical implications of methodologies including Waterfall,

Spiral, System Prototyping, Iterative Model, Unified

Process, CASE Tools, Prototyping, Rapid Application

Development (RAD), Joint Application Design (JAD),

Object-Oriented Methodology, Feature-Driven

Development (FDD), Extreme Programming (XP), Agile

International Journal of Computer Theory and Engineering, Vol. 17, No. 1, 2025

36DOI: 10.7763/IJCTE.2025.V17.1367

mailto:etsanmocte@national-u.edu.ph
mailto:jacostales@national-u.edu.ph

Method, and DevOps.

II. RELATED LITERATURE REVIEW

A. System Analysis and Design

Systems Analysis and Design (SAD) is a comprehensive

methodology for developing high-quality information

systems that integrate technology, people, and data to meet

business needs [3]. The SAD process typically involves

multiple stages, including planning, implementation, testing,

documentation, deployment, and maintenance [4]. Well-

designed input forms should be easy to fill out, meet their

intended purpose, ensure accurate completion, and maintain

visual appeal.

System Analysis and Design (SAD) methods are vital

because they offer a methodical way to analyze user

requirements, ensure effective use of resources, control risks,

maintain quality standards, allow for flexibility and

scalability, promote stakeholder collaboration and

communication, and ultimately produce solutions that either

exceed or meet customer expectations. By adhering to SAD

methodologies, software systems can be developed by

organizations that efficiently cater to user needs, adjust to

changing requirements, and enhance business success via

their functionality, reliability, and usability.

B. Lifecycle/Waterfall Model

The waterfall model is categorized as the traditional Soft-

ware Development Lifecycle (SDLC) and is known for its

linear fashion phase development. The waterfall model

comprises six phases which are analysis, design,

development, testing, implementation, and maintenance [5,

6]. Fig. 1 illustrates the waterfall model.

Fig. 1. Waterfall Model.

Thus, this model is favored by many of the software

engineering teams because of its ease of management, well-

defined deliverables and milestones established before

project initiation, thorough construction of project initiation

and planning, and clear outline of all phases and activities.

C. Spiral Model

The spiral model, a software development approach

combining elements of waterfall and prototyping models,

and it has gained attention in various fields. It offers

advantages such as systematic evaluation, sequential

execution, and focused risk analysis at each stage. The

model’s flexibility allows for adaptation to different project

types, including large-scale agent-based modeling. It can

support interdisciplinary teams and accommodate evolving

requirements during development [7]. Fig. 2 illustrates the

Spiral Model.

Fig. 2. Spiral Model.

This model is characterized by its iterative cycles

consisting of Planning, Risk Analysis, Engineering, and

Evaluation phases. Project objectives, scope, and timeline

are defined in the Planning phase. The Risk Analysis phase

identifies potential risks and develops mitigation strategies.

The Engineering phase involves design, coding, and testing.

Finally, the Evaluation phase reviews outcomes and gathers

feedback for improvements. This iterative approach allows

flexibility, effective risk management, and continuous

refinement, making it suitable for projects with evolving

requirements or unexpected changes.

D. Prototyping Model

The prototyping model involves rapidly developing and

testing working models through iterative processes [8]. It

can analyze functional and non-functional requirements,

create system designs, and develop user interfaces [9]. The

model typically consists of three stages: listening to

customers, building and refining mockups, and viewing and

testing mockups [8].

The Prototype Model involves creating a basic version

of a system, called a prototype, to gather feedback and

refine requirements iteratively. It starts with gathering initial

requirements, followed by outlining a preliminary system

design. A working prototype is then developed for user

interaction. Users test this prototype in the Customer

Evaluation phase to ensure it meets their needs. Once

satisfied, the system proceeds to full development, rigorous

testing, and maintenance to ensure ongoing functionality

and updates. Fig. 3 illustrates Prototyping Model.

Fig. 3. Prototyping Model.

E. Iterative Model

Iterative approaches in system analysis and design offer

significant benefits across various domains. While various

soft- ware development lifecycle models exist, including

iterative models, comparative analysis of these

methodologies is crucial for organizations transitioning from

International Journal of Computer Theory and Engineering, Vol. 17, No. 1, 2025

37

manual to automated systems [10]. These studies

collectively demonstrate the value of iterative approaches in

optimizing system performance, enhancing safety analysis,

improving human-machine interactions, and guiding

software development processes. Iterative methodologies

prove to be versatile and effective across diverse

engineering applications. Fig. 4 illustrates the Iterative

Model.

Fig. 4. Iterative Model.

The Iterative Model involves repetitive development

cycles, including Requirement Analysis, Design and

Development, Testing, and Implementation. Initially,

developers assess client needs and system specifications.

The system is then built in increments, with each iteration

focusing on implementing and testing specific features.

After testing and verification, features are integrated into the

existing system. This approach allows for continuous

refinement and enhancement, resulting in a robust, high-

quality system that closely aligns with client needs.

F. Unified Process

The Unified Process (UP) is a widely used system

analysis and design approach, incorporating Unified

Modeling Language (UML) as a key tool. UML enhances

communication and documentation in software development

processes. It is particularly useful for object-oriented

programming, providing standardized visual models for

specifying, describing, constructing, and documenting

software systems [11]. Fig. 5 illustrates the Unified Process

Model.

Fig. 5. Unified Process Model.

The Unified Process (UP) Model consists of iterative

phases: Inception (establishing project requirements and

planning), Elaboration (refining requirements and system

architecture), Construction (actual system development),

Transition (smooth deployment into production), and

Production (ongoing support and enhancement). Each phase

includes planning and modeling, with a focus on

collaboration, communication, and continuous feedback.

This ensures the delivered software closely aligns with

client needs and evolves to meet changing requirements.

G. Object-Oriented Analysis and Design

Object-Oriented Analysis and Design (OOAD) is a

method- ology used to analyze and design information

systems from the perspective of classes and objects. It has

been applied in various contexts, including warehouse

management systems, university class rescheduling

applications, and internet interference complaint resolution

systems. OOAD offers a new approach to problem-solving

by creating models based on real-world concepts, with

objects as the foundation. This methodology employs

various diagrams such as use case, sequence, and activity

diagrams to analyze system requirements and design. The

implementation of OOAD has shown effectiveness in

addressing challenges in different domains, from improving

company performance in inventory management to

enhancing complaint resolution processes in government

agencies. Overall, OOAD proves to be a versatile and

efficient approach for system analysis and design across

diverse applications [12, 13].

This model, based on object-oriented programming

principles, involves several interconnected phases for

systematic software development. It begins with formulating

the problem, where project requirements and objectives are

documented. Next is the Object-Oriented Analysis,

identifying objects and their interactions to model the

system’s behavior and structure. This is followed by the

Object-Oriented Design, defining system architecture and

relationships between objects, emphasizing modularity and

encapsulation. A Reusability Survey identifies reusable

components to expedite development. If available, these

components are used in Construction and Testing. If not,

new components are developed and added to a reusable

com- ponents library. After development, the application is

tested, constructed, and installed. If client requirements are

unmet, the process iterates back to Object-Oriented

Analysis for further refinement. This approach ensures the

software evolves iteratively, meeting client needs while

promoting reusability and maintainability. Fig. 6 illustrates

the OOAD Model.

H. Joint Application Design (JAD)

Joint Application Design (JAD) is a collaborative

approach to system development that actively involves

stakeholders from the outset. One study applied JAD in

developing a website- based women’s clothing sales

information system, resulting in improved system quality

and solutions better aligned with user expectations and

business needs [14]. The method was integrated throughout

the development stages, including needs analysis, design,

and implementation. This approach aims to design

technologies that are both usable and useful for

individuals engaged in joint activity with machines and

other people.

The Joint Application Development is a collaborative

soft- ware development approach where clients work

International Journal of Computer Theory and Engineering, Vol. 17, No. 1, 2025

38

together to define requirements and design solutions

through four main phases. It starts with Defining Objectives,

outlining project goals to align with organizational aims and

client expectations. Next, Session Preparation involves

planning sessions by selecting participants, setting agendas,

and preparing materials. The core phase, Session Conduct,

facilitates workshops for clients to collaboratively

brainstorm, discuss, and prioritize requirements and design

features. Finally, Documentation captures session outcomes,

including requirements, decisions, and actions, for future

reference and development. This iterative approach fosters

communication, consensus-building, and rapid decision-

making, leading to software solutions that effectively meet

client needs. Fig. 7 illustrates the JAD Model.

Fig. 6. The Object-Oriented Analysis and Design (OOAD) Model.

Fig. 7. Phases of Joint Application Design (JAD).

I. Computer Aided Software Engineering (CASE)

Tools

Computer Aided Software Engineering (CASE) tools

play a crucial role in modern software development,

particularly in system analysis and design. These tools

automate various processes, reducing time and cost while

enhancing reliability and integrity. Modern CASE

methodologies emphasize analysis and design phases,

utilizing specialized tools to partially automate system

development through features like code generation and

database structure construction [15].

This tool comprises a suite of six interconnected com-

ponents designed to streamline and enhance various aspects

of the software development process. The components are:

Design Editor (creates visual representations of system de-

signs), Code Generator (automates translation of designs

into executable code), Report Generator (creates

comprehensive documentation), Design Translator

(facilitates seamless communication between design and

code), Design Analyzer (identifies potential issues in design

specifications), and Program Editor (responsible for

manual code modifications). These components are

integrated into a centralized Project Repository, serving as

the main hub for storing and managing project artifacts. This

model promotes productivity, improves quality, and

facilitates collaboration among team members, ultimately

contributing to the successful delivery of software projects.

Fig. 8 illustrates the CASE Tool Architecture.

Fig. 8. CASE Tool Architect.

J. Rapid Application Development (RAD) / Rapid

Systems Development (RSD)

Rapid Application Development (RAD) is a software

development methodology which focuses on rapid

prototyping and reducing planning time. Its implementation

aims to speed up the software development process and

enhance product quality. RAD is essentially an expedited

version of the traditional waterfall model, prioritizing

development over planning. It is well-suited for projects

divisible into modules, regardless of scale, and emphasizes

efficiency and effectiveness in delivering software

solutions [16].

This model focuses on rapid prototyping and iterative

development to speed up software delivery. It includes

several interconnected phases: Business Modeling

(understanding and documenting business processes and

requirements), Data Modeling (designing the data structure

and organization), Process Modeling (defining the system’s

logic and flow), Application Generation (rapidly creating

software prototypes using tools and frameworks), and

Testing and Turnover (ensuring the software meets quality

standards and is ready for deployment). By iteratively

International Journal of Computer Theory and Engineering, Vol. 17, No. 1, 2025

39

cycling through these phases, the model facilitates fast

development, quick feedback, and continuous refinement,

leading to the rapid delivery of functional software systems.

Fig. 9 illustrates the RAD Model.

Fig. 9. RAD Model.

K. Feature-Driven Development

Feature-Driven Development (FDD) is an agile

methodology that emphasizes iterative development and

quality features. The method is particularly suitable for

projects requiring feature parity across platforms and

efficient integration of functionalities [17]. In the broader

context of software engineering, feature-based analysis is

emerging as a valuable approach for understanding and

analyzing the machine learning development lifecycle,

offering potential for improved collaboration between

software engineering and machine learning experts [18].

This model is an iterative and incremental methodology

focused on delivering functional features in short iterations.

It involves several phases: first, developing an Overall

Model of the system to identify major components and their

interactions. Next is building a Feature List to prioritize and

organize functionalities. Then, Planning By Feature breaks

down features into smaller tasks, estimating effort, and

scheduling development. Design By Feature creates detailed

designs for each feature to address specific needs. Finally,

Building By Feature involves implementing, testing, and

integrating features incrementally. This approach enables

rapid development, continuous feedback, and timely

delivery of valuable features, ensuring high-quality software.

Fig. 10 illustrates the FDD Model.

Fig. 10. FDD life cycle.

L. Extreme Programming (XP)

Extreme programming is a type of an agile model

that was invented by Kent Beck in the year of 1996. He

introduced his works about the Extreme programming in a

much sophisticated and advanced form in the shape of a

book known as “Extreme Programming Explained”. It is

quite simple, uncomplicated, and more adaptable

methodology of development with the capacity to oversee

unclear, ambiguous, or quickly varying requirements. This

model emphasizes more on the user satisfaction [19].

Fig. 11 illustrates the Extreme Programming Model.

Fig. 11. Extreme Programming Model.

This agile software development model prioritizes

customer satisfaction, collaboration, and adaptability to

changing requirements. The process starts with Planning,

where project requirements are defined and tasks scheduled.

This is followed by Design, outlining the system’s

architecture and details. Coding involves developers

working in pairs to collaboratively write and review code.

Testing ensures features meet requirements and quality

standards. Notably, there is a release point between Planning

and Testing for mid-cycle deployment, allowing early

feedback and validation from clients. This iterative cycle of

planning, coding, testing, and releasing promotes

continuous improvement and refinement of the software.

M. Agile Method

Agile methodologies have become increasingly popular

in software development, particularly for web-based

information systems [20]. Among various Agile approaches,

Scrum and Extreme Programming have emerged as the

most widely used in recent years [21]. These methodologies

emphasize collaboration, flexibility, and iterative

development. While Agile methods offer numerous

advantages, they also present challenges in terms of

understanding and implementation, particularly for

practitioners and students. Therefore, comprehensive

tutorials and pedagogical tools are valuable for teaching and

applying Agile methodologies in systems analysis and

design. This model features iterative cycles of planning,

execution, and feedback. It starts with Planning, defining

and prioritizing project objectives and requirements. The

Design phase follows, involving the development, testing,

and release of software increments in short, time-boxed

iterations known as sprints. Regular releases enable clients

to review progress and provide feedback, which is

incorporated into subsequent iterations. This approach

ensures flexibility, adaptability, and continuous

improvement, leading to high-quality software that meets

evolving requirements and client needs. Fig. 12 illustrates

the Agile Method.

N. DevOps

DevOps, a concept integrating development and

operations, is gaining prominence in IT organizations due to

increasing customer demands and external threats [22]. It

involves cross- functional teams responsible for both

software development and operations, utilizing automation

to accelerate delivery processes [23]. The DevOps concept

can be represented as a system of entities encompassing

production, support, management, and their

interrelationships [24]. However, companies adopting

International Journal of Computer Theory and Engineering, Vol. 17, No. 1, 2025

40

DevOps often struggle with demonstrating control to

auditors due to decentralized decision-making and high

automation [23]. To address this, a situational control

frame- work has been proposed, suggesting suitable risk

mitigation practices based on an organization’s risk appetite

and DevOps maturity, often involving a mix of traditional

manual controls and automated controls [23]. Fig. 13

illustrates the DevOps Model.

Fig. 12. Agile Model.

Fig. 13. DevOps Model.

This model emphasizes collaboration and automation

throughout the software development lifecycle. It starts with

Planning, where project goals and requirements are defined.

This is followed by Code Creation, automated Testing, and

Packaging of deployable units. The Releases phase involves

deploying to production or staging environments with auto-

mated configurations. After release, Continuous Monitoring

ensures software performance, availability, and security. By

integrating development and operations, this model

promotes rapid delivery, increased reliability, and

continuous improvement, enabling efficient and effective

delivery of high-quality software.

III. FINDINGS AND ANALYSIS

This presents a comparative analysis of various System

Analysis and Design Methodologies employed in software

development. Through comparative analysis approach, it

seeks to unveil the differences of various methodologies that

are used in software development. The Project success in

software development is contingent upon an in-depth

understanding of methodologies, given the diverse

complexities inherent in these kinds of projects. This study

aims to clarify the different aspects and operational

dynamics of each methodology by delving deeply into them.

Flexibility, documentation, risk management, and

complexity emerge as critical considerations that influence

the adaptability, guidance, resilience, and feasibility of

methodologies in a variety of project settings.

When choosing the best System Analysis and Design

Methodologies (SADM), key factors like flexibility,

documentation, risk management, and complexity play a

crucial role. Flexibility ensures that the methodology can

adapt to evolving project needs and constraints, allowing

for adjustments as the project progresses. Comprehensive

documentation serves as a reference point for the entire

team, ensuring clarity, consistency, and continuity

throughout the project lifecycle. Effective risk management

is essential to anticipate, mitigate, and manage potential

challenges that could derail the project. Lastly,

understanding and managing complexity is vital to ensure

that the chosen methodology aligns with the project’s scale

and intricacy, avoiding unnecessary complications and

ensuring successful outcomes. The purpose of this study

is to provide software development practitioners and

decision- makers with useful insights based on empirical

research and real-world experiences, so they can make

decisions that will maximize project outcomes.

A. Flexibility

In Table 1, the waterfall model exhibits a low flexibility

due to its sequential nature which makes it challenging to

accommodate changes once the development process has

progressed. Alternatively, methodologies like Object

Oriented Analysis and Design (OOAD), CASE tools, Agile,

Extreme Programming (XP), DevOps and Rapid

Application Development offers a high flexibility by

emphasizing their iterative development which allows for

any frequent changes and adaptability to evolving

requirements. Whereas Prototyping and Joint Application

Design also score high in flexibility as they involve quick

iterations and clients involvement in the design process.

Table 1. Comparative Analysis of SADM

Comparative analysis of System Analysis and Design Methodologies

Methodologies Flexibility Documentation Risk Management Complexity

1. Waterfall Model Low High Moderate High

2. Spiral Model Moderate Moderate High High

3. Prototyping Model High High Low Moderate

4. Iterative Model Moderate to High Moderate Moderate Moderate

5. Unified Process Moderate to High High High High

6. OOAD High High Moderate High

7. JAD High Moderate Low Moderate

International Journal of Computer Theory and Engineering, Vol. 17, No. 1, 2025

41

8. CASE Tools Moderate High Moderate High

9. RAD High Low Low Low

10. FDD Moderate to High Moderate Moderate Moderate

11. XP High Low Moderate Moderate

12. Agile Method High Low to Moderate Moderate Moderate

13. DevOps High Moderate High High

B. Documentation

Table 1 illustrates that methodologies such as Unified

Process, Waterfall Model, and Object-Oriented Analysis

and Design (OOAD) prioritize comprehensive

documentation to ensure a clear understanding and

traceability of system requirements, design, and architecture.

Likewise, Computer Aided Software Engineering (CASE)

Tools uses an extensive documentation through automation

and tool-assisted processes. While on the other hand, Agile-

based methodologies, Extreme Programming, and Rapid

Application Development tend to have lower documentation

requirements, focusing more on the working software over

comprehensive documentation.

C. Risk Management

In Table 1, the Spiral Model is most notable for its

explicit emphasis on risk management through its iterative

development cycles, by incorporating risk analysis and

mitigation strategies. Agile methodologies, including

Extreme Programming and DevOps, also prioritize risk

management by promoting frequent feedback, adaptation,

and continuous improvement. Unified Process manages risk

through an iterative and incremental approach, which is

accompanied by rigorous documentation and control

mechanisms, whereas the Waterfall Model and Prototyping

Model may have a lower risk management due to their linear

or exploratory nature.

D. Complexity

In Table 1, methodologies such as Unified Process,

Object- Oriented Analysis and Design (OOAD), and

Computer Aided Software Engineering (CASE) Tools are

suited for projects that are complex due to their emphasis on

systematic analysis, design, and rigorous documentation to

manage their complexity effectively. The Spiral Model,

Agile methodologies, and DevOps all address complexity

through iterative development, collaboration, and

continuous integration practices. On the other hand, Rapid

Application Development and Joint Application Design may

be better suited for less complex projects due to their

emphasis on quick iterations and client involvement.

IV. CONCLUSION

In conclusion, the comparative analysis of System

Analysis and Design Methodologies in Software

Development reveals that each methodology offers unique

strengths and considerations across various aspects such as

flexibility, documentation, risk management, and

complexity.

According to the results and findings the researchers

determined the suitability of these methodologies in

different projects. The Waterfall Model, Unified Process,

and Object- Oriented Analysis and Design are well-suited

for projects with well-defined requirements and a focus on

rigorous planning and control. The Spiral Model and

Iterative Model are suitable for projects with evolving

requirements or high uncertainty, which allows them for the

continuous refinement and adaptation. The Prototyping

Model, Rapid Application Development, and Feature

Driven Methodologies are ideal for projects with fast-

changing requirements or tight deadlines, which enables

rapid prototyping, iterative development, and feature-centric

delivery. The Agile Method, Extreme Programming, and

DevOps are suited for dynamic environments where

customer or client feedback and rapid response to

change are essential, fostering teamwork, flexibility, and

innovation. The Joint Application Design and Computer

Aided Software Engineering Tools facilitate collaboration

and efficiency in software development, they provide tools

and methodologies to streamline development processes and

promote stakeholder involvement in the design and

development phases.

Overall, the choice of methodology depends on project-

specific factors such as its requirements, constraints, and

organizational culture. Organizations should carefully

evaluate the strengths and considerations of each

methodology to determine what is the most suitable

approach for their software development projects.

Additionally, hybrid approaches that combine elements

from multiple methodologies may offer benefits in

addressing diverse project needs and maximizing the

project’s success. For more in-depth probability—and

simulation-based research, the reader is referred to [25, 26],

and including Quality Assurance and Implementation

to [27].

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

E.T.S. conducted the research and wrote the paper; J.A.C.

provided valuable insights on the paper’s content. All

authors had approved the final version.

ACKNOWLEDGMENT

The authors would like to extend their gratitude to the

authors of the research papers referenced in this study,

whose work provided valuable insights for conducting this

research.

REFERENCES

[1] DOOR3. (November 2023). Systems analysis and design: Exploring

modern systems. DOOR3. [Online]. Available:

https://www.door3.com/blog/system-analysis-and-design

International Journal of Computer Theory and Engineering, Vol. 17, No. 1, 2025

42

[2] J. Hudgens. The importance of systems analysis and design for

solving real world software problems. [online]. Available:

https://vtm.devcamp.com/full-stack-development-javascript-

python/guide/importance-systems-analysis-and-design-for-solving-real-

world-software-problems

[3] R. Hoehndor, “Design and analysis of a system,” Journal of

Information Technology & Software Engineering, p. 1, 2021.

[4] A. S. W. Jelantik, P. T. H. Permana, and N. M. Estiyanti,

“Analysis and design of a point-of-sale system using agile

development methods at Eka Putra Sukawati Store,” Jutisi Jurnal

Ilmiah Teknik Infor- matika Dan Sistem Informasi, vol. 10, no. 2, p.

185, Aug. 2021. doi: 10.35889/jutisi.v10i2.660

[5] N. Rofiq, A. Perdananto, and N. Jaya, “Application of the Waterfall

Model in a waste bank application,” Infotech Journal of Technology

Information, vol. 7, no. 1, pp. 19–26, Jun. 2021. doi:

10.37365/jti.v7i1.102

[6] N. Yahya and S. S. Maidin, “The Waterfall Model with agile

scrum as the Hybrid Agile Model for the software engineering team,”

in Proc. 2022 10th International Conference on Cyber and IT

Service Management (CITSM), Sep. 2022. doi:

10.1109/citsm56380.2022.9936036

[7] M. Malikov, F. A. Aloraini, H. Kavak, W. G. Kennedy, and A.

Crooks, “Developing a large-scale agent-based model using the

spiral software development process,” in Proc. 2023 Annual

Modeling and Simulation Conference (ANNSIM), 2023, pp. 282–293.

[8] Y. Firmansyah, R. Maulana, and D. O. Hutagalung,

“Implementation of the Prototyping Model in the development of a

spare parts sales information system,” Jurnal Sistem Informasi

Akuntansi, vol. 2, no. 1, pp. 63–71, Mar. 2021. doi:

10.31294/justian.v2i01.366

[9] N. Lasminiasih, G. E. Saputra, N. R. B. Utomo, and N. E. Wiseno,

“Using prototyping method for analysis and design of information

systems for student registration in Sekolah Master,” International

Journal Science and Technology, vol. 1, no. 2, pp. 19–29, Jul. 2022.

doi: 10.56127/ijst.v1i2.140

[10] H. Prabowo, F. L. Gaol, and A. N. Hidayanto, “Comparison of the

system development life cycle and prototype model for software

engineering,” International Journal of Emerging Technology and

Advanced Engineering, vol. 12, no. 4, pp. 155–162, 2022.

[11] A. Gadhi, R. M. Gondu, C. M. Bandaru, K. C. Reddy, and O.

Abiona, “Applying UML and machine learning to enhance system

analysis and design,” International Journal of Communications

Network and System Sciences, vol. 16, no. 5, pp. 67–76, Jan. 2023.

doi: 10.4236/ijcns.2023.165005

[12] A. Mulyana, “Design of a Warehouse Stock Management Information

System using Object-oriented analysis and design method,” Jurnal

Informatika Kesatuan, vol. 2, no. 2, pp. 239–248, Sep. 2022. doi:

10.37641/jikes.v2i2.1832

[13] I. Permatahati, R. T. R. L. Bau, H. A, and S. S. R. Abdul, “Enhancing

internet interference complaint resolution: A case of Object-oriented

systems approach at Kominfo Kota Gorontalo,” Jurnal Riset Sistem

Dan Teknologi Informasi, vol. 1, no. 2, pp. 12–21, Aug. 2023. doi:

10.30787/restia.v1i2.1261

[14] R. T. Aldisa, “Application of the Joint Application Design (JAD)

method in developing a women’s clothing sales information system

website based at Aldisa Boutique’, West Science Interdisciplinary

Studies, vol. 2, no. 3, pp. 726–731, 2024.

[15] И. И. Ляшенко and Е. В. Прокопец, “On the use of modern

methods of conceptual design for information systems,” Bulletin

of Toraighyrov University Physics & Mathematics series, 2023.

[16] M. A. Fauzi, H. Tribiakto, A. Moniva, F. Amir, I. K. Ilyas, and E.

Utami, “Systematic literature reviews on rapid application

development information system,” Bulletin of Comp. Sci. Electr.

Eng., vol. 4, no. 1, pp. 57–64, Jun. 2023.

[17] A. R. Chrismanto, A. Wibowo, L. Chrisantyo, and M. N.

A. Rini, “Implementation of feature driven development to

facilitate feature quality and adaptation in the development of

dutatani web and mobile portal,” Jurnal Edukasi dan Penelitian

Informatika (JEPIN), 2022.

[18] B. C. Hu and M. Chechik, ‘Towards feature-based analysis of the

machine learning development lifecycle,” in Proc. 31st ACM Joint

European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, San Francisco, CA,

USA, 2023, pp. 2087–2091.

[19] A. Akhtar, B. Bakhtawar, and S. Akhtar, “Extreme programming

vs scrum: A comparison of agile models,” International

Journal of Technology, Innovation and Management, vol. 2, no. 2,

Oct. 2022. doi: 10.54489/ijtim.v2i2.77

[20] S. H. Nova, A. P. Widodo, and B. Warsito, “Analysis of Agile

Methods in the development of information systems based on

website: Systematic literature review,” Techno. Com., vol. 21, no.

1, pp. 139–148, Feb. 2022. doi: 10.33633/tc.v21i1.5659

[21] L. Trihardianingsih, M. Istighosah, A. Y. Alin, and M.

R. G. Asgar, “Systematic literature review of trend and

characteristic agile model,” Jurnal Teknik Informatika, vol. 16, no.

1, pp. 45–57, 2023.

[22] R. Amaro, R. Pereira, and M. M. Da Silva, “Capabilities and

metrics in DevOps: A design science study,” Information &

Management, vol. 60, no. 5, p. 103809, Jul. 2023. doi:

10.1016/j.im.2023.103809

[23] O. H. Plant, J. Van Hillegersberg, and A. Aldea, “Rethinking IT

governance: Designing a framework for mitigating risk and

fostering internal control in a DevOps environment,” International

Journal of Accounting Information Systems, vol. 45, p. 100560, Jun.

2022. doi: 10.1016/j.accinf.2022.100560

[24] P. Maslianko and I. Savchuk, “DevOps–concept and structural

representation,” KPI Science News, no. 4, pp. 39–51, Feb. 2022. doi:

10.20535/kpisn.2021.4.261938

[25] W. Kramer, M. Sahinoglu, D. Ang, “Increase return on investment

of software development life cycle by managing the risk—A case

study,” Defense AR Journal, vol. 22, no.2, pp. 174–191, April

2015.

[26] M. Sahinoglu, S. Stockton, S. Morton, M. Eryilmaz, “Metrics to

assess and manage software application security risk,” in Proc.

International Conference on Security and Management (SAM),

The Steering Committee of The World Congress in Computer

Science, (WorldComp), Las Vegas, NV, USA, July 20, 2014, pp.

275–282.

[27] K. E. Kendall and J. E. Kendall, Systems Analysis and Design, 8th

Ed., Pearson Education Inc., Prentice Hall, New Jersey, 07458,

2011.

Copyright © 2025 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits

unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited (CC BY 4.0).

International Journal of Computer Theory and Engineering, Vol. 17, No. 1, 2025

43

https://creativecommons.org/licenses/by/4.0/

