
Abstract—Tuberculosis is an infectious disease that usually 
affects the lungs. However, early diagnosis of tuberculosis 
increases the chance of cure. Practical analysis of lung 
Computed Tomography (CT) images from tuberculosis patients 
is one of the primary methods used to determine the severity of 
the disease. Handcrafted CT image analysis techniques such as 
grey level concurrence matrix, Fourier transform, etc, used for 
medical image pre-processing techniques have been ineffective 
due to their limitations in extracting discriminating features 
from the images. The application of deep learning, a branch of 
machine learning, is gaining increased acceptance in medical 
image analysis. The challenges such as high cost, human error, 
and slow speed encountered during manual labelling are 
gradually eliminated in various scales with deep learning 
techniques. This study explores two deep-learning approaches 
to classify TB severity in Lung CT Images. Two-Dimensional 
(2D) and three-Dimensional (3D) convolutional neural networks 
(CNNs) were used separately to classify the ImageCLEF 2021 
lung CT dataset into ‘High’ and ‘Low’ severity categories. The 
proposed 3D-CNN in this study outperformed the 2D CNNs; it 
produced an overall average accuracy and Area Under the ROC 
curve (AUC) of 0.9929 and 0.9982 respectively. 
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I. INTRODUCTION

The 2022 World Health Organisation (WHO) global 
tuberculosis (TB) report stated an estimated TB incidence of 
10.6 million cases in 2021, making TB a global health 
challenge [1]. Also, with the increase in the reports of Multi-
Drug-Resistant TB (MDR-TB), the havoc of TB on humanity 
is increasingly becoming an unbearable Challenge. The 
treatment of TB in the last 50 years has centred on the use of 
a short-course chemotherapy regimen. This technique has 
achieved little result in treating TB [2].  

The goal of the WHO remains focused on achieving a 
timely and effective diagnosis of TB, but the current 
technologies have limited support to actualize the WHO goal. 

The current technologies are costly and complicated and 
display poor sensitivity. Hence, there is an urgent need to 
develop modern diagnostic techniques for treating TB to 
meet the WHO goal. In recent years, deep learning [3] 
techniques have been applied in medical image processing 
for various tasks ranging from disease detection to 
segmentation and image classification. Convolutional Neural 
Networks (CNN) [4] have achieved outstanding results in 
medical-related applications. Deep learning techniques have 
been successfully applied with the availability of ImageNet 
pre-trained networks on hundreds of thousands of images for 
medical image analysis [5]. Researchers have employed 
various deep-learning approaches to classify medical CT 

images for TB severity assessment [6, 7]. Some Studies have 
decomposed 3D volumes of interest into 2D views and 
augmented the images before training CNN architectures on 
the image. Other studies have combined 2D CNN to analyze 
3D medical images [8]. 

This study proposes a unique 14-layer 3D CNN model and 
compares its performance with six popularly used pre-trained 
CNN models to classify TB-infected lung CT images. The 
images were classified into ‘High’ and ‘Low’ severity 
categories. The six pre-trained neural networks employed 
include VGGNet-16 [9], VGGNet-19 [10], DenseNet 121 
[11], GoogleNet [12], ResNet-50 [13] and Inception V4 [14]. 
Both the proposed 3D CNN and the pre-trained neural 
networks were separately used as feature extraction models 
used to extract deep discriminative image features from the 
dataset. The extracted image feature vectors were later used 
to classify the testing images into two severity categories 
through the Softmax classification layer. 

We evaluated both the 2D pre-trained CNN and our 
proposed 3D CNN model on the ImageCLEF 2021TB lung 
CT image dataset [15]. The evaluation results from the 
classification model were analyzed and compared with some 
recently employed state-of-the-art 3D CNN models used on 
similar datasets. 

II. LITERATURE REVIEW

For over a decade, several studies have employed 2D and 
3D CNNs for medical image analysis. The architecture of 
CNN models was used, initializing the training with random 
weights. Some of the studies that used pre-trained 2D CNN 
for medical image disease analysis, such as detection, 
segmentation and classification, include [16–19], and [20]. 
Others include the automatic classification of pulmonary 
nodules in computed tomography [21], federated learning 
approach with pre-trained deep learning models for COVID-
19 detection [22], early prediction of lung cancer using pre-
trained neural networks [23], TB diagnosis using CNN [24], 
and automatic analysis of active and non-active TB using a 
pre-trained neural network [25]. 

Other studies employed pre-trained CNN as a transfer 
learning mechanism on a new 3D CNN. Some of these 
studies include improving TB severity assessment in CT 
Images [7], lung CT automatic identification in CT images 
[24], and detection of tuberculosis diseases using pre-trained 
CNN [26]. 

However, despite the outstanding results reported in many 
of these works, the use of 2D pre-trained neural networks has 
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been limited. This is because lung CT images are 3D in 
structure, and analyzing them with 2D CNN leads to the 
potential loss of spatial contextual information. In most cases, 
the third dimension of 3D images is often ignored by the 2D 
CNN during feature extractions [27]. Table 1 shows the 
summary of some of the recently employed CNN models for 
medical image analysis. 

This study alleviates the limitation of 2D pre-trained 
neural networks in lung 3D CT scan images for TB severity 
assessment by exploring the potential of a 3D CNN model. 
Our proposed 3D CNN model provides a more robust 
technique for analyzing lung CT scan diseases such as TB. 

Table 1. Some state-of-the-art-3D-CNN Models used for different medical 
image modalities 

Author Modality ACC 

[16] X-ray 0.9464 

[7] CT 0.8119 

[18] CT 0.8671 

[20] CT 0.9649 

[21] CT 0.9534 

[28] X-ray 0.090 

[24] CT/X-ray 0.9447 

[17] X-ray 0.9720 

[29] CT 98.25 

III. MATERIALS  

A.  ImageCLEF 2021 Lung CT Dataset 

The ImageCLEF 2021 CT datasets [30] comprise 1,338 
TB patients. The training images are 917, while the testing 
images are 421. Each CT image is captured from one unique 
patient and corresponds to only one TB type. As obtained in 
the ImageCLEF2019 TB challenge, additional meta-
information containing the CT report was provided. The 
entire dataset was used to evaluate the proposed models in 
this study. The testing dataset was classified into two severity 
categories: the ‘HIGH’ and ‘LOW’ categories. From five 
discrete values of 1 to 5, the values 1, 2, and 3 belong to 
‘HIGH’, and 4 and 5 belong to the ‘LOW’ severity category. 
Fig. 1 shows examples of lung TB CT slices in ImageCLEF 
2021 dataset. 

 
Fig. 1. Examples of TB lung CT slices in the ImageCLEF 2021 dataset. 

B. Data Augmentation 

Four different random transformations were employed to 
augment the training datasets. The random transformation 
includes rotation (90 to 90), shear (−30 to 30), translation 
(−15 to 15), and cropping. After the augmentation, the 

training dataset increased to four times the original size. In 
total, the training dataset increased to 3,668 images. Fig. 2 
shows a TB-infected lung CT scan before and after 
augmentation.  

 
Fig. 2. A TB-infected lung CT scan sample undergoing four different 

random transformations. 

IV. METHODS 

The methodology for this study consists of the 2D pre-
trained CNNs and our proposed 3D CNN. First, each 
component of the framework, which is the pre-trained  2D 
CNNs and the proposed 3D CNN model, is explained. 
Second, the components of our proposed 3D CNN are 
described in detail. All six pre-trained neural networks 
consist of 1000 classes, trained on 1.28 million images and 
100,000 testing images evaluated on 50,000 validation 
images. Each of the CNNs was used separately to extract the 
image features. The extracted features were later passed into 
the Softmax classification layer to be classified into High and 
low-severity classes. Fig. 3 depicts the general architecture 
of the 2D CNN Model. 

 
Fig. 3. The general architecture of the 2D CNN model. It shows a lung CT 

scan as input to the model. 

A. VGGNet-16 

VGGNet-16 [9] was first mentioned by two researchers at 
the University of Oxford and achieved 97% (top 5 test) 
accuracy in the ImageNet challenge. ImageNet consists of 
over 14 million images distributed across 1000 classes. 
Compared with AlexNet [31], which uses an 11×11 filter size, 
VGGNet-16 uses a smaller filter of 3×3 size. The smaller 
filter size helps reduce the network parameters, which 
improves the efficiency of the model 

B. VGGNet-19 

VGGNet-19 [10] is a deeper architecture compared with 
VGGNet-16 and has more weight. It comprised 19 deep 
trainable layers for convolution. The 19 trainable layers are 

International Journal of Computer Theory and Engineering, Vol. 17, No. 1, 2025

22



fully connected with max pooling and dropout layers. It has 
fully connected nodes of size 574 M, whereas VGGNet-16 
has fewer fully connected nodes of size 533 M. 

C. DenseNet 101 

DenseNet 121 [11] has been employed by various 
researchers for image classification and has achieved state-
of-the-art results on different datasets. DenseNet family is 
known for its ability to reuse features from deep CNN 
architectures. DenseNet uses its feature maps as input to the 
next one while treating the feature maps of all preceding 
layers as independent input for each layer. 

D. GoogLeNet 

The GoogLeNet architecture [12] has a deeper architecture 
compared with AlexNet [31]; It comprises 1×1 convolution 
and global average pooling. The global average pooling is 
used at the end of the network, and it takes a feature map of 
a dimension of 7×7 and averages it to 1×1. This helps to 

decrease the number of parameters. GoogleNet has an overall 
architecture of 22 layers and two auxiliary classifier layers. 

E. ResNet-50 

ResNet-50 was developed to allow for the training of very 
deep networks consisting of hundreds of layers. Resnet-50 
consists of 50 layers divided into five blocks. Each of the 50 
layers consists of residual blocks that allow information 
preservation from previous layers. The residual blocks help 
the networks learn better input data representations. Aside 
from the convolutional layer, residual and fully connected 
layers are present in Res-Net-50. They also consist of skip 
connections constructed by adding a previous layer’s output 
to the later layer’s output. 

The six pre-trained 2D CNNs were used first to extract the 
deep image features. The extracted feature vector is passed 
into the classification layers to classify the testing dataset into 
two categories. Fig. 4 shows the architecture of the pre-
trained 2D CNNs classification process. 

 

Fig. 4. The architecture of the pre-trained 2D CNNs, showing the input lung CT, the feature learning and the classification layers. 
 

F. Inception V4 

Inception V4 [14] is a deep convolutional network, the 
fourth iteration of the Inception family of networks. The 
Inception V4 efficiently combines various features from the 
previous Inception architectures. Unlike the previous 
Inception models, Inception-v4 is without residual 
connections. It has a more uniform, simplified architecture 
when compared with Inception V3. Fig. 5 shows the overall 
architecture of Inception V4. 

G. Our Proposed 3D CNN 

The proposed 3D CNN for this study is a 14-layer 3D CNN, 
which comprises three 3D convolutional (CONV) layers. The 
first layer consists of 64 filters, the second layer consists of 
128 filters and the third layer with 256 filters. It has a kernel 
size of 3×3×3. Each CONV layer is followed by a max-

pooling (MAXPOOL) layer, with a stride of 2 and ReLU 
activation. The model ends with a batch normalization (BN) 
layer. Our 3D CNN model consists of three CONV-
MAXPOOL-BN modules. The output from the feature 
extraction block is passed into a 512-neuron fully connected 
layer. Two dropout layers were used, having an effective 
dropout rate of 60%.  

The SoftMax activation function [32] with two neurons 
served as the last activation function, used to classify the 
dataset into two classes, which are the ‘High’ and ‘Low’ 
severities. To avoid too many parameters and overfitting [33] 
of our 3D CNN model, we keep the network relatively simple, 
with only 8,397,992 learnable parameters. The same 
classification process applied to the pre-trained 2D CNN 
networks was used for our 3D CNN model. Fig. 5 shows the 
architecture of our proposed 3D CNN model. 
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Fig. 5. The architecture of our proposed 14-layer 3D CNN. It consists of 3 convolutional layers, MaxPool layers, dense, and dropout layers. It classifies the 

input lung slice into ‘High’ or ‘Low’ severity categories. 
 

The SoftMax layer is an integral part of a neural network. 
The SoftMax activation function provides non-linearity to 
the neural network. There are different types of activation 
functions, but the SoftMax activation function is the most 
used in CNN. The SoftMax activation function calculates the 
relative probabilities to determine the final probability value. 
The SoftMax activation function was used to determine the 
two categories of the testing dataset. Unlike Sigmoid, which 
is used for multi-class classification, the Softmax 
classification layer provides a range of probabilities in a 
vector. Each vector represents the probability for one of the 
classes. 

V. EXPERIMENTAL RESULTS 

This section provides detailed evaluation results of the 
testing dataset on the pre-trained 2D CNNs and the proposed 
3D CNN. It explains the evaluation metrics, hyperparameters, 
cross-validation, and ablation study of previous state-of-the-
art methods. 

A. Evaluation Metrics 

Popular classification evaluation metrics, which include 
ACC and The Area Under the ROC Curve (AUC), were used 
to evaluate the 2D pre-trained neural networks and the 3D 
CNN on the dataset. AUC and ACC metrics were selected for 
the evaluation as demanded by the ImageCLEF challenge 
rule. The priority lies on the AUC. All the works submitted 
for the ImageCLEF TB SVR challenge used the same metrics 
and were evaluated as a binary classification task. 

B. Hyperparameter 

The values most appropriate for the convergence of 
models are chosen for all the models. We adopt the hit-and-
trial method to explore all the possibilities of determining the 
best parameter. Also, the hit and trial method was used to 
determine the kernel size and the number of filters. We 
experimented with various commonly used kernel sizes, such 
as 3×3 and 5×5, and observed that a kernel size of 3 is most 
appropriate for the final experiment. An early stopping 
method that terminates the training when the validation loss 
increases was employed to choose the number of training 
epochs. 

Since the weight of a network adjustment with the gradient 
loss is determined by the learning rate, it is essential to 
choose the learning rate carefully. The learning rate for the 

experiment was examined between the range of 0.0001 and 
0.01 while keeping all other hyperparameters the same. 
Relatively small batch sizes were used to converge the model 
[34] rapidly.  Large batch size, though, speeds up the training 
process; it consumes more memory space [35]. The 
experiment used a 20% dropout rate to avoid overfitting. 
Randomly chosen neurons in the training phase were ignored 
by the dropout technique. However, the dropout technique 
temporarily disconnects the neurons that were ignored during 
the forward past to prevent any changes to their weights 
during the backward pass. TB severity assessment is a binary 
classification task. Therefore, the binary cross-entropy 
function was used as the objective function. Softmax 
classifier assigns a probability distribution to each category. 
The Softmax classifier outputs values 0 and 1, representing 
the number of categories (‘High’ and ‘Low’). Table 2 shows 
the summary of Hyperparameters used in this study. 

Table 2. Hyperparameters of our proposed 3D CNN 

Hyper-parameter 3D-CNN 

Learning rate 0.0001 

Batch size 20 

Optimizer Adam 

No. of epochs 60 

Activation function ReLU/ Softmax 

Dropout 0.2 
Loss function Categorical cross-entropy 

C. Cross Validation 

A five-fold cross-validation was employed to determine 
the final ACC and AUC of the 2D pre-trained CNN models 
and our proposed 3D-CNN on the dataset. The training and 
testing datasets were summed together and divided into five 
groups. While one group served as the testing dataset per 
iteration, the other four groups served as the training dataset. 
The process was repeated until five iterations were completed, 
and each group served as a testing set. The average value was 
chosen for each of the metrics. Table 2 shows the ACC cross-
validation comparison result, while Table 4 shows the AUC 
cross-validation results across the five folds. Table 5 
summarizes the average ACC and AUC performance of the 
2D and 3D CNN models. It shows the processing time per 
test and the testing time per epoch. 

From the results of the cross-validation in Tables 3 and 4, 
it can be observed that our proposed 3D CNN outperformed 
the pre-trained 2D CNN models. The proposed 3D CNN 
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generated an overall ACC of 0.9929 and an AUC of 0.9982. 
The second best-performed model, which is the Inception V4 
model, produced an average ACC of 0.9857 and an average 
AUC of 0.9837. Our proposed 3D CNN improved on the 

Inception V4 model with a difference of 0.0072 in ACC and 
0.0145 in AUC values. Fig. 6 shows the AUC curve of our 
proposed 3D CNN model. 
 

Table 3. Five-fold cross-validation of ACC on the 2D CNNS and the proposed 3D CNN model 

Group VGGNet-16 VGGNet-19 DesnseNet 121 Google-Net ResNet-50 Inception V4 Proposed 3D CNN 

1 0.9772 0.9767 0.9737 0.9799 0.9835 0.9848 0.9906 
2 0.9732 0.9755 0.9732 0.9733 0.9822 0.9858 0.9924 
3 0.9712 0.9796 0.9894 0.9716 0.9853 0.9845 0.9978 
4 0.9792 0.9793 0.9891 0.9806 0.9817 0.9867 0.9919 
5 0.9808 0.9795 0.9812 0.9622 0.9878 0.9867 0.9918 

Avg. 0.9763 0.9781 0.9813 0.9735 0.9840 0.9857 0.9929 

Table 4. Five-fold cross-validation of AUC on the 2D CNNs and the proposed 3D CNN model 

Group VGGNet-16 VGGNet-19 DesnseNet 121 Google-Net ResNet-50 Inception V4 Proposed 3D CNN 

1 0.9779 0.9767 0.9837 0.9771 0.9735 0.9848 0.9988 
2 0.9788 0.9755 0.9823 0.9783 0.9742 0.9858 0.9957 
3 0.9728 0.9796 0.9897 0.9699 0.9865 0.9845 0.9979 
4 0.9821 0.9793 0.9897 0.9721 0.9899 0.9867 0.9992 
5 0.9831 0.9795 0.9897 0.9835 0.9887 0.9867 0.9996 

Avg. 0.9789 0.9781 0.9870 0.9762 0.9826 0.9837 0.9982 

 
Fig. 6. The AUC curve of our proposed 3D CNN model. 

Table 5. Summary of the evaluation performance among the 2D CNNs and 
the proposed 3D CNN 

Model 
ACC 
(%) 

AUC 
(%) 

 
Processing   
time/test 

(sc) 

Testing 
time/epoch 

(sc) 
VGGNet-16 0.9763 0.9789  2.20 59.23 
VGGNet-19 0.9781 0.9790  2.22 59.11 

DenseNet 121 0.9813 0.9870  1.97 58.90 
GoogLeNet 0.9735 0.9762  2.32 59.22 
ResNet-50 0.9840 0.9826  1.76 57.21 

InceptionV4 0.9857 0.9837  1.34 53.54 
Proposed 3D 
CNN Model 

0.9929 0.9982  
 

0.95 
 

49.22 

D.  Evaluation Performance Comparison of the 
Proposed 3D CNN with Some State-of-the-art CNN 
Models on Similar Datasets 

The experimental result of our proposed 3D CNN was 
further compared with some recently used state-of-the-art 
CNN methods on lung CT and X-ray images for tuberculosis 
severity assessment. Table 6 shows a detailed comparison of 
the state-of-the-art techniques. 

 
 
 

Table 6. Comparison of our proposed 3D CNN model with recently used 
state-of-the-art CNN techniques. 

Author Modality ACC 

[36] CT 0.6750 

[7] CT 0.8119 

[17] X-ray 0.9720 

[18] CT 0.8671 

[20] CT 0.9649 

[21], CT 0.9534 

[28] X-ray 0.090 

[24] CT/X-ray 0.9447 

[37] CT 0.9690 

[29] CT 0.9105 

Our 3D CNN CT 0.9929 

Overall, the proposed 3D CNN model generated an ACC 
of and an AUC of 0.9929 and 0.9982. When compared with 
the ACC and AUC values of the pre-trained 2D CNN, it can 
be observed that the proposed 3D CNN produced a higher 
value difference of 0.0072 ACC and 0.0145 AUC. This is a 
significant difference considering the various limitations, 
such as inter-class similarity associated with the medical 
image domain. In addition, the proposed 3D CNN has a lower 
processing time per test and testing time per epoch of 0.95 
and 49.22 respectively. This is due to our diligence in 
selecting the best hyperparameters for the final experiment”. 
The ablation study in Table 6 shows that our proposed 3D 
CNN has the highest ACC and AUC values compared with 
the recently used similar techniques. 

E.  Analysis of the Misclassified Testing Images Using 
the Confusion Matrix 

The misclassified images on our proposed 3D CNN and 
the best performer on the pre-trained 2D CNNs were further 
analysed using the confusion matrix [38]. The confusion 
matrix shows the number of correctly classified images and 
the number of misclassified images. It calculates the True 
Positive (TP), the True Negative (TN), the False Positive (FP) 
and the False Negative (FN). Table 7 shows the formula for 
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ACC and the error rate of the confusion matrix. 

Table 7. The ACC and Error rate formula using the confusion matrix 

Accuracy (Recognition rate) Error Rate (Misclassification) 

(TP+TN)/(TP+FP+TN+FN) (FP+FN)/ (TP+FP+TN+FN) 

F. Evaluation of the Accuracy and the Error Rate  

Fig. 7 shows the confusion matrix of the Inception V4 and 
our proposed 3D CNN on the ImageCLEF 2021 testing 
dataset. It can be observed that the Inception V4 model has a 
total of six misclassified images, while our proposed 3D 
CNN has only three misclassified testing images. The 
Inception V4 generated an error rate of 0.0142, while our 
proposed 3D CNN produced a lesser error rate of 0.0071. 

 
(A) 

𝐴𝐶𝐶 =
ଶଷାଵହଶ

ସଶଵ
 = 0.9857 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
ହାଵ

ସଶଵ
 = 0.0142 

 
 

(B) 

𝐴𝐶𝐶 =
ଶାଵ

ସଶଵ
 = 0.9929 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
ଶାଵ

ସଶଵ
 = 0.0071 

Fig. 7. The confusion matrix of the Inception V4 model (A) and our proposed 
3D CNN model (B). It shows the values for ACC and the error rate. 

E. Implementation Details 

The proposed model’s framework comprises Window10 
Pro, GPU: NVIDIA Tesla K40c, memory: 12.0 GB, Image 
processing: Python 3.8, OpenCV 3.10, and NumPy 1.6. 

VI. DISCUSSION AND CONCLUSION 

In this study, we have compared two different approaches 
to TB severity assessment in lung CT images. Firstly, we 
explored the potential of six different 2D pre-trained neural 
networks, and secondly, we proposed a new 3D CNN. The 
models were evaluated on the ImageCLEF 2021 TB dataset 
using the ACC and AUC classification metrics. From the 
experimental evaluation results of the pre-trained CNN, it 
can be observed that the Inception V4 model has the highest 

ACC and AUC values of 0.9857 and 0.9837 respectively. 
Our proposed 3D CNN produced higher ACC and AUC 
values compared with the Inception V4 network. It generated 
ACC and AUC values of 0.9929 and 0.9982 respectively. In 
addition, our proposed 3D CNN has the lowest processing 
time per test of 0.95 and testing time per epoch of 49.22. 

Our proposed 3D CNN model, compared with the 2D pre-
trained CNNs, prevented the loss of contextual information 
associated with 2D CNNs in analyzing 3D images such as 
lung CT images. Our proposed 3D CNN is a robust 14-layer 
CNN model with relatively low parameters. The low 
parameters and the dropout employment help prevent 
overfitting of the model. It enhances the model performance 
in efficiently classifying the testing dataset into the ‘High’ 
and ‘Low’ TB severity categories.  

The analysis of the misclassified testing images using the 
confusion matrix showed that our proposed 3D CNN has the 
lowest error rate and fewer misclassified images. In addition, 
the five-fold cross-validation method employed in this study 
improves our proposed 3D CNN robustness. 
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