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Abstract—Tick-borne diseases are a significant health risk to 

humans and animals worldwide. It is important to understand 

the environmental and climatic factors that contribute to tick 

occurrence rates in order to reduce the proliferation of tick-

borne diseases. Using machine learning and spatial indexing 

techniques, this study covers tick occurrence rates in Europe 

over the last 20 years to understand the environmental and 

climatic factors that contribute to Ixodes ricinus tick abundance. 

We used biodiversity databases to study land cover categories, 

climate, vegetation index, and sociological factors. Areas with 

agriculture and natural vegetation, especially broad-leaved 

forests, had the strongest tick correlation. Waterways and 

pastures also showed significant positive correlations, indicating 

tick habitats. Ticks have moderate associations with urban 

green spaces, industrial units, and mixed forests suggesting 

their presence in ecologically disturbed habitats. Geoclimatic 

factors namely Normalised Difference Vegetation Index and 

rainfall, showed weak to negative correlations with tick 

population, indicating that they were less important than 

previously assumed. Linear Regression, Decision Tree, Random 

Forest, and Support Vector Machine were compared. We 

found that feature set and outlier presence significantly 

affected model performance. After removing outliers, Linear 

Regression performed best for land use features, with an R² 

value of 0.81, Normalised Root Mean Square Error (NRMSE) 

of 1.56, Scatter Index (SI) of 1.56, and Mean Absolute 

Percentage Error (MAPE) of 1.22. Outlier exclusion improved 

the model performance results. This research emphasises the 

importance of specific land uses in predicting the dynamics of 

tick populations. Our findings lay the groundwork for focused 

intervention strategies to reduce the spread of tick-borne 

diseases using an innovative and intelligent approach, while 

also emphasising the need for further investigation into the 

complex interactions between environmental factors and tick 

abundance. 

 

Keywords—tick-borne diseases, Ixodes ricinus, linear 

regression, decision tree, random forest, support vector machine 

I. INTRODUCTION 

Ticks have a vast influence on global human and 

veterinary health [1]. The survival of these parasites 

depends on them feeding from a suitable host to obtain 

their blood meals. During this process of feeding, they 

can transmit several pathogens. In Europe, the most 

frequently transmitted tick-borne pathogen is Borrelia 

burgdorferi sensu lato (the causative agent of Lyme 

Disease/Borreliosis). Other pathogens of increasing concern 

in Europe include Tick-borne Encephalitis virus, Anaplasma 

phagocytophilum, Rickettsia species and Babesia  

species [2–4]. 

In Europe, Ixodes ricinus (the most common tick species) 

populations are increasing over time thus raising the risk of 

pathogen transmission [4, 5]. It has been hypothesised that 

climatic factors like temperature and rainfall and habitat 

factors including vegetation, land cover features, and habitat 

fragmentation might play a major role as well [5]. However, 

to fully comprehend this, more insights are needed. 

Machine Learning (ML) applications have become 

increasingly valuable in analysing vector-borne infections 

because they can handle complex multidimensional  

datasets [6]. These tools will allow for better prediction and 

early warning systems for disease outbreaks since they 

analyse data from multiple sources hence promoting 

proactive public health responses [7]. Moreover, ML 

techniques help capture important environmental, climatic, 

and socio-economic predictors which govern the spread of 

vector-borne disease, leading to an understanding of their 

specific impacts [7]. Additionally, ML models can predict 

vector population dynamics and abundance necessary for 

assessing disease transmission potential. They also have 

capacity for compiling symptoms, laboratory results and 

clinical data, improving diagnostic speed and accuracy for 

vector-borne diseases. [8]. Furthermore, ML tools offer 

highly detailed, spatially explicit risk maps that optimise 

other public health interventions such as vector control by 

predicting their potential impact [9], enabling understanding 

of where diseases are likely to occur in space and time. ML 

also integrates different types of data such as climate data, 

satellite imagery and social media thereby enhancing its 

predictive power and enabling real-time surveillance systems 

for disease activity that can constantly monitor and predict 

[7, 9]. In areas with limited surveillance data, sparse datasets 

can yield valuable insights through ML approaches that 

address data limitations [6]. Overall, applying ML in 

analysing vector-borne diseases brings significant progress to 

public health decision-making and disease management. 

A. Machine Learning Algorithms for the Analysis of 

Vector-Borne Infection 

A study used Bayesian priors and a linear model applied to 

spatially explicit classification models that related the 

occurrence probability of I. ricinus ticks to environmental 

factors [10]. 

Their method, which involved blanket-dragging across 

different sites in the Netherlands for tick collection, 

facilitated effective mapping of environmental risks 

associated with tick presence. 

In another unique study, random forests were linked with 

Poisson regression models to analyse volunteered tick bite 

International Journal of Computer Theory and Engineering, Vol. 17, No. 1, 2025

DOI: 10.7763/IJCTE.2025.V17.1364 13

mailto:u2091940@uel.ac.uk
mailto:s.cutler@uel.ac.uk


 

 

reports from the Netherlands [11]. This technique effectively 

addressed issues like zero-inflation and over-dispersion that 

resulted in accurate spatial prediction of risk areas inhabited 

by ticks. However, as this study focuses on tick bites (relying 

upon tick-human interaction) rather than just tick presence, it 

is arguably not a true indicator of tick abundance in a 

particular region. 

B. Machine Learning for Tick Occurrence Rates 

Analysis 

In a study carried out in Scandinavia, Boosted Regression 

Tree (BRT) modelling was used to predict I. ricinus 

abundance. Ticks were counted at ten sites between 

August-September 2016, a time when larval ticks would have 

predominated, yet the researchers chose to focus upon nymph 

abundance to overcome the patchy distribution of larval ticks. 

This data from each location was combined with temperature, 

rainfall and land cover category [12]. However, the limitation 

of this study is the fact that it only considered two years. 

Furthermore, there was no attempt to incorporate spatial 

autocorrelation, which might undermine the accuracy of the 

model. The scope of their research was also limited because 

they employed only boosted regression trees for their ML 

analysis. 

MaxEnt which is a tool for species distribution and 

environmental niche modelling [13] was used in Italy over 

two years to determine areas suitable for I. ricinus ticks 

with respect to multiple predictors such as temperature, 

rainfall and vegetation index. However, the most significant 

predictor variables were vegetation index and temperature 

[14]. The study, however, had serious methodical limitations. 

The modelling was based exclusively on presence data 

for MaxEnt, which is a major source of potential bias [15]. 

This is a typical weakness in MaxEnt since it only requires 

presence and background data and does not require any 

information on true absences. Also, the validation of the 

model was quite limited since it was done only in 2017 on 10 

new sites without including the spatial autocorrelation effects 

within the dataset. The relationship between tick 

abundance and habitat fragmentation has also been 

previously investigated. A Spanish study concluded through 

statistical modelling that tick population growth is associated 

with habitat connectivity (low fragmentation) [16]. 

A 2019 study conducted by Garcia-Marti et al. [11], 

implemented Random Forest (RF) together with 4 Poisson-

family count data models to classify data into homogeneous 

segments. This fusion of models was able to better the 

standard RF model for highly skewed and excessive zero- 

count data. However, the count data models did not reach 

convergence in 5–9% of the leaf nodes due to high data 

sparsity. Details of the study, for instance the 60–40 split of 

data into training and testing with no cross validation might 

have also affected the way the model might be generalised in 

real world conditions [11]. 

Lihou and Wall [17] utilised random forest models 

to analyse ML data, primarily derived from retrospective 

questionnaire responses from farmers. This methodology has 

certain drawbacks. Bias might result from the farmers’ ability 

to remember and identify ticks, and not from conducting 

objective scientific sampling, resulting in recall and reporting 

biases affecting data quality. Moreover, the analysis of the 

data did not generate predictions with respect to spatial 

autocorrelation, which may influence prediction ‘accuracy’ 

within the broader geographic scope of the study. The sample, 

however, was quite small compared to the high number of 

predictions mapped out across Great Britain covering 926 

farms. The temporal scope is also limited with one main data 

set at hand for one year (2017–2018) hence limiting the 

understanding of long-term trends. 

C. Challenges Faced in Predicting Tick Occurrence 

Rates 

It is therefore clear that there are several challenges that 

are faced when attempting to utilise tick occurrence data 

for analysis, among them the use of incomplete data, biased 

data and also using non standardised data which makes 

prediction difficult. The majority of studies rely on different 

sources like reviews from literature, reports given by health 

departments or even personal communications rather than 

employing systematic sampling methods that are uniform 

across all areas. Additionally, there is no comprehensive 

county-level data concerning metrics such as density of 

infected host-seeking nymphal ticks coupled with temporal 

uncertainties associated with historical establishment of these 

tick populations, thereby rendering current databases 

unreliable [18]. 

Furthermore, model generalisation poses a challenge as 

models are often developed for particular geographic 

locations or time periods that fail when applied in new 

regions or under different temporal conditions [19]. This 

therefore calls for advanced techniques like careful feature 

selection and cross-validation to enable models to extrapolate 

well on unseen data. Tick occurrences are driven by 

ecological dynamics in a complex manner which involves 

complex climate-land use and host population-environmental 

factors connections. These relationships not only vary 

spatially and temporally but also make it difficult to prioritise 

which factors are more important than the others [20]. In 

addition, difficulties related to scale and resolution of analysis 

further complicate the modelling process since tick 

population dynamics occur at multiple scales and coarse 

national data may not adequately capture fine-scale patterns 

[21]. Indeed, the NUTS3 resolution which is a hierarchical 

system for dividing up the economic territory of the 

European Union for statistical purposes, typically with 

populations between 150,000 and 800,000 may not suffice to 

capture the focal ecological niches that help ticks to thrive 

[22]. Furthermore, climate change adds another layer of 

complexity by potentially disrupting past associations 

between environmental variables and tick occurrences [20]. 

D. Limitations of Current Research 

In this study we attempt to resolve some of the 

shortcomings of current studies with respect to tick abundance. 

1) Time period: In this study the ticks have been collected 

over a period of 20 years. In comparison, current research 

tends to look at a period of 1–2 years which may not be 

enough for studying trends in tick behaviour over long 

periods of time. 

2) Spatial Autocorrelation: Various studies which 

considered occurrence rates of ticks failed to incorporate 

spatial autocorrelation in the analysis of the observed tick 
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behaviour. In our research, we employ algorithmic 

clustering techniques based purely on the geographical 

coordinates of each tick occurrence. 

3) Data Quality: Some past studies have used data that is 

vulnerable to bias like farmer questionnaires. Some 

standardisation procedures and approaches are not 

adhered to while carrying out research processes hence 

compromising the reliability of the resulting data. 

4) Model Comparison: A common limitation in many of 

these studies is the use of one ML approach without any 

attempt to compare the different approaches. We evaluate 

different algorithms (Linear Regression, Decision Tree, 

Random Forest and Support Vector Machine) in a bid to 

find out the most appropriate one to use. 

5) Comprehensive Feature Set: Inherent environmental 

aspects like land use type have been included alongside 

geoclimatic and other observational aspects. This 

provides a better characterisation of the training dataset in 

comparison with current studies where only one subset of 

features is used. 

6) Systematic Verification: In contrast to current research, 

this study employs validation techniques in a bid to 

achieve robustness of results. 

7) Broader Scope of Performance Assessment: Multiple 

metrics (NRMSE, SI, MAPE, R²) designed to assess 

certain characteristics, are utilised with the aim of 

enhancing the trustworthiness of model results. 

II. METHODOLOGY 

Briefly, our methodology encompasses data collection, 

preprocessing, feature selection, and the application of 

various ML techniques. 

A． Data Description 

A total of 5590 individual tick occurrence records 

were obtained from three online databases: National 

Biodiversity Network Atlas, Global Biodiversity 

Information Facility and Vectormap. Other records 

were obtained directly from Institute of Public Health, 

Albania.Records were exported if they met the 

following criteria: 

I. ricinus species, 2000–2019 and European location. 

The dataset was filtered to include the following 

information for each record: occurrence ID, date of 

occurrence, data source and latitude and longitude 

coordinates. For each record, data relating to further variables 

were added (specific to location coordinates and date of 

occurrence). Firstly, temperature and rainfall climatic 

variables were added from an online Weather Data and API 

resource (VisualCrossing). In relation to habitat, Normalised 

Difference Vegetation Index (NDVI) value and Land Cover 

category were added from an online repository 

(EcoDataCube). In the end, from the EcoDataCube 

repository, a Discontinuous Urban Fabric (%) value was 

added as a measure of physical barriers between habitats—
thus representing habitat fragmentation. 

B． Data Preprocessing 

Initial cleaning of the data by removing entries that lacked 

geographical coordinates, NDVI, or land use variables was 

undertaken. For temporal feature engineering, we simplified 

date information to capture the day of the year, enabling 

the identification of seasonal variations. This conversion of 

date features into a single ’day of year’ feature was 

justified by its ability to capture cyclical patterns within a 

year while reducing dimensionality. We standardised missing 

or inconsistent dates to a common placeholder before 

converting them into a uniform format. In the feature 

selection phase, we chose relevant variables for analysis, 

including geographic coordinates, environmental measures, 

and temporal indicators. Categorical data, such as land use 

methods, were transformed into binary format for easier 

processing. For outlier removal, we implemented a 95th 

percentile threshold instead of the more common 75th. This 

decision was justified by the nature of our data in which 

potentially important data points can be retained while still 

eliminating the most extreme outliers. After outlier removal, 

the number of clusters reduced from 344 to 333 while the 

total tick frequency decreased from 5590 instances of tick 

occurrences to 4928 instances. Finally, we applied the 10 

folds cross-validation aimed at improving the robustness of 

our models. By applying this strategy, the assessment and 

reporting of modelling performance is done with greater 

confidence and risk of modelling overfitting is reduced. 

C． Methodology Workflow 

Fig. 1 was created to illustrate the ML workflow for tick 

occurrence prediction. The process started with cleaning 

and selecting data so that only high-quality data will be 

used for training models. Then data clustering is performed 

by grouping similar data points together to find patterns 

and increase model accuracy. 

 
 

Fig. 1. Machine learning workflow for tick occurrence prediction. 

After that, the dataset is split into two parts: 80% for 

training and 20% for testing. Different ML models are trained 

with the training set until all the models have been fitted and 

evaluated against some predefined performance metrics 

where the best performing model is selected as per those 

criteria. Finally, the selected model undergoes final fine-

tuning through extra optimisation parameter changes in order 

to achieve higher precision rates during predictions. This 

well-structured approach ensures sound development of 

models which help in identifying key predictors for tick 

abundance therefore leading targeted interventions towards 

tick borne diseases management. 

D． Clustering and Feature Selection 

Three geospatial clustering algorithms were used to 

identify areas influencing tick collection: K-Means, 

DBSCAN and Agglomerative Hierarchical Clustering (AHC). 
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These methods helped create distinct neighborhoods which 

enable localised analysis of environmental variables. This 

paper focuses on DBSCAN clustering, selected for its ability 

to identify clusters of arbitrary shape without requiring a 

predefined number of clusters. In our research, we set epsilon 

(ϵ) equal to 0.005 degrees (approximately 500 meters at 

equator). A smaller ϵ could detect clusters of ticks close to 

each other indicating specific areas or host availability zones, 

while minimum samples =1 means any single point can form 

its own cluster in cases where the surrounding points fail to 

meet the required distance threshold. Increasing minimum 

samples would ensure significant clusters but if too many 

points were not within range of other points, it may fail to 

indicate accurate locations of tick occurrence. 

There were 344 clusters produced by the algorithm  

(Fig. 2). All of these clusters were analysed to establish the 

most important factors contributing towards tick occurrence 

rates. In this study, ML models were used to investigate the 

correlation between different environmental variables and 

tick occurrences in a methodologically rigorous way. The 

analysis was divided into three groups of features: 

a) Observational factors: These include direct observations 

and counts of ticks, which are important for 

understanding immediate impacts on environment but can 

be over-simplistic when it comes to predictive modelling 

because they correlate directly with presence/absence 

data. 

b) Geo-Climatic factors: Geographical (latitude and 

longitude) and climatic factors (temperature, rainfall and 

NDVI) relating to environment of tick habitats are 

combined and termed as Geo-Climatic Factors. 

c) Land use factors: Land Use Factors include agriculture, 

forest cover, and urban areas which give an idea how 

the man-made environments such as modifications 

disturbs the normal pattern of ticks. 

 

 
Fig. 2. Tick occurrence Bubble Map detailing DBSCAN clusters. 

E． Correlation Analysis 

Correlation analysis was done to measure strength and 

direction between tick count and different environmental 

features. This helped in identifying variables that are highly 

associated with occurrence of ticks hence guiding selection 

process for feature engineering prior to ML model building. 

F． Evaluation Metrics 

In this study, we utilised four different evaluation metrics. 

1) The Normalised Root Mean Square Error (NRMSE) 

which is a standardised variation of RMSE, making it 

usable across datasets of different scales. 

2) The coefficient of determination (R²) which illustrates the 

model’s ability to understand the variance in the dataset. 

3) The Scatter Index (SI) which is a dimensionless error 

measure calculated based on the mean of the observed 

values. 

4) The Mean Absolute Percentage Error (MAPE) which 

is a metric used to measure the percentage error 

of a model’s predictions, providing insight into how 

inaccurate the model might be. 

G． Algorithm selection 

Linear Regression was selected because of its transparency 

and the capability to fit the linear relationship among 

different variables. It acts as a standard on which the 

capability of other models can be assessed and in addition 

provides information on value of attributes. 

The Decision Tree Regressor captures non-linear 

relationships and interactions among features. 

Decision trees overfit by default but Random Forests aim 

to reduce this issue through ensemble learning, thereby 

increasing generalisation error. This algorithm builds 

multiple decision trees then takes vote from each tree to give 

final prediction for regression setting. 

SVM Regressor works well in high-dimensional spaces 

where there may be many independent variables with 

complex relationships that cannot be modeled using linear 

functions alone. 

III. RESULT 

Initially, we examined the correlations between different 

environmental factors and tick abundance, then compared the 

performance of our ML models across various feature sets 

and data preprocessing scenarios. 

A.  Model Performance Across Feature Sets 

Table 1 presents the performance metrics (MAPE, 

NRMSE, SI, and R²) for all models across the different 

feature sets, both with and without outliers. 

1) Geoclimatic Features 

With outliers present, models trained on geoclimatic 

features showed poor performance. Linear Regression had a 

high MAPE of 57.73 and a negative R² of −0.07. Decision 

Tree and Random Forest models performed similarly poorly 

(MAPE = 39.37 and 52.24, R² = −1.03 and −0.32, 

respectively). The SVM model showed unusually low 

MAPE (0.78) but still a negative R² (−0.02), suggesting 

potential issues with the model’s fit. 
Removing outliers led to some improvements, particularly 

for Linear Regression and Random Forest (MAPE reduced 

to 8.55 and 6.73, respectively). However, R² values remained 

negative or close to zero for all models, indicating that 

geoclimatic features alone were poor predictors of tick 

presence. 

2) Observational Features 

The presence of observational features in our dataset led to 

significant overfitting, particularly evident in the Linear 

Regression (LR) model’s perfect fit (R² = 1.00) when outliers 

were included. This overfitting stems from the direct one-to-
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one relationship between tick occurrences and observational 

instances. Each recorded tick presence corresponds precisely 

to one observation event, creating an artificial simplification 

of the prediction task. Consequently, models, especially LR, 

achieve deceptively high-performance metrics by essentially 

memorising this direct relationship rather than learning 

generalisable patterns. The near-perfect scores (R² = 0.96) 

for Decision Tree (DT) and Random Forest (RF) models after 

outlier removal further illustrate this issue. 

3) Land Use Cover Features 

Models trained on land use cover features showed 

better performance compared to geoclimatic features. With 

outliers, Linear Regression performed reasonably well 

(MAPE = 3.17, R² = −6.06), while Decision Tree and 

Random Forest showed similar performance (MAPE around 

3, R² around 0.15). SVM again showed a low MAPE (0.76) 

but a near-zero R². 

Outlier removal improved performance across all models 

for land use features. Linear Regression showed significant 

improvement (MAPE = 1.22, R² = 0.81), as did Decision Tree 

and Random Forest (MAPE around 1.7, R² around 0.40). 

SVM also improved but remained the weakest performer 

(MAPE = 0.49, R² = 0.05). 

4) Excluding Observation Features 

The results for models trained without observation features 

were identical to those trained on land use cover features, 

both with and without outliers. This suggests that the land use 

cover features were the primary drivers of model 

performance when observation features were excluded. The 

exclusion of observational features in the models focuses the 

analysis on environmental and geoclimatic factors, revealing 

that land use features almost exclusively influence tick 

occurrences. 

IV. DISCUSSION 

The results of our investigation provide several key 

observations regarding the reasons for the variation in tick 

populations with respect to Europe.  

A. Importance of Feature Sets 

Land use factors such as land principally occupied by 

agriculture, broad-leaved forests and water bodies, resulted 

in the greatest relationship, which indicates that such areas 

are essential for the ticks (as shown in Fig. 3). On the other 

hand, geoclimatic factors (which include temperature and 

rainfall) were surprisingly very weakly to slightly negatively 

correlated related. 

This correlation analysis is crucial in isolating those 

environmental and climate factors that are most likely to be 

associated with tick occurrences. Positive high correlations 

with particular land use types further identifies critical land 

areas that have high concentrations of ticks, which are 

informative in terms of guiding targeted control measures. 

For example, there is need to focus on agricultural lands, 

particularly that host natural vegetation and broad leaved 

forests, as they tend to be more conducive for supporting tick 

populations. 

On the other hand, explanation of reasons for some 

features being associated with low correlation or negative 

correlation is necessary in improving the models and their 

predictions and descriptions. To give an example, the 

rainfall in general had negative relationship, and this could 

be particularly useful to explore reasons as to how 

precipitation influences tick dynamics and survival rates. 

This could relate to the fact that wet conditions can reduce 

tick questing and limit tick engagement with tick collection 

blankets, resulting in a reduction in tick numbers obtained 

following periods of precipitation. 

Analysis of random forest feature importance reveals key 

factors influencing tick abundance across geoclimatic and 

land use categories. (see Table 2). For instance, latitude is 

among the most important geoclimatic features (0.33) 

followed by the rainfall, the weight of which was also 

significant (0.26). The day of year (0.14) NDVI (0.1) and 

temperature (0.09) do contribute, though ‘slightly’ along with 

longitude (0.08). In terms of land use, areas principally 

occupied by agriculture show the highest importance (0.52). 

In addition, broad-leaved forests have been found to be 

another major factor (0.29). Water bodies (0.09), complex 

cultivation patterns (0.03) and other such agricultural 

categories exert moderate effect, whilst others such as land 

cover types (including urban areas, natural grasslands and 

pastures showed only miniscule (but measurable) effects on 

tick model output. 

Table 1. DBSCAN results for selected models 

 

Feature Set 

 

Model 

Outliers DBSCAN 
 

No Outliers DBSCAN 

MAPE NRMSE SI R2 MAPE NRMSE SI R2 

Geoclimatic 

LR 57.73 7.56 7.56 −0.07  8.55 3.72 3.72 −0.11 

DT 39.37 10.44 10.44 −1.03  8.73 5.23 5.23 −1.19 

RF 52.24 8.43 8.42 −0.32  6.73 3.67 3.67 −0.08 

SVM 0.78 7.39 7.32 −0.02  0.74 3.63 3.53 −0.06 

Land use 

LR 3.17 19.46 19.36 −6.06  1.22 1.56 1.56 0.81 

DT 2.99 6.70 6.67 0.16  1.73 2.78 2.76 0.38 

RF 2.86 6.78 6.75 0.14  1.71 2.70 2.69 0.42 

SVM 0.76 7.37 7.31 −0.01  0.49 3.45 3.37 0.05 

Observation 

LR 0.00 0.00 0.00 1.00  0.84 2.07 2.06 0.66 

DT 0.04 6.38 6.36 0.24  0.04 0.70 0.70 0.96 

RF 0.04 6.47 6.45 0.22  0.04 0.74 0.74 0.96 

SVM 0.73 7.38 7.32 −0.02  0.63 3.50 3.40 0.02 

Observation Excluded 

LR 3.17 19.46 19.36 −6.06  1.22 1.56 1.56 0.81 

DT 2.99 6.70 6.67 0.16  1.73 2.78 2.76 0.38 

RF 2.86 6.78 6.75 0.14  1.71 2.70 2.69 0.42 

SVM 0.76 7.37 7.31 −0.01  0.49 3.45 3.37 0.05 
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Fig. 3. Correlation bar chart of Geo-climatic and land use features. 

 

Table 2. Most significant features by category (no outliers) 

Observation Imp. Geoclimatic Imp. Land Use Imp. 

DCM_HUMAN 

OBSERVATION 

0.66 Latitude 0.33 Land principally 

occupied by 

agriculture 

0.52 

DCM_RESEARCH 

STUDY 

0.26 Rainfall 0.26 Broad-leaved forest 0.25 

DCM_PRESERVED 

SPECIMEN 

0.07 DayOfYear 0.14 Water bodies 0.09 

DCM_MATERIAL 

SAMPLE 

0.00 NDVI 0.10 Complex cultivation 

patterns 

0.03 

DCM_MACHINE 

OBSERVATION 

0.00 Temperature 0.09 Green urban areas 0.03 

DCM_LIVING 

SPECIMEN 

0.00 Longitude 0.08 Natural grasslands 0.02 

 Moors and 

heathland 

0.02 

Pastures 0.02 

Sport and leisure 

facilities 

0.02 

Inland marshes 0.01 

B. The Impact of Feature Sets and Outliers on Model 

Performance 

The presence of outliers always reduced the efficiency of 

the geoclimatic features models. In most of the models after 

outlier removal, the situation was much better than before, 

especially for the Linear Regression model, with the R² rising 

from −0.07 to −0.11 and NRMSE declining from 7.56 to 3.72. 

Land use features had greatest influence with outlier 

removal. For instance, in the case of LR model, removal of 

outliers resulted in a fundamental change with R² moving 

from -6.06 to 0.81 while NRMSE reduced from 19.46 to 

1.56. 

Observation features showed the most striking impact. 

With outliers present, the LR model attained a perfect 

fit (R² = 1.00 and NRMSE = 0.00), a sign of gross overfitting, 

where the model conforms to noise rather than to underlying 

data structure. 

When the observation features were detached from the 

dataset, the results corresponded with the results obtained 

with land use features and reiterated the need to incorporate 

land use data. 

C. Model Performance Across Feature Sets 

It was determined that even within the data typically used 

for the construction of regression models with a complex 

structure (for example DT, RF or SVM), the Linear 

Regression model (LR) was the best fit in most scenarios, 

especially after outlier exclusion. This is surprising in some 

regard and may be explained by the mainly linear link 

between selected features and tick abundance, which we 

made more efficient than necessary through preliminary 

feature selection. 

While we did take into consideration cross-validation 

techniques to limit any potential effects of overfitting, it may 

be prudent to apply external datasets for further validation. 

There are some contradictions in our analysis of land 

use and climate factors with some previous studies. We 

found consistent and powerful relationships between land use 

and its features and much weaker climatic influences, while 

Boulanger et al. [23] highlighted temperature as the most 

relevant driver. This discrepancy may be due to the scale of 

our Europe-wide, 20-year study capturing broader patterns 

that may overshadow local climatic influences, as well as the 

complex interaction effects between land use and climatic 

factors. 

More investigation is required to understand the 

relationship between rainfall and tick abundance. Studies 

show that nymphal and adult ticks were more abundant when 

there had been high cumulative rainfall in the prior months. 

However, larval abundance did not appear to be sensitive to 

prior rainfall, suggesting a complex, non-linear response to 

different rainfall patterns [24]. 

V. CONCLUSION AND FUTURE WORK 

Based on these results, it is evident that adequate predictive 

models can only be built if sufficient preprocessing measures 

such as outlier detection and exclusion are undertaken. This 

assertion is particularly true in Linear Regression models, 

where the performance of the model improves tremendously 

after outlier removal. We demonstrate that it is essential to 

use sophisticated ML methods for predictive modelling in 

environmental and public health settings. After outlier 

removal, the Linear Regression model performs well across 

different feature sets, particularly with land use features (R² 

of 0.81, NRMSE of 1.56). This study emphasises the role of 

specific land use types on tick population dynamics and 

paves the way towards the development of more efficient 

tick-borne disease control measures. 
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Future Work: 

1) Model Architecture: The variability in model 

performance across different setups and conditions indicates 

the necessity for dynamic modelling techniques that adapt to 

specific dataset characteristics. Future work may look into 

the hybridisation or ensembling of different techniques to 

enhance the level of prediction accuracy and robustness. 
2) Other Outlier Detection Techniques: Here, we used a 

modified IQR method to detect outliers, however there are a 

number of other techniques that can also be suggested for 

use in future research. Future work might include, the Z 

score method, the Local Outlier Factor (LOF) method, and 

Isolation Forest to name a few. These methods however 

lie at the contradictory poles of outlier detection which would 

form a very relevant outlier detection baseline in subsequent 

analyses. 

3) Real Time Data: Future studies can also aim at 

empowering the studies with real time data. This approach 

will not only increase prediction accuracy but also strengthen 

public health interventions against tick-borne diseases. 

Continuous refinement of these models is necessitated by 

ongoing environmental changes, with a view to enhancing 

prediction generalisability and adapting to evolving 

ecological conditions that influence tick populations. 
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