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Abstract—In recent years, the rise in cyber-attacks on the Internet 
has become a major concern. Addressing these threats requires 
continuous monitoring and analysis of communication patterns in 
cyberspace. However, the large volume and diverse nature of 
incoming packets and payloads present a challenge for simultaneous 
processing. Preliminary clustering of payloads is essential for 
subsequent analysis and interpretation. Previous studies have 
explored the use of natural language processing models such as N-
gram, Word2Vec, and Bidirectional Encoder Representations from 
Transformers (BERT) to identify and categorize payloads, aiming to 
extract payload features for distinguishing between benign and 
malicious content. However, these models overlook the sequential 
order and byte-level positioning within payloads, thus limiting their 
effectiveness in capturing the intrinsic characteristics of payload 
content. This study introduces a novel model, which effectively 
extracts comprehensive features of payload content by considering 
the sequential ordering of byte sequences. Comparative experiments 
demonstrate that the clustering rate and clustering accuracy of the 
proposed method surpass those of other text feature extraction 
models such as N-gram, Word2Vec, and BERT, even when using the 
same clustering models. Moreover, the practical applicability of the 
proposed model is validated through its adaptation to actual observed 
data. This research significantly contributes to the field of 
cybersecurity and is expected to lead to future advancements and 
applications in this domain.  
 

Keywords—clustering, features extraction, computer network 
and communications, network observation 

I. INTRODUCTION 

In conjunction with the expansion of the Internet and the 
proliferation of IoT devices, there is a continuous increase in 
the frequency of cyber-attacks and data breaches [1, 2]. This 
situation represents a significant and serious issue, 
necessitating urgent measures for defense and prevention. 

To prevent and detect these attacks, identifying early signs 
and risks at the initial stages is of paramount importance. 
According to the Cyber Kill Chain model [3], the first phase 
of an attack involves reconnaissance. During this phase, 
attackers send a large volume of packets to numerous IP 
addresses, including unused IP addresses, to investigate 
operational status and detect vulnerabilities. Based on this 
foundation, a variety of observation systems have been 
deployed to investigate these reconnaissance activities. 
Among these, systems that collect packets sent to unused IP 
addresses are known for their cost-effectiveness and 
efficiency. Prominent examples of such models include 
deployments by National Institute of Information and 
Communications Technology (NICT) [4], Center for Applied 
Internet Data Analysis (CAIDA) [5], and Israel 
InterUniversity Computation Center/ InterDisciplinary 
Center (IUCC/IDC) Network Project [6], The Honeynet 

Project [7], Internet Storm Center [8]. 
The analysis of collected data has significantly contributed 

to various aspects of Cyber Security. Specifically, in the field 
of research on IoT Malware and Worm activities [9–13], 
studies related to the detection of DoS and DDoS attacks [14–
16], and reports providing an overview of cyber space trends 
and conditions [17–19] have been notably beneficial. 
However, research to date has primarily focused on analyzing 
features within collected packet headers, with a very limited 
number of studies concentrating on the payloads of packets 
sent to unused IP addresses. By focusing solely on the 
characteristics of packet headers, these studies are limited to 
understanding trends and changes in quantity and are 
restricted in predicting the purpose of the transmissions and 
the actual targets of the dispatched packets. 

By analyzing the payloads contained in these packets, we 
can discern the content of the packets and the intentions of 
the sender. Corresponding to the volume of packets sent 
across cyberspace, the number of payloads sent to unused IP 
addresses is vast, involving many different protocols, and is 
highly diverse in terms of type and data format. 

Due to the overwhelming quantity and variety of payloads, 
analyzing all payloads poses significant challenges. An 
essential first step for effective analysis of these payloads is 
to cluster them into groups with similar characteristics. 
Previous studies have attempted to address this objective by 
adopting existing techniques such as N-gram, Word2Vec, 
BERT, and machine learning approaches. However, there are 
limitations in effectively extracting features for payloads with 
complex and diverse characteristics, including network 
communications and encrypted traffic, which continue to 
evolve alongside the advancement of the Internet. 

Therefore, this study aims to clustering diverse payloads, 
including encrypted communications, and proposes an 
effective method for feature extraction using the BIG-BIRD 
model to address the challenges of payload feature extraction. 

To demonstrate the effectiveness and practicality of the 
proposed method, Chapter II will review previous studies 
related to the extraction of payload features and payload 
clustering. Chapter III will introduce the proposed method, 
and Chapter IV will conduct experiments comparing it with 
previous models and studies, thereby proving the 
effectiveness of the proposed method. Chapter V will apply 
the proposed method to the clustering of real-observation data, 
demonstrating its practicality. 

II. RELATED WORKS  

Before introducing previous studies, it is essential to 
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present some concepts and associated knowledge. 

A. About N-gram 

N-grams are a fundamental concept in linguistic analysis 
and natural language processing, creating “n” sequential 
items from text or speech. These items can be as small as 
phonemes or as large as words, and the length of the sequence 
can vary from unigrams (1-gram) to bigrams (2-gram), 
trigrams (3-gram), and beyond. The core operating principle 
is to break larger text and speech samples into smaller chunks 
to facilitate analysis and prediction. N-Grams offer simplicity, 
efficiency, and solid basic performance in many NLP tasks, 
and their flexibility allows them to be applied to a variety of 
language levels. Higher-order N-Grams can capture more 
context and improve the accuracy of language models. 
However, N-Grams also have drawbacks. The size of the 
model increases exponentially with “n” leading to scalability 
issues. Higher n-Grams may encounter data scarcity and 
generalization challenges, as certain sequences may be rare. 
In addition, the limited context window of ‘n’ items may miss 
longer-term dependencies, making the effectiveness of the 
model highly dependent on the training corpus and affecting 
its generalizability. 

B. About Word2Vec 

Word2Vec is a set of models developed by Tomas 
Mikolov’s team at Google, designed to represent words as 
high-dimensional vectors and capture context, semantic and 
syntactic similarity, and relationships with other words. The 
models are renowned for their ability to understand linguistic 
context and similarity, such as relating “king” to “man” and 
“queen” to “woman”. The model works with two 
architectures: the Continuous Bag of Words (CBOW) and 
Skip-Gram, where CBOW predicts words based on context 
and Skip-Gram predicts context from words. Training adjusts 
word vectors through a neural network to encode word 
relationships. 

The advantages of Word2Vec include semantic 
comprehension ability, training efficiency, dense and 
informative word representations, and generality for different 
tasks and domains. However, there are limitations, including 
the inability to distinguish between multiple meanings of a 
word in different contexts (polysemy), the need for large data 
sets for effective training, the difficulty with non-lexical 
words, and the fact that training, despite being relatively 
efficient, is computationally intensive and time consuming. 

1)  About BERT (Bidirectional Encoder Representations 
from Transformers) 

Developed by Google in 2018, BERT is a major advance 
in NLP by understanding the context of words in a sentence 
in both directions and considering the words before and after 
each word. It is based on the Transformer architecture, which 
uses a self-attention mechanism to weight the importance of 
each word in relation to other words; BERT training includes 
Masked Language Modeling (MLM) and Next Sentence 
Prediction (NSP) to obtain rich linguistic understanding. 

The advantages of BERT include deep contextual 
understanding, state-of-the-art performance on a variety of 
NLP tasks, fine-tuning versatility for different tasks, and the 
ability to learn transitions with minimal task-specific data. 
However, it requires considerable computational resources 

and time for training. BERT fine-tuning is delicate, requires 
careful parameter tuning, and is limited by the maximum 
word input (512 tokens), which limits its effectiveness for 
long texts. 

2) About HDBSCAN 

HDBSCAN (Hierarchical Density-Based Spatial 
Clustering of Applications with Noise) is an advanced 
clustering algorithm that extends the concepts of the classic 
DBSCAN by introducing a hierarchy and addressing some of 
its limitations. This algorithm is particularly adept at handling 
data with varying densities, a common challenge in real-
world datasets. The fundamental concept of HDBSCAN, 
similar to DBSCAN, is based on the notion of density-based 
clustering. However, HDBSCAN does not require the 
specification of a global density threshold (ε in DBSCAN). 
Instead, it operates on the idea of varying density, which 
allows it to identify clusters of differing densities. This makes 
HDBSCAN more flexible and applicable to a broader range 
of datasets compared to DBSCAN. 

HDBSCAN begins by transforming the dataset into a 
hierarchical tree of clusters. It does this by first creating a 
minimum spanning tree of the data, then condensing this tree 
based on a density threshold, effectively creating a hierarchy 
of clusters. The next step involves a complex process of 
extracting the stable clusters from this hierarchical tree. This 
process includes pruning the tree and selecting clusters based 
on their persistence, a measure of cluster stability across the 
hierarchy. 

One of the main advantages of HDBSCAN is its ability to 
identify clusters of varying shapes and sizes, much like 
DBSCAN, but with enhanced capability to handle varying 
densities. It’s particularly useful in scenarios where clusters 
may have different levels of sparsity. Additionally, 
HDBSCAN simplifies the parameter selection process. The 
primary parameter is the minimum cluster size 
(min_cluster_size), which intuitively defines the smallest size 
a cluster needs to be to be considered a separate cluster. 
Another significant benefit is its robustness to noise and 
outliers. Like DBSCAN, HDBSCAN can effectively separate 
noise from significant clusters, but it does so with a more 
refined approach due to its hierarchical nature. 

HDBSCAN is a powerful and flexible clustering algorithm 
well-suited for complex datasets with varying densities. Its 
hierarchical approach, ability to handle different densities, 
and minimal parameter tuning requirements make it a popular 
choice in a wide range of applications, from data mining to 
image analysis and bioinformatics. 

C. About Darknet 

1)  Definition of darknet and darknet observation systems 

In the realm of the internet, there exist IP addresses not 
connected to any device (unused IP addresses). These 
collections of IP addresses are referred to by various names 
such as Network Telescope, Internet Sink Hole, or Darknet. 
In this study, we define these unused IP addresses collectively 
as the Darknet. 

Darknet Observation Systems are systems designed to 
collect packets transmitted to this unused IP addresses. 
Furthermore, based on the actions taken upon the received 
packets, research [20] categorizes Darknet Observation 
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Systems into several types. This study will introduce the 
simplest and most widely implemented Observation system. 

2)  Stealth-type darknet observation systems and payload 
collecting method 

 Stealth-type observation system: 
Stealth-type observation systems are the most utilized due 

to their ease of installation and low cost. Fig. 1 illustrates a 
schematic of a stealth-type observation system. Such systems 
do not respond to incoming requests but merely record the 
incoming packets. 
 Stealth-type observation system collecting payloads: 
The schematic of a stealth-type observation system that 

collects payloads is shown in Fig. 2. This system operates 
similarly to a standard observation system by recording 
incoming packets. However, it responds to TCP connection 
request SYN packets with SYN+ACK packets, prompting the 
sender to transmit the initial payload. Subsequently, it sends 
an RST packet to terminate the session immediately. This 
approach enables the collection of initial payloads, which is 
not typically possible with general stealth-type observation 
systems. 
 Distinction between General Payload and Darknet 

Payload: 
In this study, darknet payloads are defined not as the 

typical fragmented and continuously transmitted payloads 
observed in standard internet device communications, but 
rather as the initial payload sent by the sender in the above-
described stealth-type observation system. 

 
Fig. 1. Darknet stealth-type observation system. 

D. Research on Payload Analysis 

Numerous investigations have been undertaken regarding 
the challenges of both general payload and darknet payload 
clustering, broadly categorized into two principal areas: 
detection of abnormal and clustering payloads. 

1)  Researches on detection of abnormal payloads 

Yamanaka [21] employs machine learning techniques to 
distinguish between normal and anomalous payloads in 
Modbus/TCP and BACNet protocols. This research treats 
each byte in the payload byte sequence as an individual word, 
utilizing BERT and Word2Vec for feature extraction from 
normal payloads. Utilizing these features, Yamanaka applies 
Masked Language Modeling (MLM) and Next Sentence 

Prediction (NSP) in the machine learning process. The study 
leverages the results from this machine learning model to 
differentiate between normal and anomalous payloads. The 
findings indicate a high accuracy in distinguishing between 
these payload types, with features extracted from the BERT 
model yielding a higher detection rate compared to 
Word2Vec. 

 
Fig. 2. Darknet stealth-type observation system collecting payloads. 

Nakajima [22] transforms the content of payloads recorded 
during the communication between botnets and Command 
and Control (C&C) servers into ASCII format in two datasets: 
CTU-DATASET and BOS2018. It then employs N-gram for 
feature extraction. These features are fed into a Recurrent 
Neural Network (RNN) machine learning model. The 
machine learning outcomes are applied to differentiate 
between normal and anomalous payloads in cyber spaces. 
The study demonstrates the effectiveness of using 2-gram for 
data extraction in the proposed method from ASCII 
sequences converted from payloads, though its effectiveness 
in other datasets remains unverified. 

Takahashi [23] focuses on validating the effectiveness of 
BERT in extracting payload features for use in detecting 
anomalous packets. Payload contents are converted into 
hexadecimal strings (ranging from 00 to FF), and these 256 
tokens are fed into a deep machine learning model, a 
Variational Autoencoder (VAE), with tasks including 
Masked Language Modeling and Next Sentence Prediction. 
The results show that features extracted using BERT are 
effective in detecting anomalous packets in Modbus, BAC 
Net, and Ethernet IP protocols, but show very low 
effectiveness with HTTPS. 

2) Researches on clustering of darknet payloads 

Suzuki [24] utilizes Self-Organizing Maps (SOM) to 
cluster darknet payloads based on features extracted from 
fuzzy hashes. This method is based on the principle of 
generating hash codes from the blocks into which payloads 
are divided, and calculates payload similarity based on the 
derived hash codes. This method is effective when the 
payload length is large, but is less efficient when the payload 
length is short, especially when the payload is shorter than the 
length of one block. 

Suzuki [25] also extracts all readable strings from the 
resulting darknet payload. Then, using the amount and 
frequency of these readable strings, it found that the string at 
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the beginning of the payload has a significant impact on the 
payload characteristics. 

Kajikawa [26] involved the detection of distributed scan 
groups and the clustering of attack payloads. By analyzing 
payloads sent to port 1723 (PPTP) and manually clustering 
them by protocol, it became clear that payloads sent to a 
particular port are not limited to the protocols traditionally 
associated with that port, but include payloads from a variety 
of protocols. The clustering by protocol is based on the 
manual work of the user. 

Vincent Ghiette [27] focuses on clustering DNS packets, a 
UDP protocol, to identify scanning activity performed by a 
large number of IP addresses. The darknet payload is 
converted to a hexadecimal string and a distance matrix is 
computed using the Levenshtein  distance as input for cluster 
generation. This matrix is processed with the HDBSCAN 
model to cluster the payloads. The clustering results show 
that at least 93.3% of the payloads were successfully 
clustered; based on the DNS packet clustering results, several 
templates were developed. Using these templates, 96.04% of 
payloads were correctly clustered, yielding an accuracy of 
97.28%. Mapping payloads to these templates revealed 
temporal variations in the use of DNS payloads in network 
scans. However, it was noted that UDP packets are unreliable 
because the source IP may be spoofed. Furthermore, since 
DNS protocol packets contain primarily ASCII characters 
and domain names, clustering methods rely heavily on the 
domain names in each payload. The clustering results 
correspond closely to the frequency of domain occurrences in 
the DNS payload. Furthermore, the validity of this method 
has not yet been verified for the TCP protocol.  

3) Limitations of related works 

This research represents an important milestone in payload 
clustering. Research using BERT, Word2Vec, and N-grams 
by Yamanaka [21], Nakajima [22], and Takahashi [23], as 
well as clustering methodologies by Suzuki [24, 25], 
Kajikawa [26], and Vincent Ghiette [27], have made 
significant progress in this area. At the same time, however, 
these studies have also revealed certain limitations and areas 
in need of improvement, especially regarding feature 
extraction from payload contents. 

While Vincent Ghiette [27] is pioneering in its application 
to UDP packets, empirical verification in the context of the 
TCP protocol is notably lacking. This omission illustrates an 
important limitation: by ignoring TCP, the fundamental 
protocol for network communications, one may miss the 
behavior and characteristics of payloads in a large fraction of 
network traffic. 

Research by Yamanaka [21], Nakajima [22], Takahashi 
[23], and colleagues using BERT and Word2Vec highlights 
the potential of machine learning techniques to decipher the 
complex characteristics of payloads. However, while robust, 
these methodologies often have difficulty fully understanding 
the complex and diverse nature of network payloads in a 
constantly evolving cyber threat landscape. Furthermore, 
Takahashi’s research has observed that the effectiveness of 
these models is variable across different network protocols. 

Similarly, BERT and Word2Vec are effective for certain 
payload types, but may not capture the subtle characteristics 
required for more complex or encrypted traffic. Also, N-gram 

based methods, while effective in pattern recognition, often 
have difficulty adapting to the scalability and dynamic nature 
of network traffic. In the area of clustering methods, the main 
challenge is to accurately cluster diverse payloads when 
dealing with extremely variable data streams, including 
encrypted data streams. 

To address these identified deficiencies and challenges, 
this research proposes an effective method for extracting 
payload features, leveraging the BIG BIRD model for 
efficient and effective payload feature extraction specifically 
for payload clustering. 

III. PROPOSED METHOD 

This chapter presents a method for effectively extracting 
features of payloads sent to the darknet observation system. 
First, the features and principles of BIG BIRD are described, 
and then a method for extracting payload features is proposed.   

A. About BIG BIRD [28] 

BIG BIRD is a sophisticated variant of transformer-based 
models such as BERT and GPT, specifically designed for 
Natural Language Processing (NLP). BIG BIRD was 
developed to address the limitations of standard transformer 
models when processing long data sequences. Traditional 
transform models are limited by quadratic dependencies on 
sequence length, and their large memory and computational 
requirements limit their ability to process long documents. 
BIG BIRD solves this by introducing a sparse attention 
mechanism, allowing longer sequences to be processed 
efficiently made.  

The core of BIG BIRD’s innovation lies in its modified 
attention mechanism, which allows for linear scaling with 
sequence length. BIG BIRD combines three types of attention: 
global, window, and random. Global attention ensures that 
important parts of the sequence, such as special tokens, 
receive comprehensive attention. Window attention provides 
a local view, allowing each token to focus attention on a 
fixed-size window of neighboring tokens. Random attention 
introduces randomness and allows connections between 
distant tokens. This hybrid attention model allows BIG BIRD 
to efficiently manage longer sequences while maintaining 
contextual understanding. 

BIG BIRD offers significant advantages, especially in its 
ability to handle long text sequences, surpassing the 
capabilities of standard transformers. BIG BIRD maintains a 
high level of context recognition and understanding of 
relationships in the data, even as the sequences grow in length. 
Moreover, its versatile applications extend beyond Natural 
Language Processing (NLP) and have proven useful in a 
variety of fields where handling long sequence data is 
essential. 

B. Proposed Method 

The proposed clustering method is shown in Fig. 3 
Specificaly, it consists of three steps: 
 Step 1—Collect Payloads: Collect packets from the 

darknet (or from darknet’s packet capture file) and 
extract the payload from the packets. 

 Step 2—Conversion to hexadecimal string: Convert the 
payloads into a hexadecimal string. 
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 Step 3—Feature Extraction: Assume that each byte is a 
word, and input all words into the feature extraction 
model BIG BIRD to extract features of the payload. It is 
imperative to emphasize that the BIG-BIRD model 
utilized in this study is not subjected to re-training or 
fine-tuning processes; Here, we employ the model 
originally proposed by Zaheer et al. [28]. 

The features obtained from the BIG BIRD can be input into 
a clustering model to cluster the payloads. 

To prove the effectiveness of the proposed method for 
extracting payload features, several comparison and 
validation experiments are conducted in Chapter IV. 

 
Fig. 3. Proposed method—payload’s feature extraction with BIG BIRD. 

IV. EXPERIMENTS 

In this chapter, to assess the efficacy of the proposed 
method in feature extraction, an experiment was undertaken 
to compare the clustering outcomes of features extracted by 
the proposed method against those derived from N-Gram, 
Word2Vec, BERT, and the approach referred to as 
Levenshtein & HDBSCAN of Vincent Ghiette [27]. 

A. About the Comparative Experiment Data 

For this experiment, 1590 TCP payloads from the darknet, 
encompassing encrypted payloads and spanning various 
content types, were gathered. These payloads were sourced 
from 9 distinct payload groups across multiple protocols 
observed through the National Defense Academy of Japan’s 
Darknet observation system. This rigorous collection process 
aimed to ensure accurate and impartial validation and 
assessment. Specifically, the payloads were clustered as 
shown in Table 1, detailing the content and quantity of each 
protocol’s payloads.  

Table1. Contents and quantity of payloads for each protocol 
Highest 
Protocol 

Quantity A Sample of payload’s contents (HEX) 

BitTorrent 100 13 42 69 74 54 6f 72 72 65 6e… 

TDS 200 12 01 00 29 00 00 00 00 00 00… 

HTTP 400 50 4f 53 54 20 2f 20 48 54 54… 

Bitcoin 190 f9 be b4 d9 76 65 72 73 69 6f… 

SMB 100 00 00 00 85 ff 53 4d 42 72 00 … 
Binary on 

Port 80 
100 83 f7 da f1 1d 21 dc 30 ba 20… 

SSH 100 53 53 48 2d 32 2e 30 2d 50 55… 

SSH2 200 00 00 00 14 06 01 00 00 00 0b… 

TLS 200 16 03 00 00 69 01 00 00 65 03… 

Since the clusters of the experimental data were known, the 
extracted features were input into the KMeans clustering 
model (with K = 9) to check how well each feature extraction 
model could cluster the original group. 

B. Experimentation with KMeans (K = 9) 

1)  Experimental procedure and evaluation metrics: 

Fig. 4 illustrates the experimental procedure. Specifically: 
 Step 1—Conversion to hexadecimal string: For all 

payloads, convert the contents to hexadecimal string 
format. In text format, each byte (in hexadecimal 
format) is assumed to be one word, with a space between 
words. 

 Step 2—Feature Extraction: Input all text strings 
obtained in Step 1 into the feature extraction models (N-
gram with n = 2, Word2Vec, BERT, BIG BIRD and 
Levenshtein Distance) and store the output feature F. 

 Step 3—Clustering: Using the KMeans model (K = 9), 
input the features F and store the clustereds as groups 
 𝐺௡(n = {0, 1, 2, 3, 4, 5, 6, 7, 8}). 

 Step 4—Evaluate the efficiency of the extraction 
algorithm: The evaluation metric adopted in this study 
is clustering accuracy (𝑝). To determine the clustering 
accuracy, we first calculate the clustering accuracy for 
the payloads of each protocol.  

The characteristics of a clustered group are dependent on 
the protocol that constitutes the majority (principal 
component) of payloads within that group, while the payloads 
of other protocols are considered as noise. To identify the 
principal component protocols, first count the payloads for 
each protocol in each group obtained in Step 3. The protocol 
with the highest number of payloads is assumed to be the 
principal component protocol of that group.  

 
Fig. 4. Experimental procedure with KMeans (K = 9). 

The clustering accuracy 𝑃(𝑡𝑦𝑝𝑒்)  for a given protocol 
type T is calculated using the following formula: 

𝑃(𝑡𝑦𝑝𝑒்) =
𝐶௜ + 𝐶௝ + ⋯

𝐴(𝑡𝑦𝑝𝑒்)
 

In this formula 𝑖 , 𝑗 are the numbers of groups in which 
protocol type T is main component. 𝐶௜ , 𝐶௝  are the count of 
payload of protocol type 𝑇 (payload type 𝑇) in groups 𝑖 and 
𝑗. 𝐴(𝑡𝑦𝑝𝑒௜) is the total count of payload type 𝑇. 

Based on the individual protocol clustering accuracies, the 
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overall clustering accuracy (𝑝) of the clustering model is 
calculated as follows: 

𝑝 =
∑ 𝑃(𝑡𝑦𝑝𝑒௜)

ଽ
௜ୀଵ × 𝐴(𝑡𝑦𝑝𝑒௜)

𝑆
 

Here, 𝑃(𝑡𝑦𝑝𝑒௜)is the clustering accuracy of the payload 
type 𝑖.  𝐴(𝑡𝑦𝑝𝑒௜) is the total count of payload type 𝑖 and 𝑆 is 
the total count of payloads in the experimental data. 

2)  Result of experimentation with KMeans (K = 9) 

Figs. 5 and 6 show the N-gram clustering results in two and 
three dimensions. Figs. 7 and 8 show the Word2Vec 
clustering results in two and three dimensions. Figs. 9 and 10 
show the BERT clustering results in two and three 
dimensions. Figs. 11 and 12 show the BIG BIRD clustering 
results in two and three dimensions. Figs. 13 and 14 show the 
clustering results of Levenshtein  Distance  in two and three 
dimensions. 

 
Fig. 5. Clustering result of N-gram (n=2) (2D). 

 
Fig. 6. Clustering result of N-gram (n=2) (3D). 

 
Fig. 7. Clustering result of Word2Vec (2D). 

Tables 2 and 3 show the payload clustering results and 
clustering accuracy from the KMeans algorithm using 
features extracted from the N-gram, Word2Vec, BERT, 
Levenshtein  Distance, and BIG BIRD algorithms. A 
comparison of the clustering accuracy (𝑝) results is shown in 
Fig. 15. The obtained results show that among the four NLP 
algorithms (N-gram, Word2Vec, BERT, and BIG BIRD), the 
BIG BIRD algorithm yields the highest clustering accuracy 
of 100%, followed by Word2Vec with 87.92%, N-gram with 
81.64%, BERT with 67.55% and Vincent Ghiette [27] which 
shows the lowest result of 50.75% when specified to cluster 
into 9 clusters.  

 
Fig. 8. Clustering result of Word2Vec (3D). 

 
Fig. 9. Clustering result of BERT (2D). 

 
Fig. 10. Clustering result of BERT (3D). 
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Table 2. Experimentation results with KMeans (K = 9) of N-gram, Word2Vec, BERT, BigBird and Levenshtein Distance 

 
 

Table 3. Clustering Accuracy of N-gram, Word2Vec, BERT, BigBird and Levenshtein Distance with KMeans (K= 9) 

 
 
 

 
Fig. 11. Clustering result of Proposed Model (2D). 

 

 
Fig. 12. Clustering result of Proposed Model (3D). 

 

Group N-gram Word2Vec BERT Big Bird Levenshtein Distance 

0 
BitTorrent (100)  

Binary on Port 80 (1) 
SSH (100) 

HTTP (175) 
BitTorrent (50) 

Binary on Port 80 (24) 
BITCOIN (190) 

TDS (200) 
SSH2 (200) 

BitTorrent (100) 
SSH (100) 

1 
SSH2 (200) 

Bitcoin (190) 
SSH (100) 

HTTP (302) 
SSH2 (114) 
TDS (16) 

HTTP (400) 
HTTP (123) 

Binary on Port 80 (10) 

2 HTTP (161) 
TDS (200) 
SSH2 (2) 

Binary on Port 80 (39) 
HTTP (3) 

SSH2 (200) 
HTTP (20) 

Binary on Port 80 (15) 

3 Binary on Port 80 (99) BitTorrent (100) 
Bitcoin (186) 

TLS (177) 
Binary on Port 80 (4) 

SMB (100) 

Bitcoin (190) 
SMB (98) 
TLS (63) 

Binary on Port 80 (9) 

4 SMB (100) TLS (200) 

HTTP (129) 
BitTorrent (34) 

SSH (7) 
Binary on Port 80 (12) 

BITTORENT (100) 
HTTP (76) 

Binary on Port 80 (25) 

5 TLS (199) Binary on Port 80 (100) 
HTTP (94) 

Binary on Port 80 (1) 
TDS (200) HTTP (1) 

6 
TDS (200) 

TLS (1) 
SSH2 (198) 

Bitcoin (190) 

SMB (100) 
BitTorrent (16) 

Bitcoin (4) 
SSH (2) 
TLS (22) 

Binary on port 80 (20) 

Binary on Port 80 
(100) 

TLS (79) 
HTTP (62) 

Binary on Port 80 (22) 

7 HTTP (139) SMB (100) 

TDS (171) 
SSH (24) 

SSH2 (59) 
TLS (1) 

TLS (200) 

HTTP (113) 
SMB (2) 

Binary on Port 80 (19) 
TLS (58) 

8 HTTP (100) HTTP (98) 
SSH (67) 
TDS (13) 

SSH2 (27) 
SSH (100) HTTP (5) 

Protocol N-gram Word2Vec BERT Big Bird Levenshtein Vincent Ghiette [27] 
P(BitTorrent) 100 100 0 100 0 94 

P(TDS) 100 100 85.5 100 100 100 
P(HTTP) 100 100 99.25 100 84.5 86.75 

P(Bitcoin) 0 0 97.98 100 100 100 
P(SMB) 100 100 100 100 0 99 

P(Binary on Port 80) 99.5 100 39 100 0 0 
P(SSH) 0 100 67 100 0 100 

P(SSH2) 100 99 57 100 0 100 
P(TLS) 99.5 100 0 100 39.5 99 

Clustering Accuracy of Model (𝑝) 81.64% 87.92% 67.55% 100% 50.75% 89.81% 
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Fig. 13. Clustering result of Levenshtein Distance (2D). 

 
Fig. 14. Clustering result of Levenshtein Distance (3D). 

 
Fig. 15. Comparison results of Clustering Accuracy between the proposed 

method and other feature extraction models. 

C. Experimental Comparision between the Proposed 
Method and Vincent Ghiette 

The clustering method Levenshtein & HDBSCAN of 
Vincent Ghiette [27] achieves high clustering accuracy in 
payload clustering. In addition, the proposed method employs 
HDBSCAN, a clustering method that does not require the 
specification of the number of clusters. In order to objectively 
evaluate the proposed method and the method by Vincent 
Ghiette [27], it is necessary to apply the features extracted by 
the proposed method to other classifier that do not require 
specification of the number of clusters, as in Vincent Ghiette 
[27], and compare and evaluate the clustering results. In the 
next experiments, the proposed method is adapted to 
HDBSCAN (used by Vincent Ghiette [27]) and compared 
with the clustering results of Vincent Ghiette [27]. 

1) Comparative experiment: comparision between Model 
(Proposed Method & HDBSCAN) and Model 
(LEVENSHTEIN  & HDBSCAN) by Vincent Ghiette [27] 

In this experiment, features extracted from BIG BIRD are 
used in the HDBSCAN clustering model. Here, the parameter 

‘min_cluster_size’ is varied from 2, 5, 10, 20, 30.... to 100, 
and these results were compared with the clustering results of 
the model by Vincent Ghiette [27]. The clustering results will 
be compared with 2 metrics: 

1. Clustering Accuracy (𝑝): This metric, consistent with 
the calculation method used in previous experiment, 
measures the precision of the clustering process. It assesses 
how accurately the clustering algorithm has grouped similar 
payloads together. High clustering accuracy indicates that 
payloads within each cluster are very similar to each other, 
and payloads in different clusters are distinct. 

2. Clustering Ratio (𝑟): Defined as the ratio of the number 
of payloads successfully clustered to the total number of 
payloads, this metric evaluates the efficacy of the clustering 
algorithm in categorizing the data. A high clustering ratio 
suggests that the algorithm is capable of effectively clustering 
a large proportion of the payloads, while a lower ratio may 
indicate that many payloads remain unclustered or are 
incorrectly grouped. 

The results of adapting the method by Vincent Ghiette [27] 
to the experimental data are as follows: 
 Clustering Accuracy (𝑝): 89.81% 
 Clustering Ratio (𝑟): 89.94% 
Subsequently, these results will be compared with the 

results from Model (Proposed Method & HDBSCAN). 

2) Result of  comparative experiment 

Fig. 16 presents the comparative results for the Clustering 
Accuracy metric between the BIG BIRD & HDBSCAN 
model and the model by Vincent Ghiette [27]. These results 
show that when min_cluster_size is less than 60, the BIG 
BIRD model consistently achieves higher clustering accuracy 
than Vincent Ghiette [27]. When min_cluster_size exceeds 
60, the Clustering Accuracy (𝑝) drops sharply. The reason for 
this is that there are many groups of protocol payloads in the 
dataset that consist of 100 payloads, and these groups are 
considered as noise when the value of the parameter 
min_cluster_size is around 100. 

Fig. 17 presents a comparison regarding the Clustering 
Ratio. Based on these findings, it is evident that the BIG 
BIRD model initially exhibits a very high ratio, which 
gradually decreases as min_cluster_size increases. Notably, 
when min_cluster_size exceeds 60, the Clustering Ratio 
significantly diminishes and falls below that of the model by 
Vincent Ghiette [27]. The underlying reason for this 
phenomenon aligns with the factors contributing to the 
reduction in Clustering Accuracy. 

 
Fig. 16. Comparison results of Clustering Accuracy between the proposed 

method with HDBSCAN and the method by Vincent Ghiette [27]. 
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Fig. 17. Comparison results of Clustering Ratio between the proposed 

method with HDBSCAN and the method by Vincent Ghiette [27]. 

Based on the comparative results obtained: 
 When min_cluster_size is ≤60: 
 𝑝 (Proposed method & HDBSCAN) > 𝑝  (Vincent 

Ghiette [27]) 
 When min_cluster_size is ≤60: 
 𝑟 (Proposed method & HDBSCAN) > 𝑟 (Vincent 

Ghiette [27]) 
From these results, we conclude that the Proposed method 

& HDBSCAN model consistently yields better outcomes 
across all 2 metrics: 

1.  Clustering Accuracy—𝑝 
2.  Clustering Ratio—𝑟 

When min_cluster_size is ≤60. 
The results show that by setting optimal parameter 

min_cluster_size, the Model (Proposed method & 
HDBSCAN) can cluster payloads with similar content 
features with higher accuracy (𝑝) than Vincent Ghiette [27]. 
Furthermore, the percentage of clustered payloads (𝑟) is also 
higher. 

V.  APPLYING THE PROPOSED MODEL TO DARKNET 

OBSERVATION DATA 

In this chapter, we demonstrate the effectiveness of the 
proposed method by applying the (Proposed Method & 
HDBSCAN) Model used in Experiment 2 to data from 
National Defense of Academy’s Darknet observation system. 
The validation of the clustering results is evaluated by 
calculating the similarity between payloads in the same group 
with a Cosine distance. 

A. Experiment Environment 

Given the considerable amount of data accumulated in 
recent years and the huge amount of computing time and 
memory required, this experiment will use one day’s worth 
of data observed at port 80 of the darknet system on 
September 1, 2017. The specific quantities of data files and 
details of the data employed in this experiment are shown in 
Table 4.  

Table 4. Information of data used in the experiment 
 2017-09-01 2017-09-01 Port 80 

File Size 14 Gb 225 Mb 
Data Size 12 Gb 197 Mb 
Packets 130,886,271 1,763,301 

Uniq Payloads 732,940 27,100 
 

B. Experiment Result  

For this experiment, min_cluster_size = 5 was selected as 
the parameter for the HDBSCAN algorithm. The clustering 
of the 27,100 payloads sent to port 80 resulted in 64 groups, 
with 116 payloads in Group(-1) considered noise.  This result 

indicates that approximately 99.57% of the total payloads 
were clustered.  

C. Verification of Clustering Results 

To assess the clustering results, a validation process is 
conducted. However, due to the absence of labels for 
individual payloads in darknet data, the validation of the 
experimental clustering results necessitates an extensive 
investigation into the similarity between payloads within the 
same group, to verify the accuracy of the clustering. 

The metric employed for this evaluation is the average 
cosine distance between payloads within each group. A 
cosine distance approaching 1 within a group indicates a 
higher degree of payload similarity, thus reflecting the 
efficacy of the clustering model. Conversely, a cosine 
distance approaching 0 suggests a lack of similarity, 
indicating a potential misclassification of payloads. To 
provide an overarching assessment of the overall results, an 
example is presented to elucidate the method of evaluation. 

1) An example of comparing similarity between payloads 
in Group X 

Fig. 16 serves as an illustrative example of a heatmap 
diagram, depicting the similarity levels among the 7 payloads 
of Group X. The intensity of each cell at position (i, j) on the 
heatmap corresponds to the degree of similarity between 
Payload i and Payload j. The more similar Payload i and 
Payload j are, the lighter the color of the cell at (i, j) will be. 
Conversely, a greater difference between Payload i and 
Payload j results in a darker color at their respective position 
in the heatmap. At position (i, i), we do not perform any 
comparison; hence, all values are zero, resulting in black cells 
along the diagonal of the heatmap. In this experiment, we 
evaluated the similarity among payloads within the same 
group by calculating the correlation values for all positions in 
the heatmap (excluding position (i, i)). The string Group X 
(7) = 0.72485 displayed above the hit map diagram implies 
that Group X has 7 payloads, and the average cosine distance 
of the Group is 0.72485. 

Furthermore, due to the large number of payloads in a 
single group and for ease of tracking, in subsequent heatmap 
diagrams, we will omit the correlation values and indexes at 
each position (i, j). Specifically, in future diagrams, Fig. 18 
will be replaced with Fig. 19, which simplifies the 
representation while retaining the essential information 
regarding payload similarities within the group.  

2) Verification results 

The validation results regarding the similarity of payloads 
within the same group are presented in Fig. 20. Remarkably, 
all the groups demonstrated high average similarity indices. 
Among the 64 groups, two groups exhibited average cosine 
distances above 0.93, and 60 groups had indices exceeding 
0.98. Collectively, these 62 groups represented 
approximately 92% of the total payloads analyzed. 

The remaining two groups registered lower similarity 
indices, with one (group 2) having an index of 0.76 and the 
other an index of 0.2529. 
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Fig. 18. Heatmap representing cosine distances within Group X. 

 
Fig. 19. Heatmap representing cosine distances within Group X (omited 

the corelation values and indexes). 

3) Consideration of Groups with Low Similarity and 
Noise Group 

First, upon examining the contents of payloads in Group 5 
which comprised 2079 payloads and exhibited the lowest 
average cosine distance of 0.2529, it was discovered that the 
payloads in this group were not associated with any specific 
protocol but were rather irregular binary data. The 
characteristics of this group were markedly different from 
other groups, leading to the conclusion that unrelated 
irregular binary data were clustered into a single group. This 
group was categorized as a cluster of irregular binary data not 
corresponding to HTTP requests on port 80. In a sense, this 
can be considered a positive outcome. 

When analyzing the payloads in Group 0, which had an 
average cosine value of 0.76 and consisted of 6 payloads, it 
was found that despite the payloads being distinct, their short 
length and features like line breaks, spaces, slashes, and the 
consistent presence of “HTTP1.0” at the end, likely 
contributed to their incorrect clustering into a single group. 

Upon investigating the payloads within Group −1, 
identified as the noise group, it was observed that many of the 
payloads were either unique HTTP requests in small 
quantities, failing to reach the minimum cluster size threshold, 
or were associated with various other protocol types. 
Reducing the min_cluster_size could result in these payloads 
forming a new group; however, this might lead to their 
reclassification into other groups and a rapid increase in the 

number of clusters. 

VI. CONCLUSION  AND FUTURE WORKS 

A. Conclusion  

In this study, we introduced a novel feature extraction 
method utilizing BIG BIRD to analyze various payload 
contents, including encrypted payloads, and addressing 
diverse challenges encountered in payload clustering tasks. 
Our proposed approach showcased superior efficacy 
compared to other text feature extraction models like N-gram, 
Word2Vec, and BERT in extracting features from payloads. 
Specifically, through comparative experiments utilizing the 
KMeans clustering model, our method yielded a remarkable 
100% clustering accuracy when using features extracted from 
various payloads of protocols. Notably, the post-clustering 
payload groups precisely aligned with the pre-clustering 
groups, a precision that gradually diminished with Word2Vec, 
N-gram, and BERT. In comparison to the Levenshtein 
Distance Method, our method demonstrated a notable 
capacity in clustering payloads with similar content features. 
Furthermore, when integrated with the HDBSCAN classifier, 
it achieved high clustering accuracy while maintaining a 
substantial proportion of clustered payloads.  

Furthermore, when our proposed method was applied to 
actual darknet data clustering, it successfully clustered 
approximately 99.57% of the payloads. Moreover, we 
verified that over 92% of these payloads had a high degree of 
similarity within their clustered groups. 

B. Limitation and Future Work 

There are still several limitations to the proposed method. 
Firstly, in this study our focus is solely on the analysis of 
initial payloads. Looking ahead, within the context of 
detecting cyber attacks and malicious communications, it is 
conceivable that there are scenarios where immediately 
discernible malicious communications exist within initial 
payloads, while in other cases, subsequent payloads may 
follow without clear indicators of malicious intent. This 
suggests the difficulty in relying solely on initial payloads for 
determination. However, by integrating the clustering result 
of this study with additional information such as transmission 
times, sending frequencies, and sending methods, there is 
potential to enhance the detection of malicious 
communications and attacks. 

Secondly, a significant limitation observed during the 
experimental phase of this study pertains to the feature 
extraction phase utilizing the BIG BIRD algorithm, which 
consumed considerable time. In the future, solutions to 
address this issue will be devised, potentially leveraging 
parallel processing to expedite feature extraction.  

Finally, the clustering model HDBSCAN relies on the 
hyperparameter min_cluster_size. It necessitates exploring 
various values to determine the optimal value for a given 
dataset. To mitigate this requirement, we aim to explore 
models that can automatically compute the optimal value 
without relying on hyperparameters.  

These limitations underscore areas for future improvement 
and refinement of the proposed method. Efforts to address 
these challenges will contribute to enhancing the efficiency 
and applicability of the methodology in practical scenarios. 
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Fig. 20. Heatmap representing the validation results regarding the similarity of payloads within the same group. 
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