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Abstract—Firewalls are required to ensure that only trust-
worthy packets are sent back and forth across the network 
in order to provide secure network communication. Firewalls 
employ the rules that network administrators establish to 
control which packets are allowed access to an organization’s 
private network in order to enforce security regulations. 
By classifying packets, network devices can determine how 
incoming packets behave. A greater communication delay is 
caused by a higher rule count since it is achieved by a linear 
search on a list of categorisation rules. The goal of Optimal 
Rule Ordering (ORO), a generalisation of the issue where the 
latency is minimised while keeping the classification strategy, is 
to find the optimal rule sequence. This research suggests a dual 
approach for reordering the firewall rules using optimization. 
This research suggests a dual approach for reordering the 
firewall rules using optimization. In the first approach, the 
firewall rules are arranged according to the precedence relation 
using a probability-based algorithm. The firewall rules are then 
rearranged using the optimization-based technology known 
as Particle Swarm Optimization (PSO). Firewalls may be 
optimized to function better and filter packets more effectively 
by fine-tuning their rules.The performance analysis of the 
proposed method is extended by looking at the results obtained 
using a precise optimization strategy. This study presents a 
method for rearranging more complex scenarios that work 
better. The proposed method consists of two algorithms: the 
first finds the ideal firewall rule order using a probability-
based approach, and the second finds the optimal solution 
using a PSO: i) An ideal firewall rule order via a probability-
based approach, and ii) An optimal solution using a PSO-based 
approach.

Keywords—firewall, Optimal Rule Reordering (ORO), 
optimization, rule reordering, probability, Particle Swarm 
Optimization(PSO)

I. INTRODUCTION

Firewalls are computer systems that mediate access be-
tween two or more network segments or computer hardware
and software systems or between a network interface and
the rest of the computer system hosting it [1]. The two main
purposes of firewalls are to allow authorized network traffic
to pass through and to block unauthorized network traffic
[2]. The process of controlling network packets according
to a logical set of rules—a filtering policy—is known as
packet filtering. Due to the constantly changing network
architecture and the constant requests for new services from

users, systems administrators must regularly add, update,
and delete filtering rules from policies [3]. As a result, the
filtering policy gets more complicated after every change
the user makes, and the rule order may not be ideal. It
has spurred the scientific community to concentrate on
other strategies for dependable optimization techniques. The
most often used type of firewalls are rule-based firewalls
[4], and since typically triggered rules are checked too
frequently, an incorrect rule ordering might cause a per-
formance bottleneck. Therefore, it is necessary to examine
the traffic characteristics to determine which regulations are
outdated or have not been used for an extended period
[5]. To acquire the smallest number of packet matches
and prevent significant performance reduction from traffic
anomalies, firewall rules must be arranged adaptively. It has
been demonstrated that the optimal rule ordering problem
(ORO) with rule dependence restrictions is NP-complete. As
a result, updating the rule ordering dynamically concerning
traffic volumes is expensive [6]. In the event of complex
firewall security settings, classical optimization techniques
may not discover a solution for a long time. As a result,
heuristic algorithms—also known as heuristics—have been
used. Heuristics [7], on the other hand, typically seek
to arrive at a suitable sub-optimal solution more quickly.
Generally, a heuristic’s departure from a solution that would
result in significant improvements increases with decreasing
execution time. To better grasp their true effectiveness, it
is crucial to compare the outcomes of heuristic recom-
mendations with precise optimization techniques [8]. Parti-
cle Swarm Optimization (PSO) is a widely used heuristic
approach for solving NP-hard combinatorial optimization
problems [9]. PSO has been effectively used to solve a
variety of related combinatorial optimization issues, such as
the traveling salesman problem [10], scheduling [11], and
engineering challenges [12]. This drives our research into
examining using a PSO-based heuristic technique to solve
the firewall optimization problem. The ORO problem is
addressed by the approach presented in this study, which also
uses this heuristic. However, the PSO will not be utilized
alone because, as recent research has shown, it is more
successful when combined with other algorithms to provide
even greater optimal performance. Specifically, the algorithm
described in this study uses a PSO as the second step in a
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dual approach. Finding the order of the rule sequence based
on probability is the first step in the process. Once the first
stage results are received, the PSO maintains the order of
the rules and organizes the rule list within the previously
optimally sorted sequence. Consequently, the PSO searches
for the best location for the rule sequence. To tangibly verify
the suggested algorithm’s efficacy, it presents a comparison
using advanced heuristics and a precise optimization tech-
nique. Importance of Reordering Firewall Rules:

• Enhanced Security Specificity: Placing specific rules
before general ones ensures that critical security mea-
sures are applied first, reducing the risk of unauthorized
access.
Minimized Attack Surface: Effective ordering can help
block malicious traffic before it reaches sensitive areas
of the network. Improved Performance

• Efficiency: By prioritizing frequently used rules or
those that filter out high volumes of traffic, the firewall
can process packets more quickly, reducing latency.
Reduced Load: Streamlined rule processing lowers the
overall load on the firewall, allowing it to handle more
connections simultaneously without degradation.
Simplified Management

• Clarity: A well-organized rule set is easier to read and
maintain, enabling quicker identification of issues and
necessary updates.
Easier Auditing: A clear structure helps in reviewing
rules during audits, making it simpler to verify
compliance with security policies.

Hence, reordering firewall rules is critical for both security
and performance. Properly structured rules enhance protec-
tion against threats, streamline traffic handling, and simplify
ongoing management, ultimately leading to a more robust
and efficient network environment.

The remaining portion of this paper is structured as
follows: Section II explains the related work of various
firewall rule optimization with rule reordering. Section III
explains authors contribution. The proposed firewall reorder-
ing is explained in Section IV. Section V explains results
and discussion. The performance of the proposed approach
is described in Section V, and Section VI concludes the
research paper.

II. RELATED WORK

This section explains the various approaches related to
firewall rule optimization with reordering and PSO algorithm
for addressing NP-Hard problems. NP-hardness is a com-
putational complexity concept that measures the difficulty
of solving problems in polynomial time. All NP-complete
problems are also NP-hard.

Hamed et al. [12] describe a novel method for optimizing
firewall filtering settings using Internet traffic features. The
method dynamically optimizes the ordering of packet filter-
ing rules in real time in response to traffic conditions by us-
ing actively computed statistics. The optimization algorithm
considers both the significance of the rule in traffic matching

and its dependence on other rules. Using Directed Acyclical
Graphs (DAGs) to express firewall policy, Tapdiya et al.
[13] present a novel rule-sorting technique. This algorithm
first uses the list of constraints between rules to compute
the DAG. Given such a DAG, the list of reachability sets
connected to every rule is derived. DAG base optimization
is explained in [14]. The average activation frequency of
the rules in each set is then determined, giving each set a
weight. In the end, a weighted system that considers rules
close to the rule that identifies the generic set is used to
sort each set in ascending order. In [15], Fulp suggested
a straightforward bubble sort-like heuristic algorithm based
on admissible swaps of neighbouring rules and described the
precedence relations among rules as a DAG. Neji et al. [16]
present a novel optimization method that makes optimization
simple, safe, and optimal by introducing new matrix-based
evaluation metrics. A collection of unique matrices, includ-
ing the Dependency, Reordering, and Grouping matrices,
are also used to provide an evaluation performance. Every
matrix has a corresponding factor in [0,1], and the defined
factors are presented to quantify the reordering possibili-
ties and measure the filtering methods’ complexity. Using
an innovative concept known as the Swapping Window,
Mohan et al. [17] provide an effective and straightforward
approach for improving the firewall’s rule order. The author
also presents a novel adaptive approach for estimating the
statistics of multinomial observations that appear in a batch
model. The approach adapts the Stochastic Learning Weak
Estimation (SLWE) and can handle nonstationary settings.
Mohan et al. [18] expanded Fulp’s technique by identifying
permissible switching windows—rule sequences in which
the first and final rules can be switched without going
against precedence restrictions. The matching frequencies
are assumed to be independent of the rule position in the
sequence in all of these works. Using statistical analysis,
Kadam et al. [19] present an adaptive cross-domain firewall
policy optimization technique that maintains policy confi-
dentiality. The author suggests a method that uses network
statistics to determine the rules’ order dynamically. The
method finds the order of the rules in the rule set to enhance
system performance and identify and eliminate redundant
rules. Two tasks are involved in the optimization process:
First, while maintaining the privacy of each firewall, work
together to lower the overall number of rules. Secondly,
determine the rule set’s order by utilizing network usage
information. According to Harada et al. [20], an oriented
tree can be formed by the precedence relation graph of
an input rule list if it is limited to an inclusive rule list.
By reconstructing the input rule list as an inclusive rule
list, the author’s rule reconstruction approach heuristically
optimizes it. The Relaxed Optimal Rule Ordering (RORO)
problem is examined by Harada et al. [21], where rules
can be substituted provided their actions are identical. The
weight of rules in RORO might fluctuate as they change
around. A zero-suppressed binary decision diagram is the
method the author suggests employing to determine the
weights. This approach precisely calculates the latency and
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computes a rule list that guarantees less latency than in
numerous other traditional algorithms. Fixed Sub-Graph
Merging (SGM) is an alternate form of SGM that Fuchino
et al. [22] propose. Concerning the allocatable elements,
this algorithm arranges the items within the chosen sub-
graph, selecting the heaviest (even if single). A simulated
annealing technique for RORO based on policy violation,
as opposed to overlap or dependency relations on rules, is
proposed by Harada et al. [23]. Using a Zero-suppressed
binary Decision Diagram (ZDD), the method concentrates
on an ordering that fulfils the policy but does not satisfy
the dependence relation. A unique method for resolving the
issue of the best arrangement of filtering policies in a firewall
is developed by Coscia et al. [24]. The method combines
two heuristics for managing mutually dependent policies and
applies a genetic algorithm. It offers improved efficiency
from the perspective of time processing and filtering action
speed. Coscia et al. [25] present a novel two-stage approach
that optimally reorders firewall security rules to minimize
packet classification latency. To identify the best ordering
for the limited rules, the first step uses a novel topolog-
ical sorting method that considers the inter-packet arrival
time—which generally follows Zipf’s law—influences rule
activation frequencies. A genetic algorithm is used in the
second stage to determine the best order for each rule in
the list. An investigation on the computational cost of per-
missible rule ordering and its greedy algorithm was carried
out by Fuchino et al. [26]. By examining computational
complexity, their research highlighted the NP-hardness of
some rule-ordering procedures and illuminated the difficul-
ties associated with rule optimization. An enhanced method
for assisted firewall anomaly identification and resolution
is put forth by Bringhenti et al. [27]. This method only
solves suboptimizations automatically; it communicates with
users by asking direct questions about conflict resolution
because automatic conflict resolution can result in undesir-
able configurations. To lessen the administrative burden, the
method also minimizes the number of interactions necessary
and uses satisfiability checking approaches to produce a
correct-by-construction outcome. Pizzato et al. [28] provides
an effective technique to minimize the processing duration
for reconfiguration while offering an automated, formally
proper, and efficient placement and configuration of the
essential network security functions. This method incurs
a significant computing load, with the duration varying
from a few seconds to several minutes, contingent upon the
intricacy of the network. Chao et al., [29] propose a two-
phased technique to reduce the number of filtering rules
in firewalls while maintaining the original filtering effects
for IPv6 traffic in high-speed IoT networks. The mechanism
incorporates a novel split-and-merge technique to efficiently
divide and combine the traffic filtering regions of firewall
rules, thereby reducing the total number of firewall rules.

The ORO problem can be solved with a suboptimal
solution using any of the strategies above. While some are
quite fast, their classification latency minimization perfor-
mance is unclear because no exact optimization approach

that can yield a global optimal solution is compared with 
them. Regardless of the complexity of the problem, quick 
reordering is required in real-life scenarios; however, the 
ultimate objective is to maximize the FW packet processing 
time. Comparing the performance attained by precise opti-
mization is therefore crucial. A new algorithm to solve the 
ORO problem is presented in this study. Table 1 shows 
the summary of firewall rule ordering.

Table 1. Summary of firewall rule ordering

Ref Description Technique Used Remarks
[12] Dynamic firewall

rule reordering
Statistical packet
matching

The method poorly man-
ages the intermittent na-
ture of packet flows.

[13] DAG-based
rule ordering
(SubGraph
Mergine)

Heuristic
sorting - Sub-
Graph Merging
algorithm

It efficiently finds the op-
timal rule order.

[14] DAG-based fire-
wall rule opti-
mization

Rules sorting
(based on
precedence
relationships)

Finding a solution is a
time-consuming task.

[15] Optimal filtering
rule ordering

Matrix-based
rule reordering

It has great potential to
simplify, optimize, and se-
cure optimization.

[16] Dynamic
ordering firewall
rules.

Swapping
Window-based
rule ordering

Unnecessary overhead.

[17] Network traffic
statistic-based
rule ordering

Rule reordering
and traffic aware
algorithm

Excessive delays in packet
filtration might result in
packet losses and session
initiation denials.

[18] Adaptive
cross-domain
firewall policy
optimization

Statistical based
technique

The sequence of rules
is determined by using
statistics on network us-
age.

[20] Relaxed optimal
rule ordering

Zero-suppressed
binary decision
diagram with
a Heuristic
algorithm

It computes the latency
precisely.

[21] Packet classifica-
tion using Adja-
cency List

Adjacency
List based
approach and
Fixed SubGraph
Mergine

It decreases reordering
time compared with the
original SGM [R2]

[22] Relaxed Optimal
Rule Ordering

Simulated
annealing

ZDDs are used in the pro-
cedure to determine if an
order complies with the
policy.

[23] Firewall policy
optimization

Genetic
algorithm

It reduces the time com-
plexity

[24] Firewall rule or-
dering using two
stage algorithm

Topological sort-
ing and genetic
algorithm

It reduces the error in-
duced by uncertain oper-
ators, improving the ex-
amination potential of the
entire strategy.

[25] Relaxed optimal
rule ordering

Greedy Method It reduces the latency

[26] Intra-firewall pol-
icy anomaly de-
tection and reso-
lution

Optimal
approach for
anomaly analysis

It provide efficient
anomaly resolution and
reduces the workload

[36] Optimized
firewall
reconfiguration

Automatic and
optimal approach

It increases computational
complexity and processing
time.

[37] Firewall rule op-
timization

Two phase mech-
anism, split and
merge method

It enhances the efficiency
and efficacy of the mech-
anism.

Heuristic algorithms work well for addressing NP-Hard
issues. Mor et al. [30] demonstrate how heuristic-achieved
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solutions for this class of optimization problems are nearly
identical to global solutions discovered by exhaustive search
techniques. Heuristics are faster than exhaustive searches;
hence, these two kinds of algorithms are not comparable
in convergence speed. PSO is a popular heuristic for han-
dling NP-Hard issues. An NP-Hard issue called the Travels
Salesman issue (TSP) involves a salesman who has to visit
every city and return to the starting location in the least
amount of time. To discover the optimal solution for TSP,
one of the most well-known NP-Hard problems in com-
putational optimization, Abdulrahman [31] uses the most
effective heuristic-based Swarm Intelligence techniques. A
novel transfer learning-based PSO method (TL-PSO) for
TSPs is proposed by Zheng et al. [32]. A city topology
matching approach based on geometric similarity is first
developed to match each new city subset to a histori-
cal city subset. All cities in the new and historical TSP
problems are clustered into several city subsets. Next, to
produce a quality initial swarm, useful optimal pathways are
extracted from those matching historical city subsets and
then transferred into the target region.Swarm intelligence
is the collective behavior of decentralized, self-organized
systems, natural or artificial. The concept is employed in
work on artificial intelligence. The expression was by this
token introduced. Wei et al. [33] suggest improved hybrid
particle swarm optimization to address the Travel Salesman
Problem (TSP). A probability initialization is first utilized
to incorporate previous knowledge into the initialization
to save significant computational power as the algorithm
evolves. Furthermore, two crossover types are suggested to
utilize Gbest and Pbest better to increase the algorithm’s
convergence accuracy and population diversity. A directional
mutation is finally used to get around the typical mutation
operator’s randomness. Based on particle swarm optimiza-
tion and genetic algorithms, Kou et al.’s [34] optimal
patrol path design for offshore wind farms addresses the
travelling salesman problem. First, the travelling salesman
issue of shortest route optimization characterizes offshore
wind farms’ patrol routing planning problem. Second, the
patrol path distance is used as the objective function, and
the GA and PSO algorithms are independently simulated and
validated. It is determined that the task scheduling problem
is a nondeterministic polynomial time (NP)-hard problem.
Randomization of the initialization of solution searching
is a crucial component of these optimization techniques.
Nonetheless, the performance of metaheuristic algorithms
can be greatly enhanced by providing them with efficient
initialized solutions. Using heuristic techniques, Alsaidy et
al. [35] suggest an enhanced initialization of particle swarm
optimization. To prevent premature convergence and speed
up the convergence of standard PSO, Agarwal et al.’s [36]
particle swarm optimization task scheduling mechanism uses
an opposition-based learning technique. It is then compared
to other well-known PSO-based task scheduling strategies.
An approach called Improved Particle Swarm Optimization
is proposed by Pirozmand et al. [37]. A multi-adaptive
learning technique is used to reduce the execution time of

the original Particle Swarm Optimization algorithm for task
scheduling in the cloud computing environment. The Multi
Adaptive Learning for Particle Swarm Optimization defines
two types of particles in its initial population phase: ordinary
particles and locally best particles. The population becomes
less diverse during this phase and the chance of reaching the
local optimum increases.

III. AUTHORS’ CONTRIBUTION

There are two authors in this paper. This study proposes
two methods for optimizing the firewall rule reordering.
In the first method, a probability-based algorithm arranges
the firewall rules according to the precedence relation. The
firewall rules are then rearranged using the optimization-
based technology known as particle swarm optimization
(PSO). Firewalls can be optimized to perform better and
filter packets more effectively by fine-tuning their policies.
The following are the contributions of this work:

• To present a novel dual approach based on Probability
and optimization to optimize the Firewall rule order.

• A novel probability distribution-based sorting technique
is recommended to reduce the classification delay re-
lated to the sorted objects.

• The PSO algorithm suggests the best rule ordering,
which switches rules without breaking against policy.

IV. PROPOSED METHODOLOGY

This section explains the proposed dual approach-based
firewall rule reordering. In the first method, a probability-
based algorithm arranges the firewall rules according to the
precedence relation. The firewall rules are then rearranged
using the optimization-based technology known as Particle
Swarm Optimization (PSO).

• Probability-Based Approach: A probability-based ap-
proach in optimization typically involves using proba-
bilistic models to make decisions or predictions about
the behavior of a system. This can include: Random
Sampling: Instead of exhaustively searching through
all possible solutions, this approach samples solutions
based on their probabilities of being optimal. It helps
to explore a wide solution space while focusing on
promising areas. Stochastic Methods: These techniques
incorporate randomness into the search process, al-
lowing for exploration of the solution space without
getting stuck in local optima. This is particularly useful
in complex landscapes where deterministic methods
may fail. Adaptive Mechanisms: The probabilities can
adapt based on feedback from the optimization process,
allowing the algorithm to dynamically focus on more
promising solutions as it learns about the landscape.

• Particle Swarm Optimization (PSO): Particle Swarm
Optimization is a population-based optimization tech-
nique inspired by the social behavior of birds or fish.
Here’s how it works:

• Initialization A swarm of particles (potential solutions)
is initialized randomly in the solution space, each with
a position and velocity.
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Fig. 1. Proposed architecture.

• Fitness Evaluation: Each particle’s position is evaluated
using a fitness function, which measures how good that
solution is in terms of the optimization goal.

• Individual and Collective Learning: Each particle keeps
track of its best position found so far (personal best)
and shares this information with the rest of the swarm.
The swarm also tracks the best position found by any
particle (global best).

• Velocity and Position Update: Each particle adjusts
its velocity based on its own experience and that of
its neighbors, guided by the equations: New Velocity
= Current Velocity + Cognitive Component + Social
Component New Position = Current Position + New
Velocity The cognitive component drives the particle
toward its own best position, while the social compo-
nent pushes it toward the global best.

• Iteration: The process repeats for a set number of
iterations or until a convergence criterion is met. As the
algorithm progresses, particles tend to cluster around
the best solutions, exploring the search space more
efficiently.

Benefits of PSO:
• Simplicity: PSO is relatively simple to implement and

requires few parameters to adjust.
• Efficiency: It converges quickly to good solutions,

making it suitable for many optimization problems.
• Flexibility: PSO can be applied to various types of

optimization problems, including continuous, discrete,
and combinatorial ones.

Hence, the probability-based approach, along with tech-
niques like Particle Swarm Optimization, provides effective
frameworks for solving complex optimization problems by
balancing exploration and exploitation of the solution space.
PSO, in particular, leverages collective intelligence to en-
hance convergence speed and solution quality. Fig. 1 shows
the general architecture of firewall rule ordering.

A. Firewall Policy

Packets from one network to another are filtered by a
network firewall using rules. Formally stated, a firewall

policy, R, is an ordered list of rules R = (r1, r2,..., rN ), 
where N is the total number of rules in the list. An M-
ary tuple of attributes or fields (fdi1, fdi2,...,fdiM )  a nd a 
corresponding action (ai), which can be either allow or deny, 
comprise of each rule ri (for i = 1, 2,..., N). The most often 
utilized attributes are the protocol type, source IP address, 
source port number, destination IP address, and destination 
port number. These fields a re f undamental a nd i t provides 
crucial information for screening and regulating network 
traffic. T he o ther fi rewall ru le fie lds suc h as App lication or 
Service, Protocol Flags, Packet Size, and MAC Address are 
infrequently utilized. Every rule attribute denotes a particular 
value or collection of values. Table 2 shows the sample 
firewall rules where Prot is Protocol, SIP is source IP, SPt is 
source port, DIP is Destination IP, DPt is Destination port. 
From Table 2, the total number of rules (N) are 10, the

Table 2. Sample firewall rules

RID Prot SIP SPt DIP DPt Action
1 TCP 192.4.4.44 45 192.4.4.18 53 Allow
2 TCP 192.4.4.44 45 192.4.4.18 53 Deny
3 TCP 192.4.4.28 515 192.4.4.50 45 Allow
4 TCP 192.4.4.20/40 8080 192.4.4.10/52 143 Allow
5 TCP 192.4.4.20/30 8080 192.4.4.10/50 143 Deny
6 TCP 192.4.4.38 8080 192.4.4.10/52 143 Allow
7 TCP 192.4.4.38 8080 192.4.4.10/52 143 Deny
8 TCP 192.4.4.15 80 192.4.4.11/52 45 Deny
9 TCP 192.4.4.23/35 8080 192.4.4.38 143 Deny
10 TCP 192.4.4.15 80 192.4.4.40 45 Allow

number of fields ( M) a re 6  ( RID i s n ot c onsidered) For 
rule1, fd11 = TCP, fd12 = 192.4.4.44, fd13 = 45, fd14 = 
192.4.4.18, fd15 = 53, fd16 = Allow. A packet is compared 
one by one, starting with the first rule in the security policy, 
against every rule until it finds a  m atch—usually t he first 
match—or reaches the end of the list when it reaches the 
firewall. T he m atching r ule a ction i s e xecuted i f o ne is 
discovered; if not, the default rule action, which is often 
denied, is carried out. When every attribute in a packet falls 
inside the range of values of the associated rule attribute, 
the packet is said to match the rule. It is crucial to consider 
the order of the rules in the list when creating a security 
policy since they are not always mutually exclusive—a 
general rule can be a superset of one or more other rules. 
If every matching field’s i ntersection i s n ot e mpty, then 
two rules are considered intersecting. Inadequate firewall 
performance or a breach in the security policy’s integrity 
can arise from improper ordering. The ORO problem is 
restricted to optimization since the rules have a dependency 
relationship. It is impossible to reposition these restrictions 
arbitrarily without jeopardizing the security guidelines that 
the original FT set in place. When two rules, ri and rj , are 
given and belong to the same set R, meaning that i is not 
equal to j they are considered dependent if ri and rj match 
the same network traffic, ri and rj carry out distinct filtering 
action. Table 3 shows the precedence relation of Table 2.

Consider the relation [1→ 2] in Table 3. The rule r1 must 
precede r2 since both rules have the same protocol, IP 
address, ports and different actions.
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Table 3. Precedence relation from Table 2

Rule ID Precedence Relation
1 [2]
2 [null]
3 [null]
4 [5, 7, 9
5 [null]
6 [7]
7 [null]
8 [10]
9 [null]
10 [null]

B. Probability-Based Rule Ordering

Assume that a firewall policy consists of N rules R = (r1,
r2,..., rN ). The rule matching Probability of each rule ri
is known to be P(ri)= pi. Equation (1) can be utilized to
obtain this probability distribution. Since a firewall’s per-
formance depends on the rule order, choosing an order that
minimizes computing cost is necessary to make a judgment.
Nonetheless, regulations often intersect, and a misalignment
of specific requirements may result in a security breach.
Therefore, it is necessary to maintain the relative order of
rules ri and rj if they intersect. An integer program with
constraints can create an optimization problem for firewall
policies. Suppose the filtering table comprises rows with
numbers ranging from 1 to N, with index one assigned to
the first row. It is also assumed that the original policy list’s
rules are indexed from 1 to N. The probability for each rule
can be calculated as,

P (ri) = pi =

∑N
j=i+1 ηij

N
(1)

where, ηij indicate the summation of the matching field of
rule ri and rj . It can computed as

ηij =

∑M
f=1 δ

f
ij

M
(2)

where, δfij is calculated as

δfij =

{
1, if ri=rj
0, Otherwise (3)

If the value of δfij is assigned 1 when the two rules ri
and rj fields are identical; otherwise, 0. Table 4 shows the 
rules matching Probability.

Table 4. Rules matching probability

Rule ID Matching Probability
1 0.4
2 0.325
3 0.486
4 0.8
5 0.52
6 0.653
7 0.53
8 0.7
9 0.2
10 0.0

Let τij represent binary decision variables that represent
whether rule i is or is not assigned to row j. It is defined as,

τij =

{
1, if ri is located at j th row in list
0, Otherwise (4)

where i and j ϵ 1,2,3,. . . , N . Furthermore, let ρij specify
the following precedence connection between rules ri and
rj :

ρij =

{
1, if ri is precede rj
0, Otherwise (5)

The Probability for the precedence matrix is computed as,

Pm(i) =

∑N
j=1 ρij

N
(6)

Here Pm(i) is the matching probability. This research will
use the following modeling to assess the outcomes of an
exact optimization strategy to solve the ORO problem.

minimize
N∑
i=1

N∑
j=1

jpiτij (7)

Subject to,
N∑
i=1

τij = 1 i = 1, 2, · · · , N (8)

N∑
j=1

τij = 1 j = 1, 2, · · · , N (9)

N∑
k=1

kτik −
N∑

k=1

kτjk ≤ −1 if ρij − 1, i, j = 1, 2, · · · , N

(10)
τij ∈ {0, 1}, i, j = 1, 2, · · · , N (11)

The objective function minimizes the average number of 
packet comparisons against policy list rules (7). Specifi-
cations (8) and (9) stipulate that every rule can only be 
present in the list once and that each list place can only 
include one rule (i.e., a one-to-one assignment). Constraint 
(10) enforces the rules’ precedence relations. The decision 
variables are ultimately forced to be binary by constraints 
(11). Algorithm 1 shows the Probability-based sorting for 
ordering the firewall rules.

This algorithm calculates the rule weight using matching 
and precedence probability. If the precedence probability is 
less then or equal to 0, then the weight of the rule is also 
set as 0. Table 5 shows the weights for each rule.

Table 5. Rule weight

Rule ID Weight-1 Weight-2
1 0.5 0.5
2 0.325 0.0
3 0.4857 0.0
4 1.1 1.1
5 0.52 0.0
6 0.75 0.75
7 0.5333 0.0
8 0.7999 0.7999
9 0.2 0.0
10 0.0 0.0
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Algorithm 1 Probability-Based Sorting

Input:List of Firewall rules R=r1,r2,. . . ,rN
Output:Ordered Firewall Rules Index (Index-1 & Index-2)

for i = 1 to N do
Compute matching probability pi using Eq. (1)
end
Find the binary decision variable τij using Eq. (4)

Find precedence connection ρij using Eq. (5)
for i = 1 to N do

Compute precedence probability Pm(i) using Eq.
(6)

end
for i = 1 to N do
w1i = pi + Pm(i)

if Pm(i) greater than 0 then
w2i = pi + Pm(i);

end
else

w2i = 0
end
end
Sort w1 and w2 in descending order

OFRIndex-1 = sorted Index(w1)
OFRIndex-2 = sorted Index(w2)
Return OFRIndex-1 and OFRIndex-2

Table 6. Sorted rule index

Weight-1 r4 r8 r6 r7 r5 r1 r3 r2 r9 r10
Weight-2 r4 r8 r6 r1 r2 r3 r5 r7 r9 r10

Sort weight by descending order to get the rule order. 
The sorted rules are shown in Table 6. Apply the following 
formula to find the optimal rule ordering that minimizes:

ψ =
N∑
i=1

RIiωi (12)

where RIi represents the rule id and ωi indicates the ith
rule weight. The value of ψ for weight-1 is 25.93, and for
weight-2 is 15.72. so the optimal rule list r4, r8, r6, r1, r2,
r3, r5, r7, r9, r10. These sorted rule indexes are given to
the input as the next approach (PSO) for rule optimization.

C. PSO-Based Optimized Rule Ordering

A population-based algorithm is Particle Swarm Opti-
mization (PSO) [35]. Particle Swarm Optimization (PSO)
is a population-based stochastic optimization technique in-
spired by the social behavior of birds flocking or fish
schooling. It has several advantages compared to other
optimization algorithms, such as Genetic Algorithms (GA),
Simulated Annealing (SA), and traditional gradient-based
methods. Here are some key advantages:

1) Simplicity and Ease of Implementation Simple Con-
cept: PSO is conceptually simple and easy to un-
derstand. It involves fewer parameters and opera-
tions compared to algorithms like Genetic Algorithms
(GAs), which require more complex operations like

crossover and mutation. Fewer Parameters: PSO typi-
cally requires only a few parameters to be tuned, such
as the number of particles, inertia weight, and learning
factors. This contrasts with GAs, where parameters
like population size, crossover rate, mutation rate, and
selection methods must be carefully adjusted.

2) Efficient Global Search Global Optimization: PSO
efficiently searches the global solution space by com-
bining local and global exploration. The particles tend
to converge to the global optimum by sharing infor-
mation among them, reducing the chance of getting
stuck in local minima. No Gradient Requirement:
PSO does not require gradient information of the
objective function, making it suitable for optimizing
non-differentiable, discontinuous, or noisy objective
functions.

3) Robustness Adaptability: PSO is robust to changes in
the problem landscape, making it effective for dynamic
optimization problems where the solution space may
change over time. Multiple Solutions: PSO can explore
multiple regions of the solution space simultaneously,
increasing the likelihood of finding a global optimum
in multi-modal optimization problems.

4) Convergence Characteristics Fast Convergence: PSO
generally converges faster than GAs in many problems
because it uses the best solution found so far to guide
the search, whereas GAs may take longer due to
the randomness involved in crossover and mutation.
It functions by keeping a population or swarm of
particles active. Each particle is a potential solution,
represented by a vector of n real values, where n is
the number of dimensions in the problem. In addition
to position, every particle possesses a velocity, an
n-dimensional vector whose dimensions indicate the
direction and speed at which the particle should travel
in the subsequent iteration. The particles are assessed
using a fitness function for each iteration. To determine
the optimal position for the entire population (gbest),
the best position that each particle has previously
investigated (pbest) is noted and shared across par-
ticles. A particle’s velocity is then updated following
its current velocity and these two optimal positions.
Let Xt

i and V t
i be the i-th particle’s location and

velocity vectors, respectively. The terms {pbest}ti and
{gbest}ti represent the particle’s personal best position
and global best position, respectively, and are updated
in the manner described below:

V t+1
i = ωV t

i +c1r1
(

pbest t
i −Xt

i

)
+c2r2

(
gbest t

i −Xt
i

)
(13)

Xt+1
i = Xt

i + V t+1
i (14)

where t is the iteration number, ω is the inertia weight, r1
and r2 are uniformly randomized between [0,1], and c1 and
c2 are acceleration coefficients. PSO algorithm can be used
in different domains. This work uses the PSO algorithm to
optimize the firewall rule order. Algorithm 2 explains the
proposed PSO algorithm for rule ordering.
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Algorithm 2 PSO-based firewall rule optimization

Input:List of Firewall rules R=r1,r2,. . . ,rN
Output:Optimized firewall rule order for given rules

Initialize Parameters (maxIter, ω, c1, c2, r1, r2)
Initialize population
Initialize position and velocity
for i = 1 to maxIter do

for p = 1 to number of population do
Compute fitness values Fp using Eq. (12)

if Fp is better than pbest then
Update pbest;

end
end
end
Update gbest for p = 1 to number of population

do
Update velocity using Eq. (13)

Update position using Eq. (14)
end
Return gbest (optimal firewall rule order)

The number of the population is set as 10. The initial 
first population of this algorithm is [4, 8, 6, 1, 2, 3, 5, 7, 9, 
10] and the remaining are generated randomly. Table 7 
shows the initial population of PSO. The fitness value of

Table 7. Initial population

r4 r8 r6 r1 r2 r3 r5 r7 r9 r10
r4 r8 r6 r7 r5 r1 r3 r2 r9 r10
r8 r1 r2 r3 r10 r7 r5 r9 r6 r4
r3 r5 r7 r1 r2 r4 r9 r8 r6 r10
r5 r6 r9 r1 r3 r2 r4 r8 r9 r10
r9 r1 r3 r2 r4 r6 r10 r7 r5 r8
r10 r4 r7 r3 r1 r2 r5 r6 r8 r9
r4 r5 r6 r7 r9 r1 r2 r8 r10 r3
r3 r2 r4 r1 r10 r6 r8 r9 r5 r7
r5 r2 r6 r3 r1 r7 r8 r9 r10 r4

each particle is computed using Eq. (12) and finds t he pbest 
and gbest. The fitness v a lue i s  6 . 716, 1 . 901, 3 . 249, 2.153, 
2.584, 2.090, 2.295, 2.677, 2.423, 2.878. The best optimal 
rule order is r4, r8, r6, r7, r5, r1, r3, r2, r9, r10.

V. RESULTS AND DISCUSSION

The suggested optimal firewall r ule o rdering performance 
implementation details are examined in this section. The 
Java platform is used for its implementation, and cloudsim 
(a cloud simulator) creates and maintains the single Host 
and virtual machines. The system configuration comprises 
Windows 10 64-bit, an Intel Pentium 2.30 GHz processor, 
and 4 GB of RAM. These rules are Custom-created rules 
and arbitrary generated. The matching and precedence prob-
ability is computed for each rule and sorted based on the 
computed weights. Table 8 shows the Probability-based 
rule weight.

The rule order for probability based approach is r11, r3, 
r4, r8, r2, r1, r5, r6, r7, r9, r10, r12. Table 9 shows the 
population and fitness values. T he o ptimal o rder o f firewall 
rule is r11, r4, r2, r3, r8, r9, r6, r12, r1, r10, r5, r7. Table 10

Table 8. Probability-based rule weight

Rule ID Weight-1 Weight-2
r1 0.709 0.0
r2 0.803 0.803
r3 0.899 0.899
r4 0.892 0.892
r5 0.457 0.0
r6 0.633 0.0
r7 0.6 0.0
r8 0.883 0.883
r9 0.799 0.0
r10 0.6 0.0
r11 1.083 1.083
r12 0.0 0.0

Fig. 2. Processing time comparison.

shows the execution time for precedence relation, probability 
computation and PSO processing time. Fig. 2 shows the 
execution time for different processes. When increasing the 
number of rules, the time also increases. The probability 
computation takes less time compared to other processes. 
The PSO takes longer to compare to precedence relation and 
probability computation. The performance of the proposed 
approach is influenced b y t he s ize o f t he p opulation. The 
algorithm becomes stuck in local optima when there are 
insufficient p articles, a nd i t r uns s lowly w hen t here a re too 
many particles. There is no definitive guideline in literature 
for determining the optimum population size for cases, 
as the best size varies depending on the specific instance 
being solved. The substantial population size will amplify 
computing efforts and might impede rapid convergence. 
Table 11 shows the rule ordering time for different numbers 
of rules. Fig. 3 shows the comparison of rule ordering time. 
For 100 rules, 1.254sec and for 1000 rules, 108.349sec taken 
for rule ordering. When increasing the number of rules, the 
rule ordering time also increased.

Table 12 and Fig. 4 show the fitness value comparison 
for different rules. Table 13 shows comparison of different 
algorithms. Ordering firewall rules effectively is crucial for 
maximizing security and performance. Here are several ap-
plications where proper rule ordering can make a significant 
impact:

1) Network Security
Intrusion Prevention: By placing rules that block
known malicious IP addresses or ports higher up, you
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Table 9. Population and fitness value

Population Fitness
r11, r3, r4, r8, r2, r1, r5, r6, r7, r9, r10, r12 8.306
r11, r4, r2, r3, r8, r9, r6, r12, r1, r10, r5, r7 2.275
r2, r4, r8, r3, r11, r10, r12, r7, r9, r5, r6, r1 2.676
r4, r3, r11, r2, r8, r6, r10, r7, r1, r5, r9, r12 2.500
r8, r4, r3, r11, r2, r5, r9, r10, r1, r7, r6, r12 2.645
r8, r3, r11, r2, r4, r9, r5, r10, r7, r12, r6, r1 3.195
r11, r3, r2, r8, r4, r6, r5, r9, r10, r7, r12, r1 2.903
r8, r2, r4, r3, r11, r10, r5, r9, r6, r12, r1, r7 3.115
r8, r11, r3, r4, r2, r9, r1, r5, r10, r12, r7, r6 2.970
r3, r11, r4, r2, r8, r5, r7, r9, r1, r10, r12, r6 2.615

Table 10. Execution time of different process

No of Rules Precedence
Rela-
tion
Time
(ms)

Probability
Compu-
tation
Time
(ms)

PSO
Pro-
cessing
Time(ms)

100 266 198 790
200 1047 494 2448
400 5745 1303 9612
600 10037 2298 20647
800 20892 3945 36736
1000 43804 5424 59121
1200 46202 7957 80820

can prevent threats from reaching sensitive areas of
your network.
Access Control: Ensuring that rules allowing specific
users or devices to access certain resources are prior-
itized helps enforce security policies effectively.

2) Traffic Management
Quality of Service (QoS): Prioritizing rules for critical
applications (like VoIP or video conferencing) can
help manage bandwidth and ensure these services have
the necessary resources.
Load Balancing: Organizing rules to distribute incom-
ing traffic evenly across multiple servers can enhance
performance and reliability.

3) Compliance and Auditing
Regulatory Compliance: Ordering rules in align-
ment with compliance requirements (e.g., PCI-DSS,
HIPAA) ensures that sensitive data is adequately pro-
tected.
Easier Audits: A well-ordered set of rules makes it

Fig. 3. Rule ordering time comparison.

Table 11. Rule ordering time

No of Rules Rule Ordering Time (Sec)
100 1.254
200 3.989
400 16.660
600 32.982
800 61.573
1000 108.349
1200 134.979

Fig. 4. Fitness value comparison.

simpler for auditors to review and verify that security
measures are correctly implemented.

4) Performance Optimization
Faster Processing: By placing frequently matched
rules at the top, you can reduce the time the firewall
spends evaluating traffic, leading to improved overall
network performance.
Resource Efficiency: Efficient rule ordering minimizes
the processing burden on firewalls, allowing them to
handle more connections simultaneously.

The study revealed that the algorithm suggested in this 
work has the capability to rearrange more intricate scenarios.

Table 12. Fitness value comparison

No of Rules Fitness Value
100 12.042
200 25.173
400 50.121
600 76.552
800 102.029
1000 125.616
1200 148.975

Table 13. Comparison with other Machine Learning Algo-
rithms

No of Rules Rule Ordering Time (Sec)

Simulated Annealing Genetic Proposed

100 8.269 5.305 1.254
200 12.31 7.923 3.989
400 27.528 20.351 16.660
600 43.093 37.25 32.982
800 79.128 70.42 61.573

1000 134.59 121.83 108.349
1200 162.42 150.39 134.979
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With regards to the constraints of the suggested framework,
it is worth noting that the parameters have been selected
to enhance execution time while maintaining efficacy. This
work only varies the size of population to find the processing
time. The inertial weight can equilibrate the global and local
search capabilities. A higher inertia weight is preferable for
conducting global search, whereas a lower inertia weight is
more ideal for performing local search. This work assigned
a value of 0.1 to the inertia weight. The use of a linearly
decreasing inertia weight can lead to improved performance
in terms of processing time.

VI. CONCLUSION AND FUTURE WORK

Firewall application screening is essential in situations
involving fast network connectivity. In contemporary times,
performance issues that hinder a service’s ordinary operation
can also worsen into significant cybersecurity concerns.
Firewall policy optimization must be improved for these
reasons. To minimize packet categorization latency, this
research developed a dual technique that involves optimally
rearranging firewall security rules. The proposed approach
contains two algorithms; the first uses a probability-based
approach for optimal firewall rule order, and the second uses
Particle Swarm Optimization to find the complete solution.
By examining the performance attained through an accurate
optimization technique, the performance analysis of the
suggested algorithm is expanded. The technique presented
in this paper is more effective at rearranging more complex
cases, as those in the Firewall rule class.The process of
reordering can be intricate and susceptible to mistakes due
to the extensive amount of rules and connections between
rules. Deciding the most efficient sequence for rules can
be intricate, particularly in settings with fluctuating or
heavily congested circumstances. A potential direction for
future work involves developing sophisticated simulation
environments to evaluate the effectiveness of rule reordering
strategies using a substantial number of rules and deep
learning models.The future of firewall rule generation using
probability method and then Particle Swarm Optimization
presents numerous opportunities for enhancing network se-
curity. By focusing on automated, adaptive, and context-
aware approaches, researchers and practitioners can develop
more effective solutions that respond dynamically to evolv-
ing threats while maintaining performance and usability.
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