
Quality of Service (QoS)-Aware Microservices Selection 

Based on Local Constraints 

Chellammal Surianarayanan1,*, Pethuru Raj Chelliah2, Manikandan Sethunarayanan Ramasamy1, 

and Baby Nirmala M3 

1Centre for Distance and Online Education of Bharathidasan University, Tiruchirappalli, Tamilnadu, India  
2Edge AI division of Reliance Jio Platforms Ltd., Bangalore, India 

3Department of Computer Applications, Holy Cross College, Tiruchirappalli, Tamilnadu, India 

Email: chellammals@bdu.ac.in (C.S.); peterindia@gmail.com (P.R.C.); manirs2004@yahoo.co.in (M.S.R.); 

babynirmala7@yahoo.co.in (B.N.M.) 
*Corresponding author

Manuscript received February 22, 2023; revised April 11, 2023; accepted August 14, 2023; published April 1, 2024 

Abstract—In the world of microservices, to deliver a 

particular task, there may exist several microservices. Though 

they are functionally similar, their Quality of Service (QoS), 

which refers to their non-functional attributes would be 

different. Quality of Service helps to select services having 

adequate QoS as per the demands of service consumers so that 

the composition of microservices can happen within the given 

QoS constraints. Global QoS based selection which selects 

microservices at composite service level is associated with 

inherent exponential time complexity. In this work, a method 

has been proposed for microservices selection based on local 

QoS constraints. The given QoS constraints are divided into 

local constraints corresponding to the number of tasking 

involved in the process. Then for each task, the services which 

satisfy the local constraints of the task, are identified as 

candidate services. Afterwards the service having the highest 

utility is returned as the best service for that task.  

The proposed method has been evaluated with a case study 

and the results are discussed. The case taken for the study is 

microservices based travel_plan process, consisting of three 

sequential tasks namely, flight ticket booking, hotel booking and 

cab booking tasks. The proposed method has found to yield two 

feasible solutions which guarantee the given global constraints 

of QoS attributes. Also, in case candidate service is not found for 

a task, then the method of assigning local constraints is relaxed 

as follows. For a task, whenever maximum value of a QoS 

attribute is less than that computed by the proposed method of 

equal distribution, then the maximum value of the attribute 

itself will be assigned as local constraint and the remaining QoS 

attribute is used in the allocation of local constraint of that 

attribute to other tasks involved in a process.  

Keywords—Quality of Service (QoS) attributes, QoS-aware 

microservices composition, local constraints based 

microservices selection 

I. INTRODUCTION

In MicroServices Architecture (MSA), each microservice 

is designed with limited functionality and thus realization of 

any business process requires the composition of many such 

microservices which are required to implement the process at 

hand. In the services based architectures, service consumers 

tend to avail the business processes according to their Quality 

of Service (QoS) demands and preferences. The demands of 

QoS vary considerably among consumers. Consider a user 

looking for a travel_plan service to plan for a travel trip to 

Singapore for a medical treatment he should undergo in a 

short while. In this case, the user’s primary QoS requirements 

would be availability of ticket. Also, his preference would be 

availability rather than cost. Consider another user who plans 

for a casual travel trip to Singapore with his family. In this 

case, the user does not have any urgent requirement like the 

former one and here, the user considers both availability as 

well as cost into account. In addition, may demand for a 

service having low cost. Hence in practice, service providers 

implement microservices, though of same function, but of 

different QoS, corresponding to varying QoS needs of 

consumers. Thus, during composition, QoS becomes the 

discriminator factor while selecting appropriate 

microservices for composition. Basically, the microservices 

composition is a well systematic process, carried out in 4 

different stages namely planning, discovery, selection and 

invocation [1] as shown in Fig. 1.  

Fig. 1. Microservices composition. 

In planning, the required business process is captured and 

represented as workflow which consists of several abstract 

tasks that are to be executed according to a specific pattern so 

that the desired process is realized. In discovery, 

microservices that are functionally capable to implement the 

tasks are discovered from the pool of microservices. 

Typically, this results in numerous functionally similar 

microservices and this due to the fact that service providers 

intentionally publish functionally similarly microservices but 

having different QoS to meet the disparate QoS needs of 

consumers. Also, the functionally similar microservices that 

corresponds to a particular task is termed as service class. In 

selection, the most appropriate service combination that 

corresponds to the workflow of process at hand has to be 

found out based on the QoS demands and preferences of 

consumers. In invocation, the selected services would be 

invoked according to the execution pattern so that the process 

is implemented with respect to the QoS needs of consumers. 

The scope of the current work is bounded by QoS based 

selection. Selection of services according to QoS can be 

performed using two methods, global and local. In global 

method, the problem selecting appropriate service 

combination for a given workflow is performed by 

enumerating all possible service combinations that 

correspond to various tasks of the workflow. Here the number 

International Journal of Computer Theory and Engineering, Vol. 16, No. 2, 2024

35DOI: 10.7763/IJCTE.2024.V16.1352



of possible combinations involved in the construction of 

composite service increases exponentially with respect to 

number of services 

Consider “m” number of tasks involved in a workflow. 

Also, consider that there are “n” number of functionally 

similar microservices are available for each task. To illustrate 

the exponential evolution of number of combinations keeping 

n = 10 and the value of m is varied from 1 to 10. The number 

of service combinations has been computed using the formula 

mn. The exponential increase in the number of combinations 

with respect to number of services is also shown in Fig. 2. 

Fig. 2. Exponential increase in number of combinations with respect to 

increase in number of service classes. 

Due to time complexity of global selection methods, local 

selection methods are preferred. In local selection, the 

selection is done based on individual tasks rather than the 

end-to-end workflow level. Based on the idea of divide and 

conquer technique, here the QoS demands for entire business 

process given by the service consumer is divided into task 

level constraints called local constraints and selection will be 

performed at task level. Then the services selected for 

individual tasks are combined to produce the appropriate 

service combination for the entire workflow.  

In this work a method has been proposed for QoS based 

micoservices selection based on local constraints. Local 

constraints are mathematically derived from the standard 

aggregation expression of the QoS attributes and assigned to 

tasks. Then for each task the services which satisfy its local 

constraints are identified as candidate services. Utility 

function is defined to select most appropriate candidate 

service for each task. Here, utility function is formulated as 

the average of normalized QoS values of different attributes. 

The priority of consumers over different QoS attributes are 

taken into account with a simple additive weighting technique. 

The rest of the paper is organized as follows. Section II 

highlights the research work that handle QoS related issues. 

Section III describes the proposed method for local selection. 

Section IV describes the evaluation of the proposed method 

with a case study. Section V describes the results and 

limitations of the proposed method. Section VI presents the 

method of relaxing local constraints and Section VII 

concludes the work. 

II. RELATED WORK

Microservices are typically deployed in cloud computing 

environment and their QoS tend to change dynamically. 

There are some research works which have focused on how 

to meet the required QoS of microservices by using effective 

resources allocation or suitable placement of microservices or 

load aware scheduling aspects, etc. Zhang et al. [2] developed 

a set of scalable and validated machine learning models to 

find out the performance dependencies among the 

microservices and allocate appropriate resources so that the 

required QoS is met. A runtime system called Nautilus is 

proposed to ensure the QoS of microservices while 

connecting multiple services in edge devices [3]. The core 

components of this system include a communication-aware 

microservice mapper which divides the microservice graph 

into partitions according to communication overhead, a 

contention-aware resource manager which detects the 

contention as well as determines the optimal resource 

allocation and load-aware scheduler which monitors the QoS 

of the entire service and migrates services according to QoS 

needs. Stevant et al. [4] proposed a method to place the 

participating microservices of an application on various user 

defined devices effectively so that the response time and thus 

user’s satisfaction can be me. A scalable QoS-aware 

scheduling policy for batch placement of microservices in fog 

environment is proposed with an objective to satisfy the QoS 

needs while minimizing the fog resources [5]. In contrast to 

machine learning techniques which not only require huge 

amount of training data but also slow in adapting to 

dynamically changing microservices operating environment, 

the authors developed a light weight resource manager that 

performs efficient resource allocation through opportunistic 

resource reduction, at the same time ensuring QoS 

demands [6]. 

Some other research works have used machine learning 

algorithms to handle the QoS requirements of microservices. 

Machine learning technique is used to discover and select 

services according to the required context and QoS [7]. A 

self-adaptive framework is proposed to handle QoS 

requirements and managing the unexpected changes in the 

QoS, using reinforcement algorithm [8]. Chang et al. [9], 

proposed Bayesian algorithm based model to classify the 

microservices using the data related to system calls. 

Ding et al. [10] proposed a microservices selection strategy 

based on sub-deadline of task where sub-deadline is 

computed based on processing speed of service instances, 

transferring speed of network and degree of task concurrency 

Some research works focus on monitoring aspect of QoS 

of microservices. For example, Stefanic et al. [11] proposed 

a novel approach which monitors the different QoS attributes 

of components and microservices deployed in cloud 

environment. In this work, the authors proposed Qualitative 

Metadata Markers method in which, a software component is 

developed right from scratch, deployed in cloud and it is 

monitored for various quality attributes. A specific example 

of file upload service is taken by the authors and in this case, 

the quality attributes namely, file upload time, upload speed, 

jitter, packet loss, IO read, IO write, total time, etc., are 

monitored. Al-Masri [12] presented microservices Quality of 

Service Management (mQoSM) framework which measures 

the overall quality of microservices based Industrial Internet 

of Things (IIoT) applications. Bhamare et al. [13] handled the 

problem of scheduling microservices across different clouds 

according to user level and service level agreements with 

International Journal of Computer Theory and Engineering, Vol. 16, No. 2, 2024

36



specific focus on cost and latency. 

The global approaches such as [14, 15] suffer from the 

exponential time complexity. Senivongse and 

Wongsawangpanich [16] employs genetic algorithm and 

suffers from poor time characteristics for large number of 

services. In another research work, Mardukhi et al. [17], 

artificial neural network is used to predict the QoS of 

candidate service instances so that the genetic algorithm can 

select the best predicted service. Similarly, Ding et al. [18] 

handles the web services selection based on global QoS using 

genetic algorithm. Yuan et al. [19] have used global selection 

method for web services. QoS global optimization and 

dynamic re-planning web service selection algorithm has 

been proposed to select optimal execution plan for web 

services while meeting the QoS requirements globally [20].  

Alrifai and Risse [21] decompose the given global QoS 

constraints using Mixed Integer Programming (MIP), the 

time characteristics of these methods become poor with 

respect to number of services. The method proposed by 

Qi et al. [22] uses a heuristics based service composition 

where the range of extreme values of QoS attributes are 

divided in many levels and candidate services are selected 

from different levels to enumerate the possible combinations 

to produce near-to-optimal solutions. Here when the number 

of levels is large, the method will suffer from long 

computation time. The method presented by Guang et al. [23] 

uses an adaptive adjustment method based on fuzzy logic to 

decompose the global constraints into local constraints. It 

uses empirical utility. The decomposition discussed in [24] 

uses genetic method to decompose the global constraints. The 

local selection model proposed by Ye et al. [25] presented a 

method to increase web service composition by using 

enhanced decomposition and greedy algorithm which have 

weak connection with QoS values of candidate services. 

Rodriguez-Mier et al. [26] proposed a shortest path algorithm 

to the service match which consists of many valid 

composition patterns. Here also, finding suitable composition 

pattern according to the QoS is NP hard problem and authors 

applied a set of admissible optimizations to reduce the search 

space. Deng et al. [27] proposed QoS-aware service pruning 

method based on the correlations among QoS attributes to 

prune non-optimal candidate services for composition. 

Alrifai et al. [28] proposed a skyline approach to reduce the 

number of candidate services involved in composition, 

according to their QoS. Chattopadhyay and Banerjeem [29] 

proposed a pareto based method to identity optimal solutions 

from services retrieved using Input-Output Model along with 

two other heuristics based methods. 

III. PROPOSED METHOD OF QOS BASED MICROSERVICES 

SELECTION 

At first the tasks involved in a business process has to be 

determined and represented as workflow. The workflow 

exhibits tasks and the specific pattern of execution of tasks. 

The workflow may of simple sequential kind as in Fig. 3 or it 

may of a combinational one as in Fig. 4. 

As any combinational workflow can be reduced into a 

sequential pattern [21, 30], only sequential workflows are 

considered in this work. The block diagram of the proposed 

method is shown in Fig. 5. There are 4 steps, namely, 

querying step in which the QoS demands and preferences are 

captured. 

Fig. 3 Sequential workflow. 

Fig. 4. Combinational workflow. 

Fig. 5. QoS based microservices selection based on local constraints. 

A. Querying Step

QoS requirements vary from consumer to consumer and it 

basically arise based on the nature of application. In querying 

step, the QoS requirements of service consumers are captured. 

QoS requirements include QoS constraints and QoS 

preferences. QoS constraints refer to the conditions on the 

values of the attributes that to be satisfied whereas QoS 

preferences refer to the consumer’s priority over different 

QoS attributes. Both QoS constraints and QoS preferences are 

meant for the entire workflow. A typical query would be as 

given below: 

Find a travel_plan_service with  

QoS constraints (response time=12 seconds, cost=300$ & 

availability=90%) and  

QoS preferences (40% priority to response time, 10% priority 

to cost & 50% priority to availability) 

B. Decomposition Step

The given global QoS constraints are decomposed equally 

to all participating tasks and the local constraints of QoS 

constraints are derived from the standard aggregation 

formulae used to compute the QoS attributes of a composite 

service.  

Consider a workflow having m  number of service classes 

denoted by 𝑠𝑐(1), 𝑠𝑐(2), 𝑠𝑐(3), . . . , 𝑠𝑐(𝑚) . Let ( , )s i j  

International Journal of Computer Theory and Engineering, Vol. 16, No. 2, 2024

37



denote the jth service in ith service class. Let 
i

n denote the

number of services in ith service class. Let cs  denote a 

composite service formed by combining a particular service, 

say, li from each service class i. It is denoted as  

𝑐𝑠 = 𝑠(1, 𝑙1), 𝑠(2, 𝑙2), 𝑠(3, 𝑙3), . . . , 𝑠(𝑚, 𝑙𝑚) (1) 

Let ( ( , ))rt s i j , ( ( , ))c s i j , ( ( , ))a s i j , ( ( , ))rel s i j , 

( ( , ))tp s i j  and ( ( , ))rp s i j denote the response time, cost, 

availability, reliability, throughput and reputation of ( , )s i j . 

Let ( )rt cs , ( )c cs , ( )a cs , ( )rel cs , and ( )tp cs  denote the 

response time, cost, availability, reliability and throughput of 

the composite service. Now the QoS values of composite 

service are computed using Eqs. (2)–(6) [17, 25, 28]. 

1

( ) ( ( , )
i

m

i

rt cs rt s i l

=

= (2) 

1

( ) ( ( , )
i

m

i

c cs c s i l

=

= (3) 

1

( ) ( ( , )
i

m

i

a cs a s i l

=

= (4) 

1

( ) ( ( , )
i

m

i

rel cs rel s i l

=

= (5) 

( ) ( , ))min{ ( 1 }
i

tp cs s i ltp i m=   (6) 

In this work, it is proposed to divide the given global 

constraints equally to all service classes involved in the 

workflow. It is proposed to divide the global constraints 

according to the aggregations formulae used for the 

computations of QoS attributes of composite service. When 

the local constraints are derived from the aggregation 

formulae, the service combination that will be obtained using 

local selection method will give guarantee to meen the given 

global constraints. Secondly, the proposed method is 

mathematically derived one. Thus, in the proposed method, 

the given global constraints are equally divided into those 

service classes which are involved in the process 

For any business process, certain quality attributes, namely, 

response time, cost, availability, reliability, throughput are 

very important in deciding the performance of a process. Let 
globalrt , 

globalc , 
globala , 

globalrel  and 
globaltp  denote 

the global QoS constraints of response time, cost, availability, 

reliability and throughput. Let )( ( )localrt sc i , ( ( ))local sc ic , 

( ( ))local sc ia , ( ( ))localrel sc i and (( )local sc itp  denote 

the local QoS constraints of response time, cost, availability, 

reliability, throughput and reputation any ith service class 

involved in the workflow. Now, the given global constraints 

are equally divided into various service classes as given in 

Table 1.  

Table 1. Collection of test services in different service classes along with their QoS values 

S.No.

Ticket 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

Hotel 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

Cab 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

1 s(1,1) 6 50 90 s(2,1) 5 150 90 s(3,1) 12 200 90 

2 s(1,2) 7 90 89 s(2,2) 8 130 92 s(3,2) 10 180 96 

3 s(1,3) 8 180 95 s(2,3) 9 145 94 s(3,3) 11 190 98 

4 s(1,4) 4 60 98 s(2,4) 10 65 98 s(3,4) 9 100 99 

5 s(1,5) 3 140 97 s(2,5) 3 70 99 s(3,5) 8 120 100 

6 s(1,6) 4 130 98 s(2,6) 4 80 100 s(3,6) 7 130 98 

7 s(1,7) 2 120 95 s(2,7) 6 90 95 s(3,7) 6 160 92 

8 s(1,8) 10 70 94 s(2,8) 7 200 93 s(3,8) 5 90 91 

9 s(1,9) 15 80 93 s(2,9) 14 100 91 s(3,9) 4 100 98 

10 s(1,10) 9 120 92 s(2,10) 12 150 90 s(3,10) 3 135 89 

𝑟𝑡𝑙𝑜𝑐𝑎𝑙(𝑠𝑐(𝑖)) =
𝑟𝑡𝑔𝑙𝑜𝑏𝑎𝑙

𝑚
, 𝑖 = 1,2,3, . . . , 𝑚 (7) 

𝑐𝑙𝑜𝑐𝑎𝑙(𝑠𝑐(𝑖)) =
𝑐𝑔𝑙𝑜𝑏𝑎𝑙

𝑚
, 𝑖 = 1,2,3, . . . , 𝑚 (8) 

𝑎𝑙𝑜𝑐𝑎𝑙(𝑠𝑐(𝑖)) = (𝑎𝑔𝑙𝑜𝑏𝑎𝑙)1/𝑚𝑚, 𝑖 = 1,2,3, … ,𝑚 (9) 

𝑟𝑒𝑙𝑙𝑜𝑐𝑎𝑙(𝑠𝑐(𝑖)) = (𝑟𝑒𝑙𝑔𝑙𝑜𝑏𝑎𝑙)1/𝑚𝑚, 𝑖 = 1,2,3, … ,𝑚 (10) 

𝑡𝑝𝑙𝑜𝑐𝑎𝑙(𝑠𝑐(𝑖) ≥ 𝑡𝑝𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑖 = 1,2,3, . . . , 𝑚 (11) 

The computed QoS values of the individual services would 

form as the task level constraints, called as local constraints. 

The local constraints involved of any jth service class is 

denoted as in Eq. (12). 

(( ( ( )) ( ( )) ( ( )) ( ( )) ( )), , , ,local local local local local
C sc isc i sc i sc i rel sc i tp

i
rt c a=  (12) 

These local constraints will be used in the identification of 

candidate services. 

C. Identification of Candidate Services

In this step, every service in a service class is checked for 

the fulfilment of the local constraints and the services which 

satisfy the local constraints are filtered out as candidate 

services for further computation. While performing QoS 

matching between the query and a service, one has to 

normalize the values of QoS attributes of both query and the 

service. Because, different service providers would have used 

different units and measurements. So, it is essential to 

normalize the values in the range 0 to 1. With respect to QoS 

parameters, there are two kinds of parameters; certain 

parameters like availability, scalability, are required to be 

maximized whereas there as other parameters such as 

response time, cost are required to be minimized. For each 

task in the workflow, as mentioned earlier, there would be 

many services available which are functionally similar but 

have different QoS. So, for a given service class, for each QoS 

International Journal of Computer Theory and Engineering, Vol. 16, No. 2, 2024

38



parameter, there would be a range of values will be available 

with minimum and maximum. 

Let ( ( , ))kq s i j denote kth QoS attribute of jth service in ith 

service class. Let max ( , )Q i k denote the maximum value of 

kth QoS attribute for ith service class. Let min ( , )Q i k denote 

minimum of kth QoS attribute for ith service class. Now the 

normalized value of ( ( , ))kq s i j is computed using

max

max min

( ( , ) ( ( , ))
_ ( ( , ))

( ( , ) ( , ))

k

k

Q i k q s i j
normalized q s i j

Q i k Q i k

−
=

−
(13) 

{for attributes that are required to be minimized} 

min

max min

( ( , )) ( , ))
_ ( ( , ))

( ( , ) ( , ))

k

k

q s i j Q i k
normalized q s i j

Q i k Q i k

−
=

−
 (14) 

{for attributes that are required to be maximized} 

The QoS constraints of user’s query are also should be 

normalized using the above equation before performing the 

QoS matching. Thus, the services which comply all the local 

constraints are identified as candidate services 

D. Service Selection

In this step the utility of candidate services is computed, 

taking into consideration the QoS preferences of the 

consumers. The key point to be noted here is that the QoS 

preferences of each task is same as that of the workflow. In 

addition, there are two cases, (i) a service consumer may give 

only the QoS constraints; and (ii) a service consumer may 

give both QoS constraints and preferences 

Case 1—When only QoS constraints are given: In this case, 

the utility of jth service in ith service class, denoted by 

( ( , ))u s i j  is computed using Eq. (15) 

1

_ ( ( , ))

( ( , ))

n

k

k

normalized q s i j

u s i j
N

==


(15) 

In Eq. (15) N denote the number of QoS attributes 

Case 2—When both QoS constraints and preferences are 

given: In this case, the utility of jth service of ith service class 

is computed using  

1

( ( , )) _ ( ( , )
N

k k

k

u s i j normalized q s i j w
=

=  (16) 

In Eq. (16), wk denotes the weight of kth qos attributes. Also, 

1

1
N

k

k

w
=

= . Here, the preferences included while computing 

utility of the services using Simple Additive Weighting 

method [31]. Now, for each ith service class the service having 

highest utility is selected as the best service and it is denoted 

by 
b
i

s . Thus, best services selected for all service classes

would form the most appropriate service combination for 

implementing the given business process. By invoking the 

best service for each task according to the execution pattern 

of the workflow, the given business process will get 

implemented.  

Further the proposed method has been implicated and 

evaluated with a case study in the subsequent section. 

IV. EVALUATION OF THE PROPOSED METHOD

The proposed method of QoS based microservices 

selection has been evaluated using a case study. The details 

of case under study are described below. Consider a 

microservices based travel-plan process as the case under 

study. Consider that the case is represented as a sequential 

workflow consisting of three abstract tasks, t1, t2 and t3 as 

shown Fig. 6. The task, t1 books air tickets for a travel trip 

from a source location to a destination location on the desired 

dates given by the user. The task t2 reserves rooms for the 

dates of halt in the place of visit. The task-3 books cab for 

different sight-seeing locations. Here, it is obvious that only 

after the confirmation of air tickets only, the task t2 can be 

executed. Similarly, after the execution of t2 only, the task t3 

will be executed. So, the above tasks are executed in 

sequential manner as in Fig. 6. 

Fig. 6. Travel_plan process. 

The proposed method is applied to the case under study as 

follows. 

A. Querying Step

Consider that a service consumer is querying for 

travel_plan process with QoS demands and preferences as: 

QoS constraints (response time=12 secs, availability = 90% 

and cost 300$).  

QoS preferences (40% priority to response time, 10% priority 

to cost & 50% priority to availability) 

B. Decomposition Step

Let 
globalrt , 

globalc  and 
globala  denote the global 

constraint of response time, cost and availability. Let 

( ( ))localrt sc i , ( ( ))localc sc i and ( ( ))locala sc i denote the 

local constraints of response time, cost and availability of jth 

service class 

( ( )) , 1,2,...,

global
rtlocalrt sc i i m

m
= = (17) 

( ( )) , 1,2,...,

global
clocalc sc i i m

m
= = (18) 

𝑎𝑙𝑜𝑐𝑎𝑙(𝑠𝑐(𝑖)) = (𝑎𝑔𝑙𝑜𝑏𝑎𝑙)1/𝑚𝑚, 𝑖 = 1,2, … ,𝑚 (19) 

In the above example, the number of tasks in the workflow, 

m = 3. Now, response time of ith service class is computed as 

𝑟𝑡𝑙𝑜𝑐𝑎𝑙(𝑠𝑐(𝑖)) =
𝑟𝑡𝑔𝑙𝑜𝑏𝑎𝑙

𝑚
=

12

3
= 4, 𝑖 = 1,2,3, … ,𝑚 (20) 

Similarly, the local cost constraint ith service class is 

computed using  

International Journal of Computer Theory and Engineering, Vol. 16, No. 2, 2024

39



300
( ( )) 100, 1,2,3,...

3

global
clocalc sc i i m

m
= = = =  (21) 

The value of ( ( ))localc sc i is computed as 100. In contrast

to response time and cost, availability is a multiplicative 

attribute. In the given example, the local constraint of 

availability of jth service class is computed as 

𝑎𝑙𝑜𝑐𝑎𝑙(𝑠𝑐(𝑖)) = (𝑎𝑔𝑙𝑜𝑏𝑎𝑙)
1

𝑚 =
0.9

3

1/3
(22) 

𝑎𝑙𝑜𝑐𝑎𝑙(𝑠𝑐(𝑖)) = 0.965, 𝑖 = 1,2,3, . . . , 𝑚 (23) 

Now, the local constraints of any ith service class is 

formulated as 

( ( ( )), ( ( )), ( ( )))local local local
C j rt sc i c sc i a sc i= (24) 

(4,100,96.5)C j = (25) 

C. Identification of Candidate Services

To illustrate this step, a collection of functionally similar 

services corresponding to the three different tasks has been 

generated, with service IDs and QoS values as in Table 1. For 

simplicity, 10 test services have been created in each service 

class. Local QoS constraints of the query are matched against 

the available services. The services which satisfy the local 

constraints are filtered out as candidate services. The 

candidate services which satisfy the given constraints are 

given in Table 2. The QoS constraints of user’s query are also 

should be normalized using the above equation before 

performing the QoS matching. The normalized values are 

given in Table 3. 

D. Service Selection

Case 1—When only QoS constraints are given by 

consumers, the utility of candidate services is computed using 

Eq. (15). The utility values of candidate services are given in 

Table 4. From the Table 4, it is clear that the service 

combination (s(1,4), s(2,5), s(3,9)) would be selected with 

total utility of (0.926), which is computed as the average 

value of utility of selected services. 

Case 2—When consumers have both QoS constraints and 

QoS preferences for different QoS attributes, it is considered 

that the task level QoS preferences are the same as QoS 

preferences and the given preferences are taken into account 

as weights of the attributes. In this case, the utility will be 

computed using Eq. (16). The computed utility values are 

given in Table 5. 

Table 2. Candidate services for different service classes 

S.No.

Ticket 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

Hotel 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

Cab 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

1 s(1,4) 4 60 98 s(2,5) 3 70 99 s(3,9) 4 100 99 

2 s(2,6) 4 80 100 

Table 3. Normalized QoS attributes of candidate services 

S.No

Ticket 

booking 

task 

Normalized QoS Hotel 

booking 

task 

Normalized QoS Cab 

booking 

task 

Normalized QoS 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

1 s(1,4) 0.85 0.92 1 s(2,5) 1 0.96 0.9 s(3,9) 0.89 0.91 0.91 

2 s(2,6) 0.91 0.89 1 

Table 4. Utility values of candidate services 

S.No
Ticket booking task Hotel booking task Cab booking task 

Candidate Service Utility Candidate Service Utility Candidate Service Utility 

1 s(1,4) 0.923 s(2,5) 0.953 s(3,9) 0.903 

2 s(2,6) 0.933 

Table 5. Utility values obtained with weightage to QoS attributes 

S.No
Ticket booking task Hotel booking task Cab booking task 

Candidate Service Utility Candidate Service Utility Candidate Service Utility 

1 s(1,4) 0.9352 s(2,5) 0.946 s(3,9) 0.902 

2 s(2,6) 0.953 

From Table 5, it is understood that the service combination 

(s(1,4), s(2,6), s(3,9)) would be selected with total utility of 

(0.930). Here, the total utility is computed as the average 

value of utility of selected services. 

V. RESULTS AND DISCUSSION

There are two aspects to be considered in the discussion. 

One is related to the satisfaction of given global constraints. 

The other is detection efficiency of the method. The proposed 

method of local selection is simple and straight forward from 

their corresponding aggregation formulae for different QoS 

attributes. Since the local constraints are set based on the 

aggregating functions, it is 100% ensured that the selected 

service combination ensures 100% guarantee to fulfil the 

given global constraints. Secondly with local selection the 

number of combinations involved is m×n where m refers to 

the number of tasks or service classes and n refers to the 

number of services in each service class. It is greatly reduced 

with compared to the global method which is nm.  

Despite the above features, there may be situations where 

the method may not be able to detect an appropriate service 

combination even if it exists. The results obtained using 

global and local selection methods for the case study are 

given in Table 6. 

International Journal of Computer Theory and Engineering, Vol. 16, No. 2, 2024

40



Table 6. Comparison of proposed method with global method 

Proposed method Global method 

(s(1,4), s(2,5), s(3,9)) (s(1,4), s(2,5), s(3,9)) 

(s(1,4), s(2,6), s(3,9)) (s(1,4), s(2,6), s(3,9)) 

(s(1,6), s(2,5), s(3,9)) 

(s(1,7), s(2,5), s(3,9)) 

(s(1,7), s(2,6), s(3,9)) 

From Table 6, it is found that the global method produced 

5 solutions whereas the proposed method has produced 

2  solutions. Here, one may argue that the local method is not 

able to detect or identify the all the possible solutions when 

compared to global method. One has to look very carefully 

the time involved in global method. Despite the efficiency of 

global methods, it has a serious limitation that cannot be put 

for practical use when there are numerous microservices. 

Another important thing is that the local method identified 

two feasible solutions which guarantees the given global 

constraints. It is adequate to realize the process. But there 

may be situations where the method may not find any solution 

for one or more tasks. In such cases, the local constraints are 

relaxed as discussed in the subsequent section. 

VI. RELAXATION OF LOCAL CONSTRAINTS

If no candidate service is found for a task, then the 

constraints of tasks are relaxed as discussed below. The basic 

idea behind this relaxation is based on the fact that there may 

be situations, where the maximum value of a QoS attribute 

for a service class may be less than the local constraint 

obtained by equal distribution method. In that case, the 

maximum value of the QoS attribute itself will be assigned as 

constraint for that attribute, for the service class and the 

balance between the maximum value and local constraint 

computed by equal distribution will be utilized for a service 

class whose minimum value of QoS attribute itself is greater 

than the computed constraint of that attributes. The proposed 

idea for relaxation of local constraints is illustrated with 

response time attribute using three service classes as shown 

in Fig. 7. 

From Fig. 7, it is clear that, minimum response time, 

maximum response time of service class-1 denoted by 

min_rt(sc(1)), max_rt(sc)1) respectively are less than the 

constraint of response time computed by equal distribution 

method, denoted by (rt
global

/m). 

For service class-2, minimum response time denoted by 

min_rt(sc(2)) is less than (rt
global

/m) but the maximum 

response time denoted by max_rt(sc(2)) is larger than 

(rt
global

/m). 

For service class-3, both minimum response time, 

maximum response time of service class-3 denoted by 

min_rt(sc(3)), max_rt(sc(1)) is larger than (rt
global

/m) 

In the constraint relaxation method, at first, for service 

class-1, since the max_rt(sc(1)) < rtlocal(sc(1)), max_rt(sc(1)) 

has been fixed as constraint for response time for service 

class-1.  

Here the difference, ((rt
global

/m) -max_rt(sc(1))) will be 

used for a service class which is in need of extra amount of 

constraint.  

For service class 2, since max_rt(sc(2)) is greater than 

(rt
global

/m), then, (rt
global

/m) will be fixed as the constraint of 

service class-2. 

Now, for service class 3, min_rt(sc(3)) itself is greater than 

(rt
global

/m). The difference ((rt
global

/m) -max_rt(sc(1))) will be 

used to provide the extra amount of constraint required for 

service class-3.  

Fig. 7. Relaxation of local constraints (e.g., response time). 

Consider a very small collection of services as shown in 

Table 7 for discussion.  

Let the consumer’s global constraints be (15, 300, 90). 

When the above constraints are decomposed using the 

given method, the local constraints obtained are (5, 100, and 

96.5).  

The candidate services obtained by the proposed method 

of equal distribution is shown in Table 8. 

From Table 8, it is found that there is no candidate service 

found for cab booking task. Now relaxation of constraints is 

applied. For service class 1 and service class 2, the value of 

maximum value of response time is 4 and it is less than the 

constraint of response time computed using the proposed 

method which is 5. Now, allot the maximum value of 

response time as constraint for service classes 1 and 2, the, a 

balance response time of two will be added with 5 and a 

constraint value of 7 is allotted to service class 3.  

Results obtained with relaxation of constraints is shown in 

Table 9. As illustrated in the above example, relaxation of 

constraints helps in effective extraction of feasible service 

combinations. Relaxing constraints increases the ability of 

the proposed method in identifying feasible solutions. 

Table 7. A small collection of services chosen for illustrating relaxation of constraints 

S.no

Ticket 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

Hotel 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

Cab 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

1 s(1,4) 4 60 98 s(2,4) 10 65 98 s(3,4) 9 100 99 

2 s(1,5) 3 140 97 s(2,5) 3 70 99 s(3,5) 8 120 100 

3 s(1,6) 4 130 98 s(2,6) 4 80 100 s(3,6) 7 130 98 

4 s(1,7) 2 120 95 s(2,7) 6 90 95 s(3,7) 6 160 92 

International Journal of Computer Theory and Engineering, Vol. 16, No. 2, 2024

41



Table 8. Candidate services obtained using proposed method with local constraints (5, 100, 96.5) 

S.no

Ticket 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

Hotel 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

Cab 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

1 s(1,4) 4 60 98 s(2,5) 3 70 99 
No candidate service 

2 s(2,6) 4 80 100 

Table 9. Candidate services obtained with relaxed constraints (4, 100, 96.5) 

S.no

Ticket 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

Hotel 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

Cab 

booking 

task 

q1(s(i,j)) q2(s(i,j)) q3(s(i,j)) 

1 s(1,4) 4 60 98 s(2,5) 3 70 99 s(3,6) 7 130 98 

2 s(2,6) 4 80 100 s(3,7) 6 160 98 

VII. CONCLUSION

In this work, a method has been proposed for QoS-aware 

microservices selection for composition. The method initially 

decomposes the given global constraints by equal distribution 

method and selects services from different service classes 

according to local constraints. In case candidate service is not 

found for one or more service classes, the method will relax 

the local constraints without violating the given global 

constraints and look for candidate services. Also, in case the 

method of relaxation of local constraints does not help in 

identifying candidate services, then selection of services 

would be done based on an efficient global selection method 

which uses indexing scheme for quick retrieval and the 

method is currently in its implementation stage. In the 

indexing scheme, separate indices are being created to 

maintain the values of different QoS attributes of services. It 

is proposed to perform the matching of QoS of services 

during the functional matching process itself. The key point 

is that separate indices are maintained for inputs, outputs and 

QoS values. This will certainly retrieve the available services 

that meet both functional and QoS requirements of users. 

Here the computation time is made effective with the help of 

previously computed indices. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Chellammal Surianarayanan carried out the full work and 

prepared the entire document. Manikandan Sethunarayanan 

Ramasamy helped in the formulation of mathematical 

representation of the concept. Pethuru Raj Chelliah helped in 

verifying the concept. Baby Nirmala M helped in editing. All 

authors had approved the final version. 

REFERENCES 

[1] A. AlSedrani and A. Touir, “Web service composition processes: A

comparative study,” International Journal on Web Service Computing

(IJWSC), vol. 7, no. 1, pp. 1–21, 2016. doi: 10.5121/ijwsc.2016.7101

[2] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, “Sinan: ML-

based and QoS-aware resource management for cloud microservices,”

in Proc. the 26th ACM International Conference on Architectural 

Support for Programming Languages and Operating Systems, 2021, pp.

167–181. doi: 10.1145/3445814.3446693

[3] K. Fu et al., “QoS-aware and resource efficient microservice

deployment in cloud-edge continuum,” in Proc. 2021 IEEE

International Parallel and Distributed Processing Symposium (IPDPS),

2021, pp. 932–941. doi: 10.1109/IPDPS49936.2021.00102

[4] B. Stevant, J.-L. Pazat, and A. Blanc, “QoS-aware autonomic

adaptation of microservices placement on edge devices,” in Proc. the

10th International Conference on Cloud Computing and Services 

Science (CLOSER 2020), 2020, pp. 237–244. 

[5] S. Pallewatta, V. Kostakos, and R. Buyya, “QoS-aware placement of

microservices-based IoT applications in Fog computing environments,” 

Future Generation Computer Systems, vol. 131, pp. 121–136, 2022. 

https://doi.org/10.1016/j.future.2022.01.012

[6] M. R. Hossen, M. A. Islam, and K. Ahmed, “Practical efficient

microservice autoscaling with QoS assurance,” in Proc. the 31st 

International Symposium on High-Performance Parallel and

Distributed Computing, 2022, pp. 240–252. 

https://doi.org/10.1145/3502181.3531460

[7] M. Caporuscio, M. De Toma, H. Muccini, and K. Vaidhyanathan, “A 

machine learning approach to service discovery for microservice

architectures,” in Proc. the 2021 European Conference on Software 

Architecture, Springer, Cham., 2021, pp 66–82.

https://doi.org/10.1007/978-3-030-86044-8_5 

[8] M. D’Angelo, M. Caporuscio, V. Grassi, and R. Mirandola,

“Decentralized learning for self-adaptive QoS-aware service assembly,”

Future Generation Computer Systems, vol. 108, pp. 210–227, 2020. 

[9] H. Chang, M. Kodialam, T. V. Lakshman, and S. Mukherjee,

“Microservice Fingerprinting and Classification using Machine 

Learning,” in Proc. 2019 IEEE 27th International Conference on

Network Protocols (ICNP), 2019, pp. 1–11. 

doi:  10.1109/ICNP.2019.8888077

[10] Z. Ding, S. Wang, and M. Pan, “QoS-constrained service selection for

networked microservices,” IEEE Access, vol. 8, pp. 39285–39299, 

2020. doi: 10.1109/ACCESS.2020.2974188

[11] P. Štefanic, M. Cigale, A. Jones, and V. Stankovski, “Quality of service 

models for microservices and their integration into the SWITCH IDE,”

in Proc. 2017 IEEE 2nd International Workshops on Foundations and 

Applications of Self* Systems (FAS*W), 2017, pp. 215–218. 

doi:  10.1109/FAS-W.2017.150 

[12] E. Al-Masri, “QoS-aware IIoT microservices architecture,” in Proc.

2018 IEEE International Conference on Industrial Internet (ICII),

2018, pp. 171–172. doi: 10.1109/ICII.2018.00030

[13] D. Bhamare, M. Samaka, A. Erbad, R. Jain, and L. Gupta, “Exploring

microservices for enhancing internet QoS,” Journal of Transactions on 

Emerging Telecommunications Technologies (ETT), vol. 29, issue 11,

e3445, 2018. https://doi.org/10.1002/ett.3445

[14] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng,

“Quality driven web services composition,” in Proc. the 12th

International Conference on World Wide Web, ACM, 2003, pp 411–

421. 

[15] L. Zeng and B. Benatallah, “A QoS-aware middleware for web service

composition,” IEEE Trans. Softw. Eng., vol. 30, no. 5, pp. 311–327,

2004. 

[16] T. Senivongse and N. Wongsawangpanich, “Composing services of

different granularity and varying QoS using genetic algorithm,” in Proc.

World Congress on Engineering and Computer Science, 2011, vol. I,

pp. 388–393. 

[17] F. Mardukhi, N. N. Bakhsh, K. Zamanifar, and A. Barati, “QoS

decomposition for service composition using genetic algorithm,”

Applied Soft Computing, vol. 13, issue 7, pp. 3409–3421, July 2013. 

[18] Z. J. Ding, J. J. Liu, Y. Q. Sun, C. J. Jiang, and M. C. Zhou, “A 

transaction and QoS-aware service selection approach based on genetic 

algorithm,” IEEE Trans. Syst. Man Cybern. Syst., vol. 45, pp. 1035–

1046, 2017. 

[19] Y. Yuan, W. Zhang, X. Zhang, and H. Zhai, “Dynamic service

selection based on adaptive global QoS constraints decomposition,” 

Symmetry, vol. 11, no. 3, 403, 2019. 

https://doi.org/10.3390/sym11030403

[20] N. Zhang, “Service discovery and selection based on dynamic QoS in

the internet of things,” Complexity, 6642514, 2021. 

https://doi.org/10.1155/2021/6642514

International Journal of Computer Theory and Engineering, Vol. 16, No. 2, 2024

42

https://doi.org/10.1016/j.future.2022.01.012
https://doi.org/10.1145/3502181.3531460
https://doi.org/10.1007/978-3-030-86044-8_5
https://doi.org/10.1002/ett.3445
https://doi.org/10.3390/sym11030403
https://doi.org/10.1155/2021/6642514


[21] M. Alrifai and T. Risse, “Combining global optimization with local 

selection for efficient QoS-aware service composition,” in Proc. the 

18th International Conference on World Wide Web, ACM, 2009, pp.

881–890. 

[22] L. Qi, Y. Tang, W. Dou, and J. Chen, “Combining local optimization

and enumeration for QoS-aware web service composition,” in Proc. the

International Conference on Web Services, IEEE Computer Society,

2010, pp. 34–41. 

[23] S. Guang, Q. Sun, and F. Yang, “Web service dynamic selection by the 

decomposition of global QoS constraints,” Journal of Software, vol. 22,

no. 7, pp. 1426–1439, 2011. doi: 10.3724/SP.J.1001.2011.03842

[24] F. Mardukhi, N. N. Bakhsh, K. Zamanifar, and A. Barati, “QoS

decomposition for service composition using genetic algorithm,”

Applied Soft Computing, vol. 13, issue 7, pp. 3409–3421, July 2013. 

https://doi.org/10.1016/j.asoc.2012.12.033

[25] H. Ye, T. Li, and C. Jing, “Decomposition of global constraints for

QoS-aware web service composition,” International Journal of 

Innovative Computing, Information and Control, vol. 12, no. 6, pp.

2053–2066, 2016. 

[26] P. Rodriguez-Mier et al., “Hybrid optimization algorithm for large

scale QoS-aware service composition,” IEEE Transactions on Services 

Computing, vol. 10, issue 4, pp. 547–559, 2017. 

[27] S. Deng, H. Wu, D. Hu, and J. L. Zhao, “Service selection for

composition with QoS correlations,” IEEE Transactions on Services 

Computing, vol. 9, no. 2, pp. 291–303, 2016. doi:

10.1109/TSC.2014.2361138

[28] M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline services for

QoS-based web service composition,” in Proc. the 19th International 

Conference on World Wide Web, April 2010, pp. 11–20. 

https://doi.org/10.1145/1772690.1772693

[29] S. Chattopadhyay and A. Banerjeem, “QoS aware automatic web

service composition with multiple objectives,” ACM Transactions on

the Web, vol. 14, issue 3, pp. 1–38, 2020. 

[30] J. Cardoso, J. Miller, A. Sheth, and J. Arnold, “Quality of service for

workflows and web service processes,” Journal of Web Semantics, vol.

1, no. 3, pp. 281–308, 2004. 

[31] K. P. Yoon and C. L. Hwang, Multiple Attribute Decision Making: An 

Introduction (Quantitative Applications in the Social Sciences), Sage

Publications, 1995.

Copyright © 2024 by the authors. This is an open access article distributed 

under the Creative Commons Attribution License which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original 

work is properly cited (CC BY 4.0). 

International Journal of Computer Theory and Engineering, Vol. 16, No. 2, 2024

43

https://doi.org/10.1016/j.asoc.2012.12.033
https://doi.org/10.1145/1772690.1772693
https://creativecommons.org/licenses/by/4.0/



