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Abstract—Unsupervised clustering is generally used to 

identify groupings of wireless waves from estimated multipath 

parameters in order to optimize the cluster count and 

membership. The estimated parameters exclude cluster labels. 

For a better comparison of clustering approaches, cluster-based 

wireless channel models provide the labels. This work proposes 

that using the Three-Constraint Affinity Matrix (3CAM) in 

formulating the affinity or similarity matrix improves the 

clustering accuracy. Datasets generated from the European 

Cooperation in Science and Technology (COST) 2100 Channel 

Model (C2CM) were used and subjected to directional cosine 

and whitening transforms. Simultaneous Clustering and Model 

Selection Matrix Affinity (SCAMSMA), 3CAM-SCAMSMA, 

Spectral Clustering (SC), and 3CAM-SC were used to 

concurrently determine cluster count and membership. Various 

studies on multipath clustering give only the number of clusters. 

Others would state only the validity index of the membership of 

clusters. The problem with such an approach is that the 

correctness of the number of clusters is not an assurance that 

the membership of the clusters is accurate. The four clustering 

approaches solve this problem by determining the number of 

clusters and their membership. Thus, knowing each technique’s 

performance is essential. In the algorithms of all the clustering 

approaches, cluster count aims to ensure that the target cluster 

count is within the vicinity of the reference clusters. The cluster 

count and membership accuracy are computed through the 

cluster-wise Jaccard index of the multipath membership to 

their clusters. The performance of the clustering approaches 

was validated using the Jaccard index by comparing the 

calculated data with the reference data. The results show that 

3CAM-SCAMSMA improved the clustering accuracy of 

SCAMSMA by an average of 5.218% in semi-urban scenarios. 

At the same time, 3CAM-SC increased the performance of SC 

in indoor scenarios by an average of 44%. 3CAM-SC is the most 

robust clustering approach, registering the highest accuracy 

and slightest variation. 

 
Keywords—5G, channel model, clustering algorithms, data 

handling, Multiple-Input Multiple-Output (MIMO) 

I. INTRODUCTION 

Clustering is a process that analyses data by classifying 

groups with similar structures. Clustering aims to categorize 

the data into several clusters such that points in the same 

group are similar while that of the other groups are dissimilar. 

Datasets for wine [1], data mining [2, 3], breast cancer [4], 

and metagenomic sequences [5] have been clustered over the 

years. The clustering of wireless propagation multipaths 

gained interest due to the widespread application of 

Multiple-Input Multiple-Output (MIMO) antennas in 

wireless communications systems. MIMO systems are 

developed to increase data rates and ensure wireless 

transmission reliability, and cluster-based channel models 

have been used extensively to describe the MIMO 

propagation channel.  

The Channel Impulse Response (CIR) is one of the 

common ways of characterizing the most crucial portion of 

communications systems design. Among the popular channel 

models are 3rd Generation Partnership Project (3GPP) [6], 

International Mobile Telecommunications-2020 

(IMT-2020)  [7], QUAsi Deterministic RadIo channel 

GenerAtor (QuaDRiGa) [8], and Cooperation in Science and 

Technology (COST) 2100 [9]. The communications signals 

propagate in multiple directions as they move from the 

transmitter to the receiver. The Multipath Components 

(MPCs) are grouped in clusters, as shown in Fig. 1. The 

MPCs in different environments must be characterized to 

determine the accuracy of the channel model. Multipath 

clusters with similar parameters of the MPCs, such as delay, 

azimuth, and elevation of arrival and departure, are 

considered to describe the propagation channel using a 

clustering technique accurately. Traditionally, clusters are 

identified through human visual inspection [10]. It works 

well when the dataset is small. However, this approach is 

subjective and tedious for large datasets [11]. Such reasoning 

prompts the use of automatic clustering approaches, which 

have become popular to remove the bias of visually 

clustering the multipaths and eliminate the problem of 

accurately clustering large datasets. 

 
Fig. 1. Multipath components (MPCs) generated by the COST 2100 channel 

model where a group of MPCs coded with the same color is classified as a 
multipath cluster. 

 

Different clustering techniques that automatically 

determine the clusters have been introduced to overcome 

these concerns over the years. Among them is K Power 

Means (KPM), which uses K-means in clustering the 

multipaths [11]. The powers of the multipaths are included, 

and the distance between cluster centroids is minimized to 

determine the number of clusters. KPM, however, needs the 
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initial number of clusters as a priori. Kurtosis Measure (KuM) 

overcomes the sensitivity of KPM to the input settings by 

detecting the time of arrival of the multipaths and partitioning 

them into clusters [12]. KuM is independent of the channel 

and is still applicable even without prior knowledge of the 

impact of the environment on the CIR. Ant Colony 

Clustering (ACC) combines the decaying amplitude and the 

time of arrivals of MPCs [13]. Clusters are identified based 

on the population and the positive-feedback collaboration of 

the evolution of the ant agents. Automatic Cluster 

Identification (ACId) improved the mean cluster distance of 

K-means by iteratively assigning MPCs to a cluster as long as 

the cluster distance is within a threshold [14]. The cluster 

centroid position is dynamically updated and reassigns MPCs 

that might be closer to existing clusters. 

The Sparsity-Based Method (SBM) is built on the 

Saleh-Valenzuela (SV) model feature, that with increasing 

delay, the power of the MPCs exponentially decreases [15]. 

SBM does not need prior knowledge of clusters, such as the 

number and initial cluster locations, because it incorporates 

the expected behavior of clusters into the clustering 

framework. Kernel Power Density (KPD) utilizes the kernel 

density and power of multipaths to identify the local density 

variations of MPCs [16]. A heuristic approach to cluster 

merging is used to improve the performance of the clustering 

approach. The Gaussian Mixture Model (GMM) relates the 

covariance structure with the mean information of the 

multipaths to reveal their similarity [17]. A compact index 

validates the close relationship between the GMM clustering 

mechanism and the multipath propagation characteristics. 

The clustering approaches mentioned above give only the 

number of clusters of MPCs and do not consider the accuracy 

of the cluster membership. Thus, the number of clusters may 

be correct, but it does not necessarily mean the correct 

members are in the clusters. This problem can be solved by 

simultaneously determining the number of clusters and the 

membership of clusters. Simultaneous identification of the 

number of clusters and the membership of clusters is made to 

solve the problem of giving just the number of clusters. 

Simultaneous clustering and model selection matrix affinity 

(SCAMSMA) [18], three-constraint affinity matrix 

SCAMSMA (3CAM-SCAMSMA) [19], Spectral Clustering 

(SC) [20], and 3CAM-SC [21] can be used to address the 

issue. 

 

The significance of the study is it solves the number of 

multipath clusters and the membership of multipath clusters 

simultaneously. This is a new technique of presenting 

clustering accuracy as it shows at the same time the 

correctness of the number of clusters and the contents of the 

clusters. Some results were from previous works [19, 21]. 

The paper compares their performance variation, which was 

not done previously [13, 15–17], and looks if there is 

statistical significance. Thus, the research gap in finding the 

statistical significance is addressed by this work, in particular, 

working with multipath datasets with apriori multipath 

cluster membership. As discussed and cited above, many 

contributions to multipath clustering fail to communicate 

their statistical significance, which the authors labored to 

express in this present work. The impact of sharing the 

statistical significance is that researches in the field can 

clearly comprehend and understand the performance of the 

clustering approaches and identify which of them gives the 

best results. The clustering approach with outstanding 

performance can then be used best in clustering multipaths. 

The main contributions of this work are as follows: 

• Applying SCAMSMA, 3CAM-SCAMSMA, SC, and 

3CAM-SC to cluster wireless multipaths which adds to 

the literature of multipath clustering four more 

clustering approaches that can be used for the task of 

clustering multipaths, 

• Adopting 3CAM to improve the clustering accuracy of 

SCAMSMA and SC which can also be used in 

conjunction with other clustering approachess to further 

improve their accuracy,  

• Conducting a performance evaluation of the clustering 

approaches to show which of them is the best and most 

robust for the task of clustering multipaths. 

The paper is organized in the following way: Section II 

discusses the methodology. Section III presents the results of 

the clustering approaches and elaborates on the findings, and 

Section IV concludes the work. 

II. METHOD 

Fig. 2 outlines the methodology of the study. The COST 

2100 Channel Model (C2CM) [9] generates the multipath 

components and clusters, serving as the reference dataset.  

 
Fig. 2. The methodology of the study. 
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Indoor and semi-urban comprise the environment of the 

channel model, while Band 1 (B1) and Band 2 (B2) compose 

the frequency bands. The transmission of the wireless signals 

can be chosen as a Line-of-Sight (LOS) or Non-Line-of-Sight 

(NLOS), while the communication link between the 

transmitter and the receiver can be set to single or multiple. 

The COST 2100 dataset is preprocessed to become the 

reference data and clustered using four shallow learning 

clustering approaches. The performance of the clustering 

approaches is then compared using three evaluation criteria. 

The discussion in Section II-A to Section II-C is needed to be 

done to extract the labeled multipaths from [9]. Each label 

also referred to as identification or ID, indicates which cluster 

a multipath belongs to.  Such labels enable the checking for 

the correctness of the clustering approach taken. 

A. Generation of COST 2100 Channel Wireless Multipaths 

C2CM can reproduce the stochastic properties of MIMO 

propagation channels. It is a Geometry-Based Stochastic 

Channel Model (GSCM) that is generic and flexible in its 

approach. It is suitable to model multi-user MIMO 

scenarios  [22]. Multipath clusters characterize C2CM, and 

groups of MPCs with similar delays and angles comprise a 

multipath cluster. An MPC is classified based on the delay, 

angle of departure (Azimuth of Departure (AoD), Elevation 

of Departure (EoD)), angle of arrival (Azimuth of Arrival 

(AoA), and Elevation of Arrival (EoA)). 

A CIR that changes with time (designated by t) is the group 

of MPCs from all the multipath clusters according to the 

location of the Mobile Station (MS) with the Base Station 

(BS). The CIR is based on the delay and direction domain and 

is given as 
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where K  is the set of visible cluster indexes, 
,n p  is the 

complex amplitude of the pth MPC in the nth cluster, 
BS

,n pΘ  is 

the Direction of Departure (AoD, EoD), and 
MS

,n pΘ  is the 

Direction of Arrival (AoA, EoA) of the MPC. 

Eight different channel scenarios generate the multipaths 

that serve as the input data for preprocessing. The eight 

channels are as follows:   

• indoor, Band 1 (B1), Line-of-Sight (LOS), Single Link 

(SL),  

• indoor, Band 2 (B2), line-of-sight, single link,  

• Semi-Urban (SU), band 1, line-of-sight, single link,  

• semi-urban, band 2, line-of-sight, single link,  

• semi-urban, band 1, Non-Line-of-Sight (NLOS), single 

link,  

• semi-urban, band 2, non-line-of-sight, single link,  

• semi-urban, band 1, line-of-sight, Multiple Links (ML), 

and  

• semi-urban, band 2, line-of-sight, multiple links. 

Thirty trials were selected to represent a more extensive set 

based on the central limit theorem [23, 24]. Each trial has 

different multipaths and multipath clusters representing 

standard propagation settings in a wireless communications 

system. The study uses the MATLAB implementation of the 

COST 2100 channel [25, 26]. The generation of the 

eight-channel scenarios has the following initializations:  

• the network characteristics are based on the 

parameterization of C2CM [27, 28], 

• the BS location is at the geometric reference point (0, 0, 

0),  

• the MS position is randomized at a given distance from 

BS with a maximum distance of up to 
2

cell radius
2

  

to ensure that the cluster measurements are nontrivial 

(greater than 2) and that the MS position is within the 

cell radius of the network,  

• the MS elevation is randomized for the indoor and 

semi-urban channel scenarios with a random height 

difference for BS of up to 15 meters for the semi-urban 

environment and 9 meters for an indoor environment 

and  

• the MS velocity is randomized to be either standing still 

or at the average walking speed of 1.1 m/s in any 

random direction. 

The randomized BS-MS distances were developed using 

the random generator of 1 2  vector of random numbers 

drawn from the uniform distribution in the interval (0,1). On 

the other hand, the randomized MS height was generated 

using the random integer generator drawn from the discrete 

uniform distribution on the interval 0 to 6 for the indoor 

environment. In contrast, the random scalar generator drawn 

from the uniform distribution in the interval (0,1) was used 

for the semi-urban environment [25]. The MS velocity was 

calculated using the pseudorandom generator Mersenne 

Twister. The MS antenna configuration is omnidirectional, 

while the BS antenna is single input single output (SISO) 

omnidirectional for both indoor and semi-urban single link 

scenarios. Moreover, the BS antenna is a 2 2  MIMO 

omnidirectional antenna for semi-urban multiple links 

scenarios [29]. 

B. Extraction of Wireless Channel Multipaths 

The clustering procedure begins with feature selection [30]. 

For a double-directional radio channel [31], the parameters 

 , AOD , AOD , AOA , and AOA  are extracted and generated 

using MATLAB to serve as the raw data, which can be 

expressed as 

 '

RAW AOD AOD AOA AOA[ ]X     =  (2) 

The extraction process concurs with C2CM. Each snapshot 

generates '

RAWX  with a dimension of 5. There are thirty sets 

of '

RAWX  data per channel scenario for clustering. The 

parameters obtained are representations of each multipath 

pre-assigned to a particular cluster. The multipaths are 

filtered to get only those visible in a single snapshot. The 

LOS component with the highest amplitude and the least 

delay is removed as it does not constitute multipaths. 

C. Transformation of Input Data 

The input data from C2CM is transformed using the 

Directional Cosine Transform (DCT) and the Whitening 

Transform (WT). The problem with the circular nature of the 

angular domain is solved by the directional cosine Cartesian 

equivalents. The result is the transformation of Eq. (2) from 5 

dimensions to 7 dimensions, which can be expressed as 
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 RAW AOD AOD AOD AOA AOA AOA[ ]X x y z x y z=  (3) 

There are two additional columns generated but not 

required in clustering the multipaths. Column eight power 

component is removed as it is not needed in the clustering 

process. Column nine cluster Identifications (IDs) are also 

eliminated in the clustering process as they are only used as 

reference IDs to compare with the calculated IDs. Dip-dist 

examines the cluster ability of the transformed data where 

data with two or more clusters can be clustered while data 

with only one cluster cannot be clustered [32]. WT follows to 

standardize the data since they have different units from the 

dimensions, angle, and delay. WT eliminates unwanted noise 

resulting in a more efficient clustering of data. The whitened 

data, WTX , is then normalized [0, 1] using 

 ( ) ( )NORM WT min max minX X X X X= −  −  (4) 

where NORMX  is the normalized value of the whitened data,  

WTX  is the whitened data,  maxX  is the maximum value of 

each column,  minX  is the minimum value of each column, 

and   is the Hadamard product. NORMX  is the input to the 

clustering approaches and serves as the reference data in 

calculating the Jaccard index. It is easier to see the statistical 

significance of methods among one another if one dataset is 

the focus. Their cluster labels were regarded as ground truth 

for the simulated datasets used in the paper. Measurements 

do not have their multipath cluster labels. So even if the 

clusters in the measurement were determined, the labels 

might not be the ground truth. If the cluster labels of the 

measurement are ground truth, then that would be future 

work.  

D. Clustering of the Input Data 

NORMX is clustered using SCAMSMA, 

3CAM-SCAMSMA, SC, and 3CAM-SC. SCAMSMA 

represents the data as the product of the data and an affinity 

matrix to solve the number and membership of multipath 

clusters simultaneously. An ideal affinity matrix is 

introduced, which can be factorized by an indicator matrix 

whose rows indicate to which cluster a point belongs. The 

accuracy of SCAMSMA depends on the correct formulation 

of the affinity matrix so that a 0-1 block diagonal is formed. 

SCAMSMA clusters the data accurately when the affinity 

matrix is formed correctly. 3CAM-SCAMSMA is a modified 

SCAMSMA that uses 3CAM to formulate the affinity matrix. 

3CAM depends on three constraints: pairwise, binary, and 

proximity. The pairwise constraint is based on the absolute 

distance between the corresponding data pair for all 

dimensions. The binary constraint takes on the sum of the 

values of the pairwise constraints of all dimensions. It returns 

a value of one (same cluster) if the sum is greater than or 

equal to a predefined value or otherwise zero (not on the same 

cluster). The proximity constraint combines all the data 

points to form clusters around the main diagonal, which form 

a 0-1 block diagonal of the similarity matrix. The rest of the 

procedure for SCAMSMA follows to calculate the output 

clusters. 

SC is a data analysis technique that reduces complex 

multidimensional datasets into clusters with fewer 

dimensions. The goal is to cluster the data based on their 

similarity. SC accepts the similarity matrix n nS R   with k  

clusters as input. The similarity graph is constructed with the 

weighted adjacency matrix W . The normalized Laplacian L  

is computed, followed by the k  eigenvectors. The points are 

then clustered using K-means to give the clusters as the 

output. 3CAM-SC is a modified SC that calculates the 

similarity matrix using 3CAM. The clustering algorithms 

used by the authors focus on the computational aspect over 

the physics aspect, though a joint method would undoubtedly 

be helpful, but that requires computationally demanding 

resources. Also, they need cluster labels which measurements 

do not have, as shown in Table 1. The labels are not directly 

available from the output of the channel model but must be 

obtained in the code before channel snapshot generation. 

 
Table 1. Presence of cluster labels in the dataset where the membership ID or 

cluster label of the simulated data was extracted from the COST 2100 

channel model 

Dataset Cluster Label Example 

Measured data Without 
Channel impulse response and 

channel frequency response 

Simulated data With 
COST 2100, IMT-2020, and 

QuaDRiGa 

 

The clustered data serves as the calculated data in 

computing the Jaccard index. Using common data for the 

clustering approaches standardizes the comparison of their 

clustering performance. The Jaccard index, which serves as 

the similarity measure, is calculated as 

  11

11 10 01

0,1
C

C C C
 = 

+ +
 (5) 

where   refers to cardinality, kC C , K C=  is the 

number of multipath clusters, 11C  is the number of clusters 

that are present in the calculated clusters that are also present 

in the reference clusters, 10C  is the number of clusters that 

are present in the calculated clusters but not present in the 

reference clusters, and 01C  is the number of clusters that are 

present in the reference clusters but not present in the 

calculated clusters. For the membership of the clusters, the 

Jaccard index is calculated as 

  11

11 01 10

0,1
M

M M M
 = 

+ +
   (6) 

where 11M  is the number of members that are present in the 

calculated clusters that are also present in the reference 

clusters,  10M  is the number of members that are present in 

the calculated clusters but not present in the reference clusters, 

and 01M  is the number of members that are present in the 

reference clusters but not present in the calculated clusters. A 

Jaccard index of one means that the calculated multipath 

clusters are the same as the reference multipath clusters or the 

membership of the calculated multipath clusters is the same 

as the membership of the reference multipath clusters. In 

contrast, a zero Jaccard index means no calculated multipath 

clusters equal to the reference multipath clusters or no 

membership of the calculated multipath clusters equal to the 

membership of the reference multipath clusters. 
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E. Clustering Performance Evaluation 

The performance of the clustering approaches in clustering 

the multipaths is evaluated through clustering accuracy, 

computational time, and robustness. Performance analyses 

on these areas show the strengths and weaknesses of the 

clustering algorithms quantitatively.   

The clustering accuracy of the clustering approaches is 

evaluated using the Jaccard index. Thirty sets of data, each 

with seven dimensions, are generated and clustered. The 

indices are assessed with each other and compared with the 

results of the state-of-the-art clustering approaches.  

Computational time is measured when an algorithm 

clusters the data from the press of the start button until the 

results are displayed. The mean serves as the basis since there 

are thirty sets of data for each algorithm. A short duration 

means the algorithm is straightforward to compute, while a 

more prolonged period means the algorithm is more likely to 

be computationally complex.  

Robustness is based on the performance of the clustering 

algorithms on the eight-channel scenarios. A clustering 

algorithm can be robust when it performs consistently well 

for all channels. Robustness is assessed objectively by the 

standard deviation of the Jaccard indices. Analysis of 

Variance (ANOVA) is also applied to evaluate the 

consistency of the performance of the clustering algorithm. If 

the F-statistic p-value is smaller than the significance level 

(0.05), then the test rejects the null hypothesis that all group 

means are equal and concludes that at least one of the group 

means is different from the others. 

III. RESULTS AND DISCUSSIONS 

The clustering results are presented and analyzed. The 

performance of the clustering approaches is compared based 

on their clustering accuracy, computational time, and 

robustness. Results show that 3CAM-SC has the best 

clustering performance. 

A. Clustering Accuracy 

The Jaccard index is used as the validation metric in 

analyzing the accuracy of the clustering approaches in 

clustering the multipaths. The Jaccard index compares the 

similarity of the reference dataset, which serves as the input 

to the clustering approach, and the clustered dataset, the 

output of the clustering approach. The mean Jaccard indices 

of the number clusters of the four clustering approaches for 

all channel scenarios are presented in Table 2. In contrast, 

that of the membership of clusters can be found in  

Table 3 [19, 21]. For both tables, indoor channel scenarios 

have better accuracy due to the fewer multipaths and  

 

multipath clusters generated by the enclosed space where 

reflections of signals are limited. Also, semi-urban scenarios 

have lower accuracy due to the higher number of multipaths 

and multipath clusters generated by the broader surroundings 

where more interacting objects reflect the signals. 

SCAMSMA and SC registered Jaccard indices close to zero 

for the number of clusters in semi-urban scenarios. At the 

same time, 3CAM-SCAMSMA and 3CAM-SC recorded 

Jaccard indices close to 1 for the membership of clusters for 

all channel scenarios. Among all the clustering approaches, 

3CAM-SC registered the best clustering accuracy. 

 
Table 2. Number of clusters mean Jaccard indices of the four clustering 

approaches for the eight-channel scenarios 

Channel 

Scenario 

SCAMS

MA 

3CAM-SC

AMSMA 
SC 3CAM-SC 

Indoor B1 0.6034 0.8226 0.5405 0.9027 

Indoor B2 0.6487 0.8004 0.2847 0.8894 

SU B1 LOS SL 0.0186 0.5525 0.0199 0.5533 

SU B2 LOS SL 0.0159 0.6721 0.0176 0.6730 

SU B1 NLOS SL 0.0052 0.4594 0.0126 0.4594 

SU B2 NLOS SL 0.0108 0.5325 0.1940 0.5372 

SU B1 LOS ML 0.0080 0.3229 0.0078 0.3227 

SU B2 LOS ML 0.0084 0.5805 0.0087 0.5809 

 
Table 3. Membership of clusters mean Jaccard indices of the four clustering 

approaches for the eight-channel scenarios 

Channel 

Scenario 

SCAMS

MA 

3CAM-SC

AMSMA 
SC 3CAM-SC 

Indoor B1 0.7305 0.9641 0.7612 0.9640 

Indoor B2 0.7582 0.9588 0.5936 0.9585 

SU B1 LOS SL 0.1875 0.9761 0.2496 0.9761 

SU B2 LOS SL 0.1818 0.9815 0.2459 0.9815 

SU B1 NLOS SL 0.1597 0.9825 0.2344 0.9825 

SU B2 NLOS SL 0.1505 0.9858 0.5344 0.9859 

SU B1 LOS ML 0.1459 0.9600 0.1798 0.9598 

SU B2 LOS ML 0.1436 0.9779 0.1771 0.9779 

 

Table 4 shows the percentage increase in the mean Jaccard 

indices when 3CAM is used to calculate the affinity matrix of 

SCAMSMA [19] and the similarity matrix of SC. All the 

mean Jaccard indices of the number of clusters and the 

membership of clusters for all channel scenarios increased, 

most notably in the semi-urban scenarios of the number of 

clusters. For the indoor scenarios, the improvement is at most 

212.40% for the number of clusters and 61.47% for the 

membership of clusters from SC to 3CAM-SC. However, in 

the semi-urban scenarios, the improvement reaches 

8734.62%, as shown in the number of clusters of SU B1 

NLOS SL and 580.99%, as manifested in the membership of 

clusters of SU B2 LOS ML both from SCAMSMA to 

3CAM-SCAMSMA. The increase in the Jaccard indices 

conveys that 3CAM improves the clustering performance of 

SCAMSMA and SC. 
 

Table 4. Percentage increase in the mean Jaccard indices due to 3CAM in formulating the affinity matrix of SCAMSMA and similarity matrix of SC 

Channel 

Scenario 

SCAMSMA to 

3CAM-SCAMSMA 

Number of Clusters 

SCAMSMA to 

3CAM-SCAMSMA 

Membership of Clusters 

SC to 3CAM-SC 

Number of Clusters 

SC to 3CAM-SC 

Membership of Clusters 

Indoor B1 36.33 31.98 67.01 26.64 
Indoor B2 23.39 26.46 212.40 61.47 

SU B1 LOS SL 2870.43 420.59 2680.40 291.07 

SU B2 LOS SL 4127.04 439.88 3723.86 299.15 
SU B1 NLOS SL 8734.62 515.22 3546.03 319.16 

SU B2 NLOS SL 4830.56 555.02 176.91 84.49 

SU B1 LOS ML 3936.25 557.98 4037.18 433.82 

SU B2 LOS ML 6810.71 580.99 6577.01 452.17 
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The performance of the clustering approaches is assessed 

based on the cluster classification and channel scenario. The 

clustering approaches can be compared since all solved the 

number and membership of clusters simultaneously. Fig. 3 

presents the performance comparison of the four clustering 

approaches for the number of clusters in indoor scenarios 

(blue) and semi-urban scenarios (red). 3CAM-SC has the 

highest clustering accuracy in indoor scenarios, while 

3CAM-SCAMSMA and 3CAM-SC performed equally in the 

semi-urban scenarios. Fig. 4 shows the performance 

comparison of the clustering approaches for the membership 

of clusters in indoor scenarios (green) and semi-urban 

scenarios (yellow). 3CAM-SCAMSMA and 3CAM-SC have 

almost identical performances in indoor and semi-urban 

scenarios. The figures clearly show that 3CAM significantly 

improves the performance of SCAMSMA and SC in 

formulating the affinity matrix and similarity matrix, 

respectively. 
 

 
Fig. 3. Performance comparison of the clustering approaches for the number 

of clusters in indoor scenarios (blue) and semi-urban scenarios (red). 
 

 
Fig. 4. Performance comparison of the clustering approaches for the 
membership of clusters in indoor scenarios (green) and semi-urban scenarios 

(yellow). 

 

B. Computational Time 

The mean computational time of the thirty sets of data per 

channel scenario using 3CAM-SCAMSMA, SC, and 

3CAM-SC is presented in Table 5 [19, 21]. The simulations 

were done in MATLAB 2019a on a Dell 7730 mobile 

workstation with Windows 10 operating system, Intel Xeon 

E2186M 2.90 GHz CPU, and 64 GB memory. The 

computing time is based on a period counter function in 

MATLAB. The timer begins at the pressing of the start button 

and ends when the simulation stops. The computational 

duration depends on the number of multipath components 

and clusters. The value means that the higher the number of 

multipath components and clusters, the longer the 

computational duration. That is why the indoor scenarios 

have a short computational duration due to fewer multipath 

components and multipath clusters. In comparison, 

semi-urban line-of-sight single-link scenarios increased due 

to a higher number of multipath components and multipath 

clusters. 3CAM-SC has the least computational complexity 

for all channel scenarios, while 3CAM-SCAMSMA has the 

highest computational time. 

 
Table 5. Mean computational duration (in seconds) of 3CAM-SCAMSMA, 

SC, and 3CAM-SC for the eight-channel scenarios 

Channel Scenario 3CAM-SCAMSMA SC 3CAM-SC 

Indoor B1 2.96 0.94 0.93 

Indoor B2 2.57 0.95 0.94 

SU B1 LOS SL 330.92 6.29 3.33 

SU B2 LOS SL 400.88 7.34 3.58 

SU B1 NLOS SL 2780.95 26.67 16.08 

SU B2 NLOS SL 2634.04 24.76 16.14 

SU B1 LOS ML 4515.58 38.72 15.02 

SU B2 LOS ML 6168.09 39.40 17.47 

 

C. Robustness 

The robustness of a clustering approach is based on its 

consistent performance in clustering multipaths in all channel 

scenarios. It is assessed by the standard deviations of the 

mean Jaccard indices and the box plots using the anova1 

function of MATLAB. The clustering approach with the 

slightest variations is said to be robust. 

1) Standard deviation 

Table 6 shows the standard deviations of the mean Jaccard 

indices of the number of clusters of the four clustering 

approaches for all channel scenarios. In contrast, Table 7 

shows the membership of clusters [19]. The standard 

deviation gives the variation of the Jaccard indices from the 

mean. A low standard deviation means that most of the 

Jaccard indices are close to the mean, while a high standard 

deviation indicates that the Jaccard indices are more spread 

out. For the number of clusters in indoor scenarios, 

SCAMSMA and SC have higher standard deviations than 

3CAM-SCAMSMA and 3CAM-SC, even though they have 

lower mean Jaccard indices. It shows that those standard 

deviations and mean Jaccard indices are inversely related. On 

the other hand, the two are directly related to semi-urban 

scenarios since 3CAM-SCAMSMA and 3CAM-SC have 

higher standard deviations than SCAMSMA and SC due to 

their higher mean Jaccard indices. 

 
Table 6. Standard deviations of the mean Jaccard indices of the number of 

clusters of the four clustering approaches for the eight-channel scenarios 

Channel 

Scenario 

SCAMS

MA 

3CAM-SC

AMSMA 
SC 3CAM-SC 

Indoor B1 0.2435 0.1783 0.2655 0.0997 

Indoor B2 0.3038 0.1949 0.2201 0.1116 

SU B1 LOS SL 0.0100 0.3579 0.0079 0.3568 

SU B2 LOS SL 0.0089 0.3860 0.0067 0.3850 

SU B1 NLOS SL 0.0096 0.3716 0.0110 0.3716 

SU B2 NLOS SL 0.0122 0.3506 0.0902 0.3471 

SU B1 LOS ML 0.0042 0.2855 0.0061 0.2855 

SU B2 LOS ML 0.0046 0.3221 0.0048 0.3215 

 

For the membership of clusters, 3CAM-SCAMSMA and 

3CAM-SC have almost the same standard deviations, 

showing that their Jaccard indices have similar variations 
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from the means. Their standard deviations are lower in indoor 

scenarios, even though they have high means, and this result 

indicates closer Jaccard indices from the means. For the 

semi-urban scenarios, 3CAM-SCAMSMA and 3CAM-SC 

have lower standard deviations except in scenarios with 

multiple links. This outcome signifies that their Jaccard 

indices are more stable around the mean despite higher 

Jaccard indices. 

 
Table 7. Standard deviations of the mean Jaccard indices of the membership 
of clusters of the four clustering approaches for the eight-channel scenarios 

Channel 

Scenario 

SCAMS

MA 

3CAM-SC

AMSMA 
SC 3CAM-SC 

Indoor B1 0.1808 0.0379 0.1670 0.0379 

Indoor B2 0.2261 0.0435 0.1501 0.0439 

SU B1 LOS SL 0.0283 0.0227 0.0280 0.0227 

SU B2 LOS SL 0.0216 0.0236 0.0333 0.0236 

SU B1 NLOS SL 0.0278 0.0148 0.0237 0.0148 

SU B2 NLOS SL 0.0244 0.0128 0.0590 0.0126 

SU B1 LOS ML 0.0123 0.0213 0.0179 0.0213 

SU B2 LOS ML 0.0137 0.0192 0.0182 0.0192 

 

3CAM-SCAMSMA and 3CAM-SC have almost identical 

standard deviations. However, when the two are compared 

closely, 3CAM-SC has lower values. Thus, it has the slightest 

Jaccard index variation and is the most robust among the four 

clustering approaches. 

2) Analysis of Variance (ANOVA) 

The box plots of the mean Jaccard indices of the number of 

clusters in indoor scenarios are shown in Fig. 5. The halfway 

mark (red line segment) indicates the median. The bottom 

and top edges of the box indicate the 25th and 75th 

percentiles, respectively. The whiskers extend to the most 

extreme data points not considered are outliers. The box plots 

are generated using the one-way ANOVA of MATLAB. The 

purpose of one-way ANOVA is to determine whether data 

from several groups of a factor have a common mean. That is, 

one-way ANOVA can determine whether different groups of 

an independent variable have different effects on the 

response variable. The probability value (p-value), the box 

plots of the independent variable, and tests (the hypothesis 

that the samples in the independent variable are drawn from 

populations with the same mean against the alternative 

hypothesis that the population means are not all the same) are 

drawn from the utilized ANOVA tool. Values of p   0.05 

indicate that the means of the clustering approaches are 

significantly different. The p-value of Fig. 5 is 0.0217, which 

validates that the mean Jaccard indices of the clustering 

approaches are significantly different. 3CAM-SC has the best 

performance, as shown by the higher central mark, while SC 

has the worst accuracy. 

The box plots of the mean Jaccard indices of the number of 

clusters in semi-urban scenarios are shown in Fig. 6. The 

p-value is 105.0224 10− , which indicates that the mean 

Jaccard indices differ significantly. 3CAM-SCAMSMA and 

3CAM-SC have almost the same performance, as their box 

plots show. SCAMSMA and SC have mean Jaccard indices 

close to zero, and SC has an outlier Jaccard index, indicated 

by the red plus symbol. 

 

 
Fig. 5. Box plots of the indoor scenarios mean Jaccard indices of the number 
of clusters using the anova1 one-way approach of MATLAB with p-value = 

0.0217. 
 

 
Fig. 6. Box plots of the semi-urban scenarios mean Jaccard indices of the 

number of clusters using the anova1 one-way approach of MATLAB with 

p-value = 105.0224 10− . 

 

The box plots of the mean Jaccard indices of the 

membership of clusters in indoor scenarios are shown in 

Fig.  7. The p-value is 0.0182, indicating that the mean 

Jaccard indices differ significantly. 3CAM-SCAMSMA and 

3CAM-SC have almost identical performances, as their box 

plots show. SC has the most varied mean Jaccard indices, as 

its more extended box plot shows. 
 

 
Fig. 7. Box plots of the indoor scenarios mean Jaccard indices of the 
membership of clusters using the anova1 one-way approach of MATLAB 

with p-value = 0.0182. 

 

 

International Journal of Computer Theory and Engineering, Vol. 16, No. 1, 2024

18



  

The box plots of the mean Jaccard indices of the 

membership of clusters in semi-urban scenarios are shown in 

Fig. 8. The p-value is 164.0754 10− , which indicates that the 

mean Jaccard indices differ significantly. 

3CAM-SCAMSMA and 3CAM-SC have almost identical 

performances with mean Jaccard indices close to one, as 

shown by their box plots. SC has the most varied mean 

Jaccard indices, as shown by its more extended box plot. It 

also has an outlier mean Jaccard index, as indicated by the red 

plus symbol. 

 
Fig. 8. Box plots of the semi-urban scenarios mean Jaccard indices of the 

membership of clusters using the anova1 one-way approach of MATLAB 
with p-value = 164.0754 10− . 

 

3CAM-SCAMSMA and 3CAM-SC have almost the same 

box plots, as shown in Fig. 6 to Fig. 8. However, 3CAM-SC 

performs better, as shown in Fig. 5. Thus, 3CAM-SC is the 

most robust based on the box plots.  

IV. CONCLUSION 

The work presented the performance of SCAMSMA, 

3CAM-SCAMSMA, SC, and 3CAM-SC in clustering 

wireless multipaths generated by C2CM. The clustering 

approaches solved the number and membership of multipath 

clusters concurrently. The clustering accuracy was assessed 

using the Jaccard index, the computational complexity was 

compared using computing time, and the robustness on 

standard deviation and box plots. Results show that 

SCAMSMA and SC fared well in indoor scenarios but had 

poor performance in semi-urban scenarios. 

3CAM-SCAMSMA and 3CAM-SC had improved 

performance in all channel scenarios. The two have almost 

identical mean Jaccard indices. Nevertheless, with 

3CAM-SC having a faster computational duration, lesser 

standard deviations, and higher box plots, it is the most robust 

among the clustering approaches. 
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