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Abstract—Security-based applications seek face biometrics 

as an integral part of the biometrics system which is susceptible 

to spoof attacks. A malicious person can gain unauthorized 

access to any system by displaying a picture or video of the 

registered user’s face. Anti-spoofing techniques are becoming 

increasingly crucial in the face biometric authentication 

systems. Convolution Neural Networks (CNN) have recently 

gained popularity in important computer vision application 

areas, encouraging their usage for face spoof detection. Even 

though deep networks are more resistant, such designs require 

expensive computational training. Also, the adoption of deep 

CNN architectures for face anti-spoofing applications has been 

constrained by the lack of sufficient training data that the 

existing spoof datasets can offer. Also trained models to lack 

generalizability concerning unknown data domains, and are not 

robust enough to handle unseen attacks. We propose a Transfer 

Learnt Anti-spoof (TLA) framework in this paper, to induce 

and improve generalizability and accuracy in spoof detection. 

TLA framework consists of two Convolution neural networks 

namely ResNet-34 and MobileNetV2. Here we pre-train these 

two CNN models on a larger dataset at the base. Then a dense 

classification layer is formed to classify the features obtained 

from the previous convolutional base, into the real and spoofed 

faces. The TLA Framework was applied efficiently over the 

NUAA Photo Imposter dataset and the models within the 

framework exhibited the highest accuracy of 99.76% and 

99.60% respectively for spoof detection and tests demonstrate 

that TLA outperforms the state-of-the-art techniques. 

Index Terms—Transfer learnt anti-spoof framework, 

transfer learning, ResNet-34, MobileNetV2, face anti-spoofing 

I. INTRODUCTION

The advancement in using computer vision technology has 

gained a lot of attention concerning the usage of facial 

biometrics systems for personal authentication. Though the 

face biometric systems are achieving greater accuracies, they 

remain vulnerable to presentation attacks. The face biometric 

system is fooled by presenting a few artifacts like a video or a 

printed photograph against the sensor of any input device like 

a camera. Face anti-spoofing is indeterminate in protecting 

the facial biometrics system against such malicious acts. 

There are a variety of presentation/spoof attacks with which 

2D photo replay and print attacks are the most common ones. 

Therefore, to prevent such spoofing attempts, we have many 

anti-spoofing algorithms in place to evaluate whether the 
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incoming image or video comprises the real face or fake face. 

Face presentation attack detection/spoof detection is an 

arduous task for all face biometric systems. 

Initial presentation attack detection methods relied on a 

few established methods, such as Eigenfaces, Local Binary 

Patterns (LBP), Histogram of Oriented Gradients (HOG), 

Discrete Cosine Transform (DCT), Discrete Wavelet 

Transform (DWT), and Speeded-Up Robust Features 

(SURF), which may be intended to address general image 

recognition issues but may not be sufficient to address the 

Face Anti-spoofing System (FAS) issue. Additionally, these 

hand-crafted methods rely on raw data, which is insufficient, 

especially in complex circumstances. Convolutional and 

deep neural networks have become increasingly popular for 

detecting spoofed faces in recent years [1]. Though Deep 

Convolutional Neural Networks (CNNs) have achieved 

promising success in detecting spoofed faces, they are 

data-hungry. They require a huge voluminous dataset to train 

before making any reasonable prediction, to avoid 

over-fitting and these models are computationally expensive 

too. To address this issue, the most recent technique used is 

transfer learning, in which CNNs train on larger datasets, 

which are from the same or different domains. Finally, a 

known network or classifier is improved using the images of 

a smaller database. 

The generalizability of the learned feature space is a 

crucial factor for assessing a FAS system’s performance. The 

trained model could perform exceptionally well in analyses 

within a dataset but fall short on unknown distribution. 

Various security risks are raised by this lack of generalization 

because not all attacks carried out by imposters are identified. 

Face anti-spoofing transfer the expertise for the same task 

from one domain with more data to another with less data. 

Transfer learning has two subcategories: domain adaptation 

and knowledge distillation [2]. Knowledge distillation adopts 

a teacher-student structure to create generalized feature space 

between source and destination domains rather than domain 

adaptation, which uses similarity metrics or adversarial 

learning. The goal of Domain Adaptation (DA) is to close the 

gap between the source and target domains while boosting 

the performance of the model on unknown input by using 

adversarial learning or similarity metrics. This method can be 

used when training data and test data do not correctly have 

the same distribution, which happens rather frequently in 

real-world applications and degrades performance. These 

transfer learning techniques help us to save on computational 

resources and achieve more accuracy with smaller datasets. 

Our Face Anti-spoofing dataset—NUAA Photo Imposter 

dataset [3] is a publicly available one having 12,614 images, 

which is relatively a smaller dataset to be trained with deep 

learning techniques and thus can incur an over-fitting 

problem. Also training all the layers of a convolutional neural 
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network from the scratch, i.e., from the initial layer is 

expensive concerning both resources and time. Transfer 

learning [4] technique solves the above problems by reusing a 

previously learned model over a large dataset over a new 

problem or a new dataset. 

In recent days, transfer learning has become an effective 

method to reuse an eminent pre-trained CNN model to take 

care of different machine learning problems. However, the 

utilization of transfer learned, the pre-trained deep network is 

a newer concept concerning liveness detection [5] and not 

many have explored it. Consequently, in the interest of 

looking into the face spoof detection problem, our main 

contribution is two transfer-learned, pre-trained deep models, 

ResNet34 and MobileNetV2 models. Both models give better 

accuracy by availing lesser training time and providing 

generalization over trained and tested datasets. 

Our work investigates the transfer learning-based 

procedures of two CNN architectures for face spoof detection. 

The remaining part of this paper consists of the literature 

survey of the existing methods in Section II, and the proposed 

transfer learned anti-spoof framework in Section III, to assess 

the suggested strategies in Section IV, several experiments 

have been carried out and Section V summarizes the study’s 

conclusions and research findings. 

 

II. RELATED WORKS 

Previous works on anti-spoofing in the literature, have 

followed many approaches. Major ones are texture-based, 

temporal-based, and frequency based. All the above 

approaches incorporated handcrafted texture features like 

LBP, HOG, and its variants followed by conventional 

classifiers like K-means, Support Vector Machines (SVM), 

or Neural networks to carry out the anti-spoofing task [6,7]. 

To distinguish between real faces and fraudulent ones, the 

temporal-based approaches [8] utilize facial motion patterns 

like eyes blinking or facial movements that use optical flow 

for face movement tracking. Some techniques [9] call for 

specialized 3D technologies that derive depth information 

from 2D photos, or the 3D shape information captured by 3D 

sensors is examined and contrasted with a real face. In a few 

techniques pulse signals are extracted from face images 

without making any contact with skin, such a method is based 

on Remote Photo Plethysmography (RPPG) [10]. Masks, 

fake face attacks, and assistance of auxiliary data make these 

systems vulnerable and also for above systems require depth 

information. Spoof detection can also be categorized based 

on spatial and temporal properties: static and dynamic 

features methods [11]. Dynamic procedures examine the 

images based on their temporal qualities while static 

approaches assess the images based on the spatial 

relationship in the image. Static techniques that utilize local 

binary patterns and their variants [6, 12, 13], Fourier 

analysis  [7, 14], Difference-of-Gaussian (DoG) [14], and 

Lambertian models [15]. Dynamic methods benefit from the 

temporal correlation between subsequent frames of video 

[16]. In several works, facial expressions serve as a sign of an 

impending attack (e.g.: eye blink [17], face natural 

movements [18], or movement of lips). Above mentioned 

methods mostly rely on hand-crafted features. Few 

approaches utilize CNN [19] to extract features from images, 

thus recognizing the attacks. For example, technique that 

uses an AlexNet [20] to extract the features, and classify them 

using Support Vector Machines (SVM). 

In previous works that were carried out, machine 

learning-based approaches were predominantly used for 

spoof detection. But later Deep learning-based techniques 

pitched into this domain [21, 22] which are 

representation-learning methods with different 

representations utilized at different levels of the neurons in 

Deep Neural Networks (DNN) [23]. Here the representations 

at one level are transformed into a higher level using a 

non-linear module. Also, DNNs are fed with unprocessed 

input data, unlike the conventional algorithms, later the 

DNNs perceive the representations required for classification, 

detection, or recognition. Hence techniques using deep 

learning have proven to be commendable tasks while 

determining the spoofed faces. A multi-modal fusion 

approach was suggested by Xiaoguang et al. [24] for Face 

Anti-spoofing by maintaining a variety of visual modalities 

on their displayed face images. An anti-spoofing network 

was used by Yang et al. [25] to consider temporal and spatial 

information that is both global and local. Liu et al. [26] 

generated a large dataset with spoofing attacks of 13 different 

types and utilized a deep tree network for the recognition of 

these spoofing attacking types. These deep learning-based 

techniques generally work well with trained face spoofing 

data, but performance degrades when new attack types are 

developed. But as the layers in the DNN get deeper, it seeks 

more data for training at each level and the standard datasets 

in our problem domain fail to cater to those numbers. Thus, a 

technique known as Transfer learning evolved out of the 

regular CNNs where a Machine Learning model yields 

trained knowledge to drive another model for a particular 

task [26, 27]. There are two ways to perform transfer learning. 

In the first approach, the source model acts as a feature 

extractor, and the selected layer’s output in the CNN serves 

as input for the aimed model. The second approach tweaks 

the source model partially or completely and its weights are 

retrained using backpropagation. Transfer learning prevents 

the over-fitting problem in a large network when the data is 

too small in size to train from scratch. Computational 

resources are also spared using transfer learning, since 

conventional machine learning approaches may take from 

days to weeks to train from the scratch. Our approach for 

spoof detection is formed on transfer learning different 

pre-trained CNNs [5, 28]. 

 

III. PROPOSED TLA FRAMEWORK 

Face spoof detection attempts to differentiate between real 

and spoofed images. Usually, the number of fake faces 

presides over the real ones due to the various forms of attacks 

such as spoofed images. Hence imbalanced training data will 

be exposed to the system. Various datasets are available for 

face spoof detection problems. One of them is the NUAA 

Photo imposter dataset, which has been publicly available, 

that we have considered evaluating. 
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Fig. 1. Proposed face anti-spoofing framework with ResNet34/ 

MobileNetV2 deep models using Transfer learning. 

 

The proposed Transfer Learnt Anti-spoof (TLA) 

framework (refer to Fig. 1) evaluates two CNN architectures, 

the first one being ResNet34 and the other being 

MobileNetV2 architectures. These two models were 

pre-trained using ImageNet [29], a larger classification 

dataset. From this pre-trained base model, we fine tune our 

ResNet34 and MobileNetV2 to improve generalization. 

A. ResNet34Architecture 

Deep learning has advanced significantly as a result of 

rapid technological advancements in hardware performance 

and computer technology [22]. Owing to their higher ability 

to categorize and recognize images, artificial neural networks 

have found widespread use in diverse areas [23]. CNN is a 

sophisticated, multilayer, fault-tolerant neural network. It 

also can learn on its own. It can solve issues in challenging 

circumstances with hazy backgrounds. Compared to other 

approaches, it has a far superior ability to generalize. An 

input layer, multiple convolutions, a few pooling layers, and 

completely linked and output layers are the typical layers that 

makeup CNN. It is used in natural language processing, 

computer vision, and other domains both unsupervised and 

supervised learning. 

ResNet34 [26], which is described in “Deep Residual 

Learning for Image Recognition” is a modern image 

classification model, which is built as a 34-layer 

convolutional neural network. The ResNet-34 network’s 

infrastructure is made up primarily of residual building 

blocks, which make up the entire network. The issue of the 

disappearance of gradient or explosion of gradient caused by 

increasing the neural network depth was effectively fixed by 

the residual construction block, which skipped the 

convolutional layers via a shortcut link. This improved the 

recognition rate for face spoof detection and gave more 

flexibility when building CNN structures. In the general 

context, Transfer is a carryover of skill or knowledge from 

one scenario to other. 

In transition learning, a machine can exploit the expertise 

gained from the previous work to enhance the generalization 

of another. In normal neural networks, edges are detected in 

the initial layer, it gets shaped in layers in the center and the 

later layers carry some functional features. 

Fig. 2 depicts the basic-organizational block’s structure. 

The ResNet’s 34 layers make use of the residual building 

component, which consists of several “Convolutions (Conv)”, 

“Batch Normalizations (BN)”, a “Rectified Linear Unit 

(ReLU)” activation function, and a short-cut connection. The 

following might be written as the result of the last 

construction block: 

 

y = F(x) + x(1)        (1) 

 

Here F is the residual function, x and y are the function 

input value and output value, respectively. 

The first convolutional layer and some fundamental blocks 

make up the complete residual network.  

 

 
Fig. 2. ResNet 34 basic building block. 

 

The ResNet-34 consists of a fully connected layer, an 

average pool layer, and a max-pooling layer with a size of  

33. A traditional ResNet-34 model with 63.5 million 

parameters uses Rectifier Nonlinearity (ReLU) activation, 

BN, and the SoftMax function on the back of each 

convolution layer. In ANN, ReLU is a widely used activation 

function. We designated the regularized ReLU function as 

follows: 

 

f(x) = max (0, x)         (2) 

 

Here f is the ReLU function and x is the input data. 

The gradients of the sigmoid and tanh functions for deep 

networks are almost nil in the saturation zone. The gradients 

may readily disappear, which slows convergence and results 

in information loss. The ReLU gradient is often constant, 

which aids in resolving deep network convergence issues. 

ReLU, on the other hand, is closer in keeping with the traits 

of biological neurons because it has a unilateral function. 

Throughout the training process, the cross entropy loss 

function was used to update b. The following is a definition 

of the cross-entropy function: 

 

𝐻(𝑝, 𝑞) = −𝑛 ∑ 𝑝𝑖(𝑥) log2 𝑞𝑖 (𝑥)
𝑖=𝑛

𝑖=1
    (3) 

 

For the input x, the probability is denoted by p, likelihood 

is denoted by q, and finally, H denotes cross-entropy, then the 

result is a probability. When compared to the variance loss 

function, the problem of updating weights and bias is too 

slow and is resolved by this method. The update of weights 

and deviations is also impacted by errors. Because of this, 

when the error is significant enough, weights update 

relatively quickly. Similarly, weights and deviations update 

slowly when the error is minor. 

Overall architecture: Table I depicts the proposed TLA 

ResNet34’s structure. The first convolutional layer has 64 

filters and a 77 kernel, followed by a max-pooling layer. 

The stride is set to 2 in both instances. Conv2_x comprises 

the pooling layer and subsequent convolution layers. The 

way the residuals are coupled causes these layers to typically 

be grouped in pairs. The next two layers comprise the layers 

between the pool,/2, and the filter 128 ones, which have a 

kernel size of 33 and 64 filters, which are all repeated three 

times. These 2 layers have a kernel size of 33, filters count 

of 128, and are repeated four times in total. This continues up 

until the SoftMax and average pooling functions. 
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TABLE I: SIZES OF OUTPUTS AND CONVOLUTIONAL KERNELS FOR 

RESNET34 

Layer Name Output size 34-Layer 

Conv1 112112 77, 64, stride 2 

Conv2_x 5656 

33 max pool, stride 2 

[
𝟑𝟑, 𝟔𝟒
𝟑𝟑, 𝟔𝟒

]  3 

Conv3_x 2828 [
𝟑𝟑, 𝟏𝟐𝟖
𝟑𝟑, 𝟏𝟐𝟖

]  4 

Conv4_x 144 [
𝟑𝟑, 𝟐𝟓𝟔
𝟑𝟑, 𝟐𝟓𝟔

]  6 

Conv5_x 77 [
𝟑𝟑, 𝟓𝟏𝟐
𝟑𝟑, 𝟓𝟏𝟐

]  3 

 11 
Average pool, 1000-dc 

SoftMax 

 

Refer to Fig. 3 for further understanding. Here ResNet 

architecture is implemented in 5 blocks. The first block 

contains 64 filters with a stride of 2, followed by max-pooling 

with a stride of 2. The architecture employs padding of 3, 

since there is a chance of internal covariate shift. So, the 

network must be stabilized through BN. Finally, ReLU is 

used.  

B. Transfer Learnt Restnet34  

Several annotated datasets are required to train the CNN in 

order to deliver an excellent performance [4]. However, 

gathering such a massive amount of data is difficult, and 

classifying the images becomes expensive. Transfer learning, 

which has been demonstrated to be a very successful method, 

is therefore utilized to train the neural network, whenever 

small datasets are involved. The little amount of data in this 

experiment makes it simple to overfit problems, and the 

model also needs more training epochs, which reduces the 

model’s capacity to recognize patterns. 

Thus, pre-training the model on ImageNet using transfer 

learning can enhance the classification of real or fake faces. It 

took less time to train ResNet-34 because it was adjusted to 

accommodate the data in this article. 

The ImageNet dataset, which comprises more than 

100,000 images in 200 different classes, serves as the 

pre-training data for Restnet34. RestNet distinguishes itself 

from traditional neural networks by using the residuals from 

each layer in the connected layers. Starting from the 

foundation state, we will fine-tune our ResNet model starting 

from the pre-trained checkpoint. This method is also 

frequently referred to as “transfer learning”. 

In the general context, transfer is a carryover of skill or 

knowledge from one scenario to other. In transition learning, 

a machine can exploit the expertise gained from the previous 

work to enhance the generalization of another. In normal 

neural networks, edges are detected in the initial layer, it gets 

shaped in layers in the center and the later layers carry some 

functional features. 

In transfer learning, we make use of the initial and middle 

layers and later layers are replaced. Pre-trained models 

reduce the time required for feature engineering and training 

drastically. So, we use the model which has a large dataset to 

make the best of the training. The custom ResNet34 

architecture employed here has been trained in advance on 

the ImageNet dataset. Having a well-trained model in hand, 

the model is started from the pre-trained checkpoint and 

ResNet34 is fine-tuned from this base state. 

 
Fig. 3. ResNet 34 architecture 
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When loaded into the fastai data loader, the NUAA dataset 

is normalized to the standard deviation and mean of the 

ImageNet dataset. The pre-trained ResNet model from the 

torch vision model library is used in the following phase. 

We’ve initialized our model, fine-tuned the final layer, and 

frozen the remaining portions of the model. The procedure 

described above teaches us the pertinent pre-trained traits. 

Even then the validation loss has not decreased for 20 epochs, 

then an early stopping callback is used to stop the training 

session. Next, the model’s parameters are unfrozen, and the 

ideal learning rate is determined. The model won’t learn 

much if the learning rate is too low, and we have to 

backpropagate the way off the map in function space if it is 

too high.   

Next, we unfreeze the model and train it for 50 more 

epochs to fine-tune our model to yield maximum 

performance. As the performance increases the validation 

error rate decreases. In our case, its error rate is 0.002377, and 

the validation loss is 0.010181 which is quite small. 

The NUAA dataset is trained quickly by freezing a layer to 

stop its weights from changing. It just trains a particular set of 

layers for NUAA rather than all the layers. Thus, by drawing 

on the knowledge and expertise of the bigger ImageNet 

dataset, improved accuracy can be attained even for smaller 

datasets like NUAA. 

C. MobileNetV2 Architecture 

MobileNet is a flexible and effective CNN architecture, 

that is used in various real-time applications to create lighter 

models by replacing standard convolutions with depth-wise 

separable convolutions. Model developers can choose to 

trade speed or accuracy using two global parameters, the 

width multiplier, and the resolution multiplier in MobileNet. 

The core of MobileNet is a collection of depth-separable 

convolutional layers. Each depth-wise separable convolution 

layer is made up of a pointwise and a depth-wise convolution. 

A MobileNet has 28 layers if pointwise and depth-wise 

convolutions are counted as individual components. The 4.2 

million parameters of a typical MobileNet can be further 

condensed by varying the width multiplier hyperparameter 

suitably. For the images in our dataset, these values measure 

2242243. 

MobileNet utilizes a global hyperparameter known as 

Width multiplier, “α” to build less complex and 

computationally feasible models. It has a value between 0 

and 1. For a specific layer, the number of input channels “M” 

and the number of output channels “N” becomes α  M and 

αN, respectively. This reduces model size and computation 

costs. Both the number of parameters and the cost of 

computation are reduced by a factor of two. A few of the 

often-used values are 1, 0.75, 0.5, and 0.25. Another 

hyperparameter known as, Resolution multiplier, “ρ” is used 

to decrease the input image’s resolution, which in turn 

decreases the input provided to each layer by the same 

amount. The resolution of the input image is 224  ρ for a 

particular value of ρ. As a result, the computational cost is 

decreased by a factor of 2. 

MobileNetV2 architecture: Depth-wise Separable 

Convolution was added to MobileNetV1, which significantly 

reduced the model size and network’s complexity cost, 

making it suitable for mobile devices with limited processing 

capacity. MobileNetV2 introduces an improved module with 

an inverted residual structure. This time, nonlinearities in thin 

layers are eliminated. When MobileNetV2 is used as the 

foundation for feature extraction, modern performance for 

object detection and semantic segmentation is achieved. 

The MobileNetV1 architecture witnessed some important 

up gradation that improved the model’s accuracy 

significantly. The use of the ReLU6 activation function in 

place of ReLU and the updating of linear bottlenecks and 

inverted residual blocks were the key variations made to the 

architecture. The MobileNetV2 architecture has the residual 

structure stacked up in the inverted form, where their input 

and output are thin bottleneck layers. It extracts the features 

in the expansion layer using lightweight convolutions. Then 

the non-linearities in the narrow layers are removed. Fig. 4 

denotes the overall MobileNet V2 architecture. There are two 

different kinds of blocks in MobileNetV2. A single stride 

makes up the first block. A block that can shrink by two 

strides is an additional option. Every sort of block has three 

layers. ReLU6 serves as the initial layer of a 11 convolution. 

The second layer is depth-wise convolution. 

 
Fig. 4. MobileNet V2 architecture. 

 

And another 11 convolution in the absence of 

non-linearity makes up the third layer (Refer to Table II). If 

ReLU is applied again, deep networks are said to have the 

power of a linear classifier only on the non-zero volume 

portion of the output domain. The t-expansion factor is 

another. T = 6 for all significant experiments. If the input had 

64 channels the internal output would have 64  t = 64  6 = 

384 channels. 
 

TABLE II: THREE LAYERS IN EACH BLOCK OF MOBILENETV2 

Input Operator Output 

h  w  k 1  1 conv2d, ReLU6 h  w  (t k) 

h  w t k 3  3 dwises=s, ReLU6 
𝒉

𝒔
  

𝒘

𝒔
  (t k) 

𝒉

𝒔
  

𝒘

𝒔
  t k linear 1  1 conv2d 

𝒉

𝒔
 

 𝒘

𝒔
  k’ 

 

TABLE III: OVERALL ARCHITECTURE OF MOBILENETV2 

Input Operator T c n s 

2242  3 Conv2d - 32 1 2 

1122  32 Bottleneck 1 16 1 1 

1122  16 Bottleneck 6 24 2 2 

562  24 Bottleneck 6 32 3 2 

282  32 Bottleneck 6 64 4 2 

142 64 Bottleneck 6 96 3 1 

142  96 Bottleneck 6 160 3 2 

72  160 Bottleneck 6 320 1 1 

72  320 Conv2d 1  1 - 1280 1 1 

72  1280 avgpool 7  7 - - 1 - 

1  1  1280 Conv2d 1  1 - k -  
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The overall design of MobileNetV2 is shown in Table III. 

Here, n is repeating number, t is expansion factor, and sis 

stride, and for spatial convolution, 33 kernels are employed. 

D. Transfer Learnt MobileNetV2 

For MobileNetV2 implementation, we use tensor flow. 

First, we convert our dataset into a Tensor flow Dataset using 

Image Folder API. All images of the NUAA dataset will be 

resized to 160160. The base model is created using the 

MobileNetV2 model’s pre-trained Covnents. The ImageNet 

dataset was used for the pre-training. The top classification 

layers are then removed from this pre-trained network, 

creating the perfect environment for feature extraction. Here, 

the final layer before the flatten operation, known as the 

“bottleneck layer,” is taken into consideration rather than the 

final classification layer as in standard machine learning 

models. Compared to the previous layer, these layers’ 

features are more generalizable. The previous step’s 

convolutional basis is frozen and utilized as a feature 

extractor. The 1601603 image is converted into a 

551280 block of features via the feature extractor. A 

classifier is added on top of it and trained. The convolutional 

base is frozen before the compilation and training of the 

model. 

Freezing prevents the possible weight updating in a given 

layer during the training process. The features are converted 

into a 1280-element vector per image using Keras’s 

GlobalAveragePooling2D layer. These features are then 

transformed into a final prediction via a dense layer, where 

positive integers are projected to be class 1 (a real face), and 

negative integers to be class 0 (a fake face). There is no 

requirement for an activation function in this scenario 

because the prediction will be treated as a logit or a raw 

prediction value. 

 

IV. EXPERIMENTS AND DISCUSSIONS 

We evaluate the accuracy of the TLA framework for the 

face biometric system by conducting experiments on NUAA 

face anti-spoofing dataset. In the proposed framework, the 

weights were frozen from the third layer to the bottom layers 

and backpropagation was used to fine-tune them from the 

fourth block up to the initial layers. This technique was 

assessed using NUAA test folders. The implementation was 

carried out using fastai and pytorch and MobileNetV2 was 

implemented using tensor flow. 

ResNet34 experimentation: On a single GPU, the 

suggested TL-ResNet34 was employed and trained.The 

model using the Stochastic Gradient Descent optimizer and 

Cross-entropy loss function is trained for 20 iterations with a 

batch size of 224 and a learning rate of 110−4. 

MobileNetV2 experimentation: In MobileNetV2, the base 

feature extractor layers, the global average layer, and 

prediction layers are stacked and the model is compiled again 

with RMSProp optimizer and Binary Cross entropy loss since 

there are two classes. This model was finetuned with a 

learning rate of 110−4, batch size of 224, and 20 epochs. 

The parameters used in both models are tabulated in 

Table  IV and the performance of the two models of the TLA 

framework is evaluated in the experiments conducted. 
 

TABLE IV: PARAMETERS USED IN THE RESNET34 AND MOBILENETV2 

MODELS 

Parameter ResNet34 MobileNetV2 

Input shape (32,32,3) (32,32,3) 

Weight Initialized to ImageNet Initialized to ImageNet 

Optimizer 
Stochastic Gradient 

Descent 
RMSProp 

Loss function Binary Cross entropy Binary Cross entropy 

Classifier SoftMax SoftMax 

Epochs 20 20 

Batch size 224 224 

Dropout rate Nil 0.3 

Regularization BatchNormalization BatchNormalization 

 

A. Dataset 

The first publicly accessible dataset for face anti-spoofing 

was the NUAA Photograph Imposter dataset [3]. These 

pictures were obtained in three sessions, with a two-week gap 

between each, using standard webcams in various settings 

with various lighting conditions. Attacks that are printed flat 

or warped are assessed. Sessions were created separately for 

training and testing. There are 15 subjects in this dataset. 500 

photos are gathered for each topic, with 5105 real face images 

and 7509 fake ones. Each image features a frontal view of a 

face with an expressionless face. Fig. 5 shows some examples 

of it. 
 

 

 
Fig. 5. Sample real (first five rows) and spoofed images (last five rows) from 

NUAA photo imposter dataset. 
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B. Evaluation Metrics 

We have utilized the standardized ISO/IEC 30107-3 

metrics [30] as the evaluation metrics for the Face 

anti-spoofing model. Mainly these metrics are akin to the 

types of errors and how they are measured and evaluated [31]. 

At the basic level, Spoof detection will incur False Positive 

(FP) and False Negative (FN) errors. Also, we evaluate two 

more errors: False Positive Rate (FPR), which is the ratio 

between false positive samples and the total number of 

negative samples, and False Negative Rate (FNR), which is 

the ratio between false negative samples and the total positive 

samples. Also, many authors have reported different error 

rates, but they are all equivalent. For example, the ratio of 

correctly classified positives is defined as True Positive Rate 

(TPR), which is computed as 1-FNR. The ratio of correctly 

detected negatives is defined as True Negative Rate (TNR), 

which is computed as 1-FPR. Similarly, a FPR can be termed 

a False Acceptance Rate (FAR) or Attack Presentation 

Classification Error Rate (APCER). All three metrics have 

different names given by different researchers but the 

calculations remain the same. FNR is also called a False 

Rejection Rate (FRR) or Normal Presentation Classification 

Error Rate (NPCER). Hence for measuring the error rate of 

spoofed or real faces, FPR and FNR are utilized. Table V lists 

the different Performance metrics that we have evaluated for 

our Deep models. 

 
TABLE V: PERFORMANCE METRICS FOR FACE ANTI-SPOOFING 

Performance Metric Formula 

False Positive Rate (FPR) OR 

False Acceptance Rate (FAR) OR 

Attack Presentation Classification 

Error Rate (APCER) 

FPR or FAR or APCER =  

FP / (FP + TN) 

False Negative Rate (FNR) OR  

False Rejection Rate (FRR) OR 

Normal Presentation Classification 

Error Rate (NPCER) 

FNR or FRR or NPCER = 

FN / (FN + TP) 

Half Total Error Rate (HTER) OR 

Average Classification Error Rate 

(ACER) 

HTER or ACER=  

(FPR+FNR) / 2 

 

ResNet34 Performance: We can evaluate our custom 

ResNet Image classification model’s performance by using it 

for test inference and it is visualized in form of a Confusion 

matrix as shown in Fig. 6(a). 

We run inference on our test set, images that our model has 

never seen. An efficient model was found with an Accuracy 

of 99.7623%, Precision of 0.9993, Recall of 0.9966, and 

validation loss value, as low as 0.0102 (Refer to Table VI). 

The time taken by our ResNet34 model to learn the 

parameters and train the network to predict the real and fake 

faces is 44 seconds.  Also, our model’s top losses are shown 

in Fig. 6(b), which plots the predicted label over the actual 

label what the loss incurred in each case, and its probability. 

Model evaluation was performed using FAR, FRR, and 

HTER. Lower FRR indicates that a lesser number of real 

faces are classified as spoofed faces. Also, a lower FAR 

indicates less number of spoofed faces is incorrectly 

identified as real faces. So, our transfer learned ResNet34 

model exhibited FAR of 0.00097%, FRR of 0.00333%, and 

HTER of 0.00213%, whose values are very optimistic 

thereby increasing the efficacy of the face biometric system. 

TABLE VI: RESULTS OF RESNET34 

Technique  Dataset Accuracy% Precision Recall F1-Score 

TLA-Res

Net34 

NUAA 

Photo 

Impostor  

99.7623 0.9993 0.9966 0.9979 

 

 
(a)  

 
(b) 

Fig. 6. (a) Classifier performance;(b) Top losses of our custom ResNet34 

model. 

 

MobileNetV2 Performance: In MobileNetV2, the base 

feature extractor layers, the global average layer, and the 

prediction layers are stacked and the model is compiled again 

with RMSProp optimizer and Binary Cross entropy loss since 

there are two classes. The initial loss and initial accuracy are 

evaluated before training our model, and our model’s initial 

loss is 0.87 and initial accuracy is 0.51. After 20 epochs our 

custom MobileNetV2 model recurred a loss of 0.0222 and 

faired greatly with a performance accuracy of 99.55 %. The 

time taken by our MobileNetV2 model to learn the 

parameters and train the network to predict the real and fake 

faces is 197 seconds. We plot the loss and accuracy learning 

curves (see Fig. 7 to evaluate the model’s performance during 

training and validation. The MobileNet model performed and 

converged very well. To improve its accuracy the model is 

fine-tuned. Here all the layers are frozen before the 100th 

layer. Restarting the training improved the accuracy and loss 

dramatically. 

But the issue of negative transfer is one of transfer 

learning’s main drawbacks. The proposed framework 

functions only when the initial and target issues are 
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sufficiently comparable for the initial training to be 

applicable. When the features learned by the bottom layer 

(the classification layer) are insufficient to distinguish the 

classes for the given problem set, transfer learning will not be 

useful. The features are poorly transferred when the datasets 

are not comparable. 
 

 
Fig. 7. Learning curves of the training and validation accuracy/loss for 

MobileNetV2. 

 

Table VII lists the test accuracies of the different Transfer 

learned Deep networks for Face anti-spoofing, including the 

proposed models. 

 
TABLE VII. TEST ACCURACIES OF DIFFERENT TRANSFER LEARNT DEEP 

MODELS 

Technique Attack Type Accuracy% HTER% 

Transfer learnt 

VGG-16 
Presentation (CASIA) 93.75 - 

FasNet (Transfer 

learnt 

CNN-VGG16) 

Presentation 

(REPLAY-ATTACK) 
99.04 1.20 

TLA-Renet34 

(proposed) 
Presentation (NUAA) 99.76 0.00213 

TLA-MobileNet 

V2 (proposed) 
Presentation (NUAA) 99.6 0.0024 

 

 
Fig. 8. Accuracy for proposed TLA smodels with SOTA. 

 

Fig. 8 depicts the accuracy plots of various 

State-of-the-Art (SOTA) techniques with the models of our 

TLA framework. The results suggest that our transfer learned 

models outperformed the available transfer learned SOTA 

CNN models. 

V. CONCLUSION 

In this research work, we introduced the TLA framework 

with two deep models, ResNet34 and MobileNetV2 based on 

Transfer learning to detect spoofing attacks in the face 

biometric systems. We discussed how pre-trained 

architectures are modeled internally. We demonstrated how 

the base models helped in extracting features, and the dense 

layers classify the test set. In the end, we inspected how the 

feature transfer influenced the aimed problem from the 

pre-trained CNNs. The experimental results showed 

classification accuracies of 99.76% with HTER of 0.00213% 

and 99.6% with HTER of 0.0024% for transfer learned 

ResNet34 and MobileNetV2 models, respectively. Also, 

when transfer learned ResNet34 and MobileNetV2 were used 

on the test dataset, the fluctuation ranges of the loss curve and 

the accuracy curve were minimal. The HTER values denote 

that our models based on transfer learning increase the 

performance of the face anti-spoofing model.  

The TLA Framework provides a generalized solution 

using a different dataset which is huge for feature extraction 

and training. This learning is transferred onto and used 

concerning smaller datasets for spoof detection. Using 

transfer learning in tandem with the model improves its 

performance. 

But Transfer learning will not be effective if the features 

learned by the classification layer are insufficient to identify 

the classes for the given problem set. When the datasets are 

not comparable, the transfer of the features is poor. 

As a direction for the future, we wish to experiment and 

propose Domain Agnostic models that handle the domain 

biases in the test datasets and also hope to create and detect 

the zero-shot spoof attacks multiplexed with available 

datasets to cover a larger spoof attack space. 
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