

Analyzing Strengths and Weaknesses of Modern Game

Engines

Tauheed Khan Mohd*, Fernando Bravo-Garcia, Landen Love, Mansi Gujadhur, and Jason Nyadu

 Abstract—The growing relevance of gaming engines in the

gaming industry is making it gradually harder for a prospective

developer to choose a game engine. In this analytical paper, the

authors analyzed the following game engines: Cocos2D-X,

CryEngine, GDevelop, Godot, Panda3D, Unity, and Unreal

Engine. In every section, the authors elaborated on the

advantages and disadvantages of each engine. Some users claim

that older gaming engines like CryEngine are irreplaceable and

that their engine structure should be exemplary for other

engines. The new modern wave of game engines including Unity

and Unreal Engine end up dominating the market with

compatibility at every gaming platform and the ability to create

both 2D and 3D games. Along with that having a strong

community and developer support results in a very content user

base.

Index Terms—Gaming technologies, video game engine,

unreal engine, unity, Godot

I. INTRODUCTION

Andy Serkis, English actor, producer, and director once

said, “Every age has its storytelling form, and video gaming

is a huge part of our culture. You can ignore or embrace video

games and imbue them with the best artistic quality. People

are enthralled with video games” [1]. Something that we

cannot deny is that video games and video game culture have

been permanently ingrained in our society. As we near the

halfway point of a century of video game history, society now

has access to millions of video games and hundreds of tools

to create and distribute them. Fifty years of video game

history have given us classic titles like Tetris, Super Mario

Bros, or Pac-Man. Although we love the classics, video

games and video game development look vastly different

than when they did in the past. Computing power has grown

exponentially since the beginning of video games; thus, we

have gained the ability to create more immersive and

complex games. Behind every game is a video game engine,

and these different engines are responsible for the different

types of games that we play. Someone familiar with video

games could easily differentiate that “playing a game such as

World of Warcraft on a personal computer is very different to

playing Call of Duty on a games console, which is vastly

different to playing Candy Crush Saga on a mobile phone”

[2]. The purpose of this technical report is to investigate why

video games are so different by analyzing the game engines

that power them. In this report, we will analyze eight

Manuscript received July 24, 2022; revised October 14, 2022; accepted

November 11, 2022.

Tauheed Khan Mohd is with Augustana College, RockIsland, Illinois,

61201, USA.

Fernando Bravo-Garcia, Landen Love, Mansi Gujadhur, and Jason

Nyadu are with the Math and Computer Department, Augustana College,

Rock Island, Illinois, 61201, USA.

*Correspondence: tauheedkhanmohd@augustana.edu

different game engines including Cocos2D- X, CryEngine,

GDevelop, Godot, Panda3D, Unity, and Unreal Engine. In

the analysis of every game engine, we highlighted features of

each game engine but also bring attention to possible flaws

that should deter a user from using the engine.

My team and I did a little research on game engines and

which one we should include in our research paper. The

seven game engines that we chose are the most up-to-date

and latest game engines. We also included the best game

engines for example, Unity from the forthcoming comparison

table in the conclusion section, a fact which proves that Unity

is popular for its features. We included some game engines

that have been existing for many years and are still known for

their simplicity to use, for example, Godot.

II. CRYENGINE

Most known for the award-winning title ’Far Cry,’

CryEngine was considered the “next generation” when it first

entered the gaming scene. Developed by CryTek

Studios, ’Far Cry’ was ahead of its time by using complex

algorithms to give the user access to graphics never seen in

gaming [3]. Not content with the early success that ’Far Cry’

had, the studio decided to develop a new game engine and a

game, hand-in-hand; the engine was CryEngine 2 and the

game was Crysis. Once again, an immediate success, Crysis

added to the pattern of photorealistic shooters that had

gaming audiences in a trance [3]. These two engines set the

precedent for CryEngine 3; they would carry over their

pattern of giving the user a high-definition picture that

mirrors reality.

The most up-to-date version of CryEngine is CryEngine 3.

Currently, CryEngine 3 supports development for games on

PlayStation, Xbox, Windows, Linux, Android, Oculus Rift,

OSVR, PSVR, and HTC Vive. The games in which the

engine excels are first-person shooters [4]. Users of

CryEngine have access to both the engine and the editor code,

and because of this, many games are created using a heavily

modified version of CryEngine [4]. The languages supported

by CryEngine are C++, VisualScript, and Lua [5]. Users

should appreciate this level of accessibility provided by

CryTek Studios. Cry-Engine is a freeware but they do have a

royalty system. First-time users have their first 5000 dollars

of income royalty-free, but afterwards they will pay a 5

percent royalty in their game sales [4].

As mentioned before, this engine is most effective for

creating First Person Shooter (FPS) games. So, users looking

to create a realistic FPS game should start with CryEngine.

Unlike other engines CryEngine gives the user a very strong

template to start, you don’t have to start from scratch to create

a game. Users are given access to “Networking, game modes,

characters, animation setups, weapons, vehicles, UI – it

54

International Journal of Computer Theory and Engineering, Vol. 15, No. 1, February 2023

DOI: 10.7763/IJCTE.2023.V15.1330

basically [comes] with everything required in a game” [4].

CryEngine’s advanced rendering tools give its users the

ability to create “high-fidelity visuals.” One of the major

advantages of CryEngine over other engines is the ability to

create very complex landscapes [4]. Lastly, CryEngine is a

good choice for beginner game developers, it’s easy to learn

and very powerful. Along with that, new users can get

support from CryTek, the community is small, and it makes it

very plausible to get in contact with CryTek employees if

necessary.

Having a small community also comes with disadvantages.

It takes longer for CryEngine to find bugs in their engine due

to the smaller user-base and new users may struggle to find

support from other users. Considered third to Unreal and

Unity, it is very hard to find experienced users in CryEngine

[4]. A major disadvantage of CryEngine is that it is very poor

when it comes to creating RPG and fast-paced titles, the way

the engine is created doesn’t lend itself to those games [4].

It’d be better to use a different engine if a user hopes to make

those kinds of games. Lastly, even though users are given a

strong template they still must create most network systems

and development tools [4]. CryEngine is a strong engine

responsible for amazing games but depending on your needs

it may or may not be the best choice for a user.

III. COCOS2D-X

Cocos2D-X is a mature open-source cross-platform game

development framework that supports 2D and 3D game

creation. The engine provides rich functions such as graphics

rendering, Graphical User Interface (GUI), audio, network,

physics, user input, etc... It is widely used in game

development and interactive application construction. Its

core is written in C++ and supports development in C++, Lua,

or JavaScript. Cocos2D-X deploys to iOS, Android, HTML5,

Windows, and Mac systems with features focused on native

mobile platforms. It is a branch of Cocos2D.

At the heart of Cocos2d-x, you find the Sprite class and

what that class does, in simple terms, is keep a reference to

two very important rectangles. One is the image (or texture)

rectangle, also called the source rectangle, and the other is the

destination rectangle. If you want an image to appear in the

center of the screen, you will use Sprite. You will pass it the

information of what and where that image source is and

where on the screen you want it to appear. There is not much

that needs to be done to the first rectangle, the source one; but

there is a lot that can be changed in the destination rectangle,

including its position on the screen, its size, opacity, rotation,

and so on Cocos2D-D will then take care of all the OpenGL

drawing necessary to display your image where you want it

and how you want it, and it will do so inside a render loop.

Your code will most likely tap into that same loop to update

its own logic. Cocos2D-X has the capability to create any 2D

game that a programmer could imagine. Most 2D games can

be built with Cocos2D-X with a few sprites and a loop [6].

Also important in Cocos2d-x is the notion of containers (or

nodes). These are all the objects that can have sprites inside

them (or other nodes.) This is extremely useful at times

because by changing aspects of the container, you

automatically change aspects of its children. Move the

container and all its aspects will move with it.

The containers are Scene, Layer, and Sprite. They all

inherit from a base container class called a node. Each

container will have its peculiarities, but basically, you will

arrange them as follows: Scene: This will contain one or

more Node, usually Layer types. It is common to break

applications into multiple scenes; for instance, one for the

main menu, one for settings, and one for the actual game.

Technically, each scene will behave as a separate entity in

your application, almost as sub-applications themselves, and

you can run a series of transition effects when changing

between scenes. Layer: This will most likely contain Sprite.

There are several specialized Layer objects aimed at saving

you, the developer, some time in creating things such as

menus for instance (Menu), or a colored background (Layer

Color). “You can have more than one Layer per scene, but

good planning makes this usually unnecessary. Sprite: This

will contain your images and be added as children to Layer

derived containers. To my mind, this is the most important

class in all Cocos2D- X, so much so, that after your

application initializes, when both a Scene and a Layer object

are created, you could build your entire game only with

sprites and never use another container class in Cocos2D-X

node: This superclass to all containers blurs the line between

itself and Layer, and even Sprite at times. It has its own set of

specialized subclasses (besides the ones mentioned earlier),

such as Motion Streak, Parallax Node, and SpriteBatchNode,

to name a few. It can, with a few adjustments, behave just as

Layer. But most of the time you will use it to create your own

specialized nodes or as a general reference in polymorphism”

[7].

Game engines usually support multiple platforms thus

making it easy to develop your game and then deploy it to

multiple platforms without much overhead at all. Since

Cocos2D-X is a game engine, it provides a simplified API for

developing cross-platform mobile and desktop games. By

encapsulating the power inside an easy-to-use API, you can

focus on developing your games and worry less about the

implementation of the technical underpinnings. Cocos2D-X

will take care of as much or as little of the heavy lifting as you

want.

IV. GDEVELOP

GDevelop was created by Florian Rival who is a software

engineer at Google. It is a 2D cross-platform, free and

open-source game engine, which mainly focuses on creating

PC and Mobile games, as well as HTML5 games playable in

the browser. GDevelop is mainly aimed at non-programmers

and game developers of all skill sets, employing event-based

visual programming like such engines as Construct, Stencyl,

and Tynker. It is widely used in games education, primary

schools, and university courses because it is simple to use. It

has also been used by educators and researchers to create

learning and serious games [8]. It is available for the creation

of all types of 2D gaming, which can be exported for web

platforms (HTML5), and for native platforms (Windows,

GNU/Linux, and Mac OS). This software does not require its

users to have knowledge of a specific programming language.

In GDevelop all the game logic is constructed through an

intuitive and powerful graphical interface that is based on the

control of events [8]. It uses an event-sheet style of making

55

International Journal of Computer Theory and Engineering, Vol. 15, No. 1, February 2023

games, dragging and dropping instead of programming line

after line. They’re a great entry point for people interested in

making games and other software [9]; at the time of writing

this paper, GDevelop has just recently published version

5.0.0-beta93 which includes a much-needed pass over the

user interface. The interface size has shrunk and no longer

takes most of the users’ attention, with extra padding around

the main interface. Not only that, the User Interface (UI) is

more persistent with their changes being saved and restored

when opening a scene, extensions, or the debugger. There is

no need for coding using this system which is clear and

powerful: events are composed of conditions and actions.

Actions are launched when conditions are fulfilled.

This is a very user-friendly way of making games and is

still efficient for advanced usage, contrary to most other

“block”/ “dragonroot” systems. It allows prebuilt behaviors

to be added to objects. It is a very efficient way to add a

physics engine or make a platformer game. GDevelop

includes many behaviors, from the most advanced (Physics,

platformer, top-down movement) to simple behaviors (like

the behavior to destroy objects when outside the screen or the

one to drag objects with a mouse or touch). The programmer

still has Fulton rolls over his game as behaviors can be

modified using the events [10]. GDevelop doesn’t compile

the games - it just adds wrappers so each OS can run the

HTML5 game it creates. That means it runs much slower than

other engines that do compile games. While the engine is free

and open source as stated on the main website, it does not

mention that some optional features and services are

activated through a paid subscription (two tiers: 2 C and 7 C).

Those features are no nag screen shown when debugging,

additional metrics available on the games dashboard, access

to more than two cloud exports per day (unlimited local

export can be done without a subscription, provided the right

packaging tools are installed and configured), easy removal

of GDevelop splash screen (can be done manually without a

subscription). Since it has a fully GUI editor, the objects they

are allowed to add in their game are pretty generalized

(Physics Object, Tiled Sprite, Platformer Object, etc.). This

limits the freedom of a game developer while making a game,

as the object must follow the preset behaviors imposed on it.

This platform is easy to use as it comes with the necessary

documentation and tutorials that will ensure that you learn

how to use it rather quickly. The software owners of the

platform collaborate with their Q&A portal to ensure that

there are adequate tutorials and documents concerning the

use of the software, which everybody can access.

GDevelop’s features make it possible for users to embed

what they just need to use making it one of the most

user-friendly software.

V. GODOT

Godot is a cross-platform, free, and open-source game

engine released under the MIT license. It is designed to create

both 2D and 3D games targeting PC, mobile, and web

platforms. It is a program that allows the user to create games

or even applications that can be released on desktop and

mobile platforms. They can also make console games using

Godot; although, they need strong programming or to hire a

developer to port the game. Godot has its own built-in

scripting language, GDScript a high-level, dynamically typed

programming language that is syntactically like Python [11].

The Godot Game Engine is an open-source tool for

developing 2D and 3D games. Currently, Godot is the most

popular open-source game engine available and can export to

MacOS, Linux, Windows, Android, iOS, HTML, and web

assembly. Godot supports multiple programming languages

including Python, C#, C++ and GDScript (a Python-like

scripting language). Godot provides an interactive editor for

the design and creation of video game environments,

characters, animations, and menus, which enables fast

iteration for prototyping new ideas. Godot has all the features

of a modern game engine such as physics simulation, custom

animations, plugins, and physically based rendering.

Godot is a strong engine for 2D games, and it is completely

free. The only cost for the programmer is the time to develop

a game or app. Godot is in demand because there are no

royalty fees to pay in order to use it, compared to other

engines. Other users prefer Godot for its download size,

interface, and GD Script. It is very closely modeled on the

Python language. If the user is already familiar with Python,

they will find GDScript very familiar. If they are comfortable

with another dynamic language, such as JavaScript, they

should find it relatively easy to learn. Python is often

considered a good beginner programming language, and

GDScript shares that user-friendliness [12]. GDScript is a

dynamically typed language, meaning they do not need to

declare a variable’s type when creating it and it uses

whitespace (indentation) to denote code blocks. Overall, the

result of using GDScript for their game’s logic is that they

write less code, which means faster development and fewer

mistakes to fix.

However, Godot is known for being inferior in producing

3D games. The common failure when using Godot for 3D

comes from scaling, so the user might investigate scaling

while creating their game. It’s also open source and

development is only funded through Patreon or by generous

contributors, which means slower development than other

top titles like Unity [12]. The developers at Godot have been

focused on completing their documentation; unfortunately,

the documentation is somewhat directed to more experienced

developers. In comparison, Unity Engine has more solutions

outside of the documentation and they also have their special

guides geared towards beginners. Godot Engine has a simpler

GUI, which will be easier at first, but as the tasks became

more difficult this became more of a disadvantage and some

solutions were not found easily among the documentation. In

comparison, the Unity Engine has more menus and can seem

a lot to a beginner, but it becomes more helpful the harder the

tasks become. Even though most solutions cannot be found

among the documentation, there was enough information

from other sources to solve all problems with an easy search.

Godot has a much smaller community and less support than

other game engines, but their easy-to-use interface and ability

to create astounding 2D games will keep them in the

conversation for top game engines.

VI. PANDA3D

Panda3d is a gaming engine that was developed by

Disney’s VR studio in Python, C++, and C#. The engine

56

International Journal of Computer Theory and Engineering, Vol. 15, No. 1, February 2023

includes graphics, audio, I/O, collision detection, and other

abilities relevant to the creation of 3D games [13]. The

Panda3D game engine was initially a closed-source project of

Disney Interactive but was later opened to the community,

allowing anyone to use the engine or contribute code.

Development of Panda3D is now driven and coordinated in a

joint effort by Disney Interactive and the Entertainment

Technology Center of Carnegie Mellon University. Together,

they are adding new features, fixing bugs, and preparing new

releases of the engine. Panda benefits from having an

open-source local area for documentation, testing, and

advancement of new elements. Its exhibition qualities and

free accessibility as an open-source programming project

position Panda as a potential graphics engine standard for

simulation and game production. It currently uses a revised

Berkeley Software Distribution license [14]. This engine was

programmed to be flexible enough to support everything

from real-time graphics applications to the development of

high-end virtual reality theme park attractions or video games.

The acronym itself lists Panda’s primary features as

platform-agnostic, networked, and display architecture [15].

Panda being platform agnostic means that it can run on any

platform such as Windows, iOS, and Linux. Panda3D makes

extensive use of abstraction layers to facilitate portability.

The system represents services such as rendering (the process

of generating an image from a model), audio, peripheral

devices, graphical user interfaces, and scripting languages in

an abstract form so that it can use different platforms and

external software packages interchangeably. Panda currently

runs on a wide array of graphics cards for all versions of

Windows PCs, Linux PCs, and Silicon Graphics workstations

running Irix. The engine offers rendering support for DirectX,

OpenGL, and Pixar’s Renderman [15]. Panda was designed

to support a range of networked applications including

multiuser design scenarios, multiplayer games, and multiple

synchronized displays powered by multiple PCs. In addition,

developers can use Panda to deliver downloadable

experiences over the Internet. Designers thoroughly leverage

Panda’s networked features in the development of massively

multiplayer online games. In Toontown Online, for example,

Panda’s small memory footprint makes it possible to support

the online delivery of large content. In addition, the in-game

requirements for a massively multiplayer game include

built-in concepts of distributed objects, visibility, and

efficient network communications [15]. Panda can display a

scope of presentations from low-end PCs to very good quality

multi-screen vivid theater conditions. Arranging applications

that require various windows, regardless of whether they

require synchronization across equipment stages, is

moderately simple. The ability to specify the state of nodes

internal to the scene graph means that an object’s state

depends on an ordered accumulation of all the states in that

object’s ancestor nodes, up to the scene graph’s root. To

avoid having to aggregate this state in every rendering frame,

Panda includes an efficient caching mechanism. The system

initially determines an object’s properties by doing a full

traversal of the scene graph, caching the results, and storing

the collective results at each node. After doing this, the

engine only recomputes a node’s properties when an

intervening state changes. Panda supports several modes of

dynamically grading content to take advantage of different

hardware capabilities. The system implements several

visibility algorithms to eliminate unnecessary rendering,

including cell portal visibility.

VII. UNITY

Unity was created by a group of three developers: Nicholas

Francis, Joachim Ante, and David Helgason. The three were

responsible for “creating one of the most useful pieces of

software in video game history” [16]. Unity wanted to

support independent developers who could not afford

licensing fees and become the standard for 3D modeling in

video games [16]. A trend in Unity’s history is its willingness

to adapt to different technologies. Unity was first developed

for Mac but as popularity rose there is now a version for Mac

OS, Windows, and iPhone with each having strong developer

support. Currently, Unity is considered a top-tier

cross-platform game engine used to “develop 2D and 3D

video games, simulations for computers, virtual reality,

consoles, and mobile devices platform” [17]. As

aforementioned Unity was first developed for Mac OS, and

the developers of Unity, like Mac OS, tried to create an

interface that was simple and easy to use. Users of unity

cherish Unity for that reason. Unity can be broken up into

five main sub-windows: 1) Project Browser, Inspector, Game

View, Scene View, and Hierarchy [16]. The project browser

contains all assets that the user has imported into the engine

[16]; 2) The inspector lets the user fine-tune the objects that

the user placed [16]; 3) The game view renders exactly what

your game would look like at that moment with whatever

objects, backgrounds, or music was added [16]; 4) Scene

View allows users to place objects anywhere in your scene,

with supports like guiding lines for the user [16]; 5) Lastly,

the hierarchy shows all the objects the user placed in one

scene. A huge benefit of using Unity is that it was designed so

the file system feels like Mac’s ‘Finder’ or Windows’ file

explorer. Users flock to Unity because of its ease of use for

beginners [16]. An advantage that Unity has over every

engine is its asset pipeline and ease of use. When a user adds

an asset, he simply drags and drops it into the project file.

Unity will open the file you select and if it is not in the correct

file type will open the necessary program to convert the file

into FBX which Unity can use. Editing the asset

automatically updates all other assets [16]. Lastly, Unity

users have access to three main scripting languages Unity

Script, Boo, and C#. Unity Script is a JavaScript-like

scripting language that is great for beginners. If users use

Unity Script or they can expect to receive online support for

queries about Unity [16]. Some game developers believe that

Unity is the standard that all other game engines should be

reaching for. Unity is an iconic game engine but is not perfect.

A complaint that Unity has received is that no templates exist;

“any game or project needs to be implemented from scratch

to the detailed functions with GUI” [17]. From a graphics,

perspective Unity has performed slower than some of its

competitors. Lastly, from a programming perspective, users

complain about a poor coordinate projection system and little

support to connect with databases [17]. Unity should be the

first option for users who are first entering the game

development world. The founders of Unity created the

application with the goal of a smooth application that can be

57

International Journal of Computer Theory and Engineering, Vol. 15, No. 1, February 2023

accessed by independent developers, and they have achieved

that goal. Games produced by Unity include but are not

limited to Cuphead, Hearthstone, or Escape from Tarkov [16].

The flaws of the application are more pertinent to

experienced users who may be suited for other game engines.

VIII. UNREAL ENGINE

Created by Epic Games in 1998 for the first-person arena

shooter Unreal, the Unreal Engine has since grown into a

multi-purpose software development suite for hyperrealistic

3D rendering. While like Unity in terms of video game

development, Unreal Engine has given more support to

smaller creators in recent years. Epic Games announced in

2020 that game studios that have earned less than $1 million

in lifetime revenue do not have to pay 5% royalties for game

sales [18, 19]. Unity, by comparison, requires developers to

purchase a $1,800 yearly “pro license” if a company is

making more than $200,000 annually [18]. The source code

for the Unreal Engine is available on a private Github

repository that can be accessed once a user syncs their

GitHub account with their Epic Games account. The Unreal

Engine is primarily a three-dimensional game engine but is

technically able to create two-dimensional games as

mentioned in Table I.

One of the main drawbacks of the Unreal Engine is that it

is primarily programmed in C++. This can be intimidating for

newer developers. This causes some developers to prefer

Unity as it supports C# and Javascript as primary scripting

languages [20]. Although Unreal Engine uses C++ for some

of its lower-level functionality, it also supports a visual

scripting language called Blueprint. Blueprint is a simple

node-based scripting language that interfaces easily with

existing C++ code. It is possible to program entire gameplay

systems using only Blueprint with minimal performance loss.

The Unreal Engine also has multiplatform support allowing

for easy exporting of projects to both game consoles and

various operating systems such as Windows, Linux, and

MacOS. Support for both virtual and augmented reality

applications is also available.

Microsoft’s augmented reality headset called the Hololens

is another platform that the Unreal Engine has recently added

support for. With on-premises work and support roles

transitioning to remote positions, augmented reality headsets

are starting to fulfill a vital role in problem management and

support. One of these problem areas is population protection

and crisis management [21]. A recent article posted by

DAAAM international demonstrates the use of an app

created with the Unreal Engine running on the Hololens [21].

This app uses modified map data in the 3D software Blender

that has then been exported to the Unreal Engine [21]. A

top-down view of an area is visible on the Hololens. The user

can then interact with the map in real-time [21]. The user can

then highlight certain areas of interest such as hospitals,

police stations, the fire brigade, and permanent pressure

shelters for the civilian population [21]. The user can make

these selections by pressing virtual buttons with their real

hands. The Hololens uses multiple cameras to track both the

users’ position and hand movements. The use of Blueprint in

the Unreal Engine allows for this type of rapid prototyping

and is easy to export to the Hololens with Unreal Engine’s

built-in compilation tools.

Besides video game development, Unreal Engine is

starting to find uses in the film industry. Disney’s critically

acclaimed television series “The Mandalorian” heavily relied

on the Unreal Engine as part of their filming pipeline. In a

minidocumentary published by Industrial Lights & Magic on

YouTube, the Unreal Engine is shown being used to display

vast landscapes behind actors on a cylindrical stage [22]. This

use of the Unreal Engine over traditional Visual effects (VFX)

has three major advantages. 1) Background props can be

repositioned or replaced in real-time. Because the Unreal

Engine is essentially a video game engine, the director can

have technicians move any background prop, large or small,

to better fix the look and feel that the director desires for a

particular shot; 2) The Liquid Crystal Display (LCD) screens

project light onto the actors and props in a realistic manner. In

The Mandalorian, the main character wears very reflective

armor. If the actor was on a traditional greenscreen stage,

their armor would reflect the green background; 3) Decreased

cost. With a virtual set, almost any scene can be shot within

the cylindrical stage. You can transition from a virtual indoor

set with large vehicles and crates to an outdoor set with

mountain ranges with the click of a button. The only

additional changes necessary are the physical props that

accompany the actors on set. The director of The

Mandalorian, Jon Favreau, said that one major benefit of the

digital background was that it gave actors better direction in

what the area around them is supposed to look like. “For the

actors, it was great because you could walk on the set, and

even if it’s just for interactive light, you are walking into an

environment where you see what’s around you. Even though

[the Light Emitting Diode (LED)s walls] might not hold up to

the scrutiny if you’re starting right at it from close, you’re

still getting a peripheral vision. You know where the horizon

is, you feel the light on you. You’re also not setting up a lot of

lights. You’re getting a lot of your interactive light off those

LED walls. To me, this is a huge breakthrough” [23].

TABLE I: COMPARISON TABLE OF GAMING ENGINES

Engine

Name

Platforms

Supported

Language

Support

Pricing/

Royalties

Types of

Game

CryEngine Win, XBOX, PS,

Wii, and others

C++, VS,

Lua

Free/ 5% 3D,

Realism

Cocos2D-X Android, iOS,

Mac, Win

C++, JS,

Lua

Free/ No 2D, Mobile

GDevelop Android, iOS,

Win, Mac, Lin

C++, JS Free/ No 2D, Mobile,

PC

Godot Android, iOS,

Win, Mac, Lin

GDScript,

VS

Free/ No 2D/3D,

Mobile, PC

Panda3D Win, Mac, Lin C++,

Python

Free/ No 3D/ PC

Unity Win, Mac,

XBOX, PS, Lin

UnityScript,

Boo, C#

Starting

Free/

None

All

Unreal

Engine

PS, XBOX,

Nintendo, Win,

Mac, Lin,

Android, iOS

C++ Free/ 5% All

Abbreviations for Table: [Windows (Win), PlayStation (PS), Linux (Lin),

JavaScript (JS), VisualScript (VS)].

IX. CONCLUSION

As stated in the introduction, the purpose of our research

was to highlight features and point out flaws of various game

engines as shown in Table II. It is nearly impossible to choose

58

International Journal of Computer Theory and Engineering, Vol. 15, No. 1, February 2023

the “best” game engine because every engine was created for

a different purpose and each user would have to weigh the

advantages and disadvantages themselves. A prospective

game programmer would have to decide the type of game

they wanted to create, the programming language they want

to write in, and the platform they want to create a game for.

Still, we will select some game engines that we believe

provide the user with the best experience. We particularly

selected these eight engines as it is the most prominent and

still in use nowadays. There are other game engines which we

did not even hear the name of such as Game Make, J Monkey,

Ogre3D and many more. The game engines we listed above

are not so in use nowadays as better and more advanced game

engines were launched with more features and it was a

perfect fit for us to go deeper in our research.

When analyzing every game engine, two game engines

always seemed to finish on top. Both the Unreal Engine and

Unity are considered our two best choices for “best game

engine.” Unreal and Unity can export their games to any

gaming platform that is currently in the market. Users have an

easy experience because their UI and UX feel natural and

lead to an easy game-making progress. Documentation for

both programs is vast and they both receive strong

community support. Lastly, both technologies are top-class,

and still, the game licenses are completely free, and any user

can download them. There are paid subscriptions, but no

payment is mandatory until royalties activate after a certain

amount of revenue. Some other honorable mentions go to

Godot and CryEngine who have strong technology but are

lacking community support that could take the technology to

the next level.

If a user is looking to become a game developer, they

should not stray too far from Unreal and Unity. The level of

free access that users have used these two technologies is

admirable. A user could design for free and still own

complete rights to every piece of the game. Other options are

possible, but those two engines are the best.

TABLE II: STRENGTHS AND WEAKNESSES OF GAMING ENGINES

Engine

Name

Strengths Weaknesses

CryEngine Easy to learn and offering the full source

code, CryEngine is equipped with

quality-oriented audio transaction layers.

Does not have an online

support community for

developers.

Cocos2D-X A best-in-class platform that involves many

of mobile platforms, free and open-source

under the MIT license, includes different

kinds of extensions and tools, better

performance of the graphic output

Quality-oriented online support community.

No dedicated support

system for fixing any

kind of bugs that arise and

other different issues, It

does not include a better

coding structure.

Godot Works for 2D and 3D games, completely

free and open-source – even commercially,

Passionate community, Unique architecture

for game development.

Experienced game

developers may not like

GDScript, as not many

resources are available.

GDevelop Free and open-source tool, create games and

then export your game to Windows, Linux,

Mac, Facebook Instant Games, Android,

and even iOS.

Cannot do complex

games, incomplete

JavaScript integration.

Panda3D Panda3D has a

documentation

includes Python reference and C++

reference, it is open source and free to use

even commercially, and easy to start

The community is not as

large as some of the

popular game engine

communities out there.

Unity Free for beginners, Great for 2D games,

Strong

game support, VR and AR SDK

availability, and Asset Store with several

free assets.

Costly licenses for

professionals, Higher-end

tech demos require better

computers, and Many UI

changes.

Unreal

Engine

A top choice for VR, Visual blueprinting for

non-programmers, and a sizeable

marketplace with free assets.

Not the best for simple or

solo projects, High- end

graphics require more

powerful computers,

better for 3D than 2D

games.

CONFLICT OF INTEREST

The work was carried out without any conflict of interest.

AUTHOR CONTRIBUTIONS

Tauheed Khan Mohd has proposed the idea of performing

research on the Gaming Engine and collaborated with the

team. Landen Love surveyed the three Gaming Engines,

which are Godot, Unity, and Unreal Engine. Jason Nyadu has

analyzed Cocos2D-X, CryEngine, and Panda3D. Mansi

Gujadhur has analyzed the pros and cons of all the Gaming

Engines. Fernando Bravo-Garcia researched the

platforms-supported pricing, and language support by these

Gaming Engines.

REFERENCES

[1] L. Gilbert, “Assassin’s creed reminds us that history is human

experience: Students’ senses of empathy while playing a narrative

video game,” Theory & Research in Social Education, vol. 47, no. 1,

pp. 108-137, 2019.

[2] M. Daniel and G. Crawford, Video Games as Culture: Considering the

Role and Importance of Video Games in Contemporary Society, 2018,

Routledge.

[3] M. Mittring, “Findingnextgen: Cryengine2,” in ACMSIGGRAPH2007

Courses, 2007, pp. 97–121.

[4] M. Dealessandri. (2021). What is the best game engine: Is CryEngine

right for you. Saatavilla Osoitteesta: [Online]. Available: https://www.

gamesindustry.biz/articles/2020-01-16-what-is-the-bestgame-engine-i

s-cryengine-the-right-game-engine-for-you

[5] P. Mishra and U. Shrawankar, “Comparison between famous game

engines and eminent games,” International Journal of Interactive

Mul-timedia & Artificial Intelligence, vol. 4, no. 1,2016.

[6] R. Engelbert, Cocos2d-x by Example: Beginner’s Guide, Packt

Publishing Ltd., 2015.

[7] S. Shekar, Learning Cocos2d-x Game Development, Packt Publishing

Ltd., 2014.

[8] J. D. C. Correa, Digitopolis II: Creation of Video Games GDevelop,

2015.

[9] A. Chwastek. (2021). Platform Game “Twierdza” Created with

GDevelop. [Online]. Available:

https://ruj.uj.edu.pl/xmlui/handle/item/275239

[10] J. G. R. Souza and R. O. Prates, “Games by end-users: Analyzing

development environments,” in Proc. 2021 20th Brazilian Symposium

on Computer Games and Digital Entertainment (SBGames), 2021, pp.

69–78.

[11] C. Bradfield, Godot Engine Game Development Projects: Build Five

Cross-Platform 2D and 3D Games with Godot 3.0, Packt Publishing

Ltd., 2018.

[12] R. Flomén and M. Gustafsson. (2020). Game developer experience: A

cognitive task analysis with different game engines. [Online].

Available:

https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1437636

&dswid=4779

[13] C. Lang, Panda3D 1.7 Game Developer’s Cookbook, Packt Publishing

Ltd., 2011.

[14] D. B. Mathews, Panda3D 1.6 Game Engine Beginner’s Guide, Packt

Publishing Ltd., 2011.

[15] M. Goslin and M. Mine, “The panda3d graphics engine,” Computer,

vol. 37, no. 10, pp. 112–114, 2004.

[16] J. Haas, “A history of the unity game engine,” Ph.D. dissertation,

Worcester Polytechnic Institute, 2014.

[17] I. Buyuksalih, S. Bayburt, G. Buyuksalih, A. Baskaraca, H. Karim, and

A. A. Rahman, “3D modeling and visualization based on the unity

game engine–advantages and challenges,” in Proc. Annals of

Photogrammetry, Remote Sensing & Spatial Information Sciences, vol.

4, 2017.

[18] T. Wilde. (May 2020). Unreal engine games no longer owe royalties on

their first $1m in revenue. [Online]. Available:

https://www.pcgamer.com/unreal-engine-games-no-longer-owe-royalt

ies-on-their-first-dollar1m-in-revenue/

[19] A. Jungherr and B. S. Damien, “The extended reach of game engine

companies: How companies like epic games and Unity technologies

provide platforms for extended reality applications and the metaverse,”

Social Media+ Society, vol. 8, no. 2, 2022

59

International Journal of Computer Theory and Engineering, Vol. 15, No. 1, February 2023

[20] A. Šmíd, “Comparison of unity and unreal engine,” Czech Technical

University in Prague, pp. 41-61, 2017.

[21] M. Dzermansky, L. Snopek, K. Vichova, M. Ficek, and J. Rak, “Use of

augmented reality technology in population protection and crisis

management.,” in Proc. Annals of DAAAM, vol. 10, no. 2, pp. 408-414,

2021.

[22] The Virtual Production of the Mandalorian, Season One. (Feb. 2020).

[Online]. Available:

https://www.youtube.com/watch?v=aBVSnny3Bk4

[23] S. Axon. (Feb. 2020). The Mandalorian was shot on a

holodeck-esqueset with unreal engine, video shows. [Online].

Available:

https://arstechnica.com/gaming/2020/02/the-mandalorian-was-shot-on

-a-holodeck-esque-set-with-unreal-engine-video-shows/

Copyright © 2023 by the authors. This is an open-access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium provided the original work

is properly cited (CC BY 4.0).

Tauheed Khan Mohd received his B. Tech in

computer engineering from Jamia Millia Islamia, New

Delhi, India in 2006. He received his M.S degree from

the University of Toledo, Ohio in 2015, and finished

his Ph.D. in Human-Computer Interaction (HCI)

during the Summer of 2019 at The University of

Toledo. Previously, Tauheed worked for three years as

a software engineer in HCL Technologies, India

followed by four years at a French multinational

company, SOPRA. He worked onsite for three months

at AIRBUS in Toulouse, France, and managed their onboard application

called Network Server System (NSS). Tauheed worked as a research

assistant on an NSF Funded Project called INITIATE which enables High

School Students to get attracted towards STEM subjects. His areas of

research are human-computer interaction, multimodal input, autonomous

vehicles, and micro-controller devices including Arduino and raspberry Pi.

60

International Journal of Computer Theory and Engineering, Vol. 15, No. 1, February 2023

https://creativecommons.org/licenses/by/4.0/

	1330-CB2-005

