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Hospital Bed-Capacity and Emergency-Physician Risk
Management — Strategies to Design Pandemic Contingency
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Abstract—This article employs a discrete event simulator,
CLOURAM (Cloud Risk Assessor and Manager), so to estimate
risk indices in modern-day Cloud computing setting applicable
to Hospital Healthcare Service Networks. This innovative
approach has not been implemented earlier using a Cloud
framework for digital queuing simulation. The article also
innovatively examines emergency-physician management
strategy through MCQS (Multi-Channel Queuing Simulation)
and Hospital Scheduling. The macro-level goal is to assess and
manage risk with tangible mitigation targets and to improve the
operational quality of interconnected health care services for
crucial needs such as improving the critical bed-count and dire
physician-availability to meet growing demands towards
designing pandemic contingency plans. The proposed methods
are applied to five randomly selected States. The raw data
originated from the national repository of States’ hospital
networks. Such in-depth analyses not only assess the bed- and
physician-inadequacy risk, but also foster feasibility plans by
conducting cost and benefit analysis for future provisions of
infrastructural needs to improve networked-healthcare services
with cost-saving justifications. The results indicate that if
physician-scarcities> and bed-shortfalls’ admission and
discharge input data can be traced to the States’ healthcare
networks, the administrative and financial analysts can timely
benefit from proactive digital simulations. JIT (Just-in-time)
simulations would similarly help toward the States’ CON
(Certificate of Need) laws, which require the capital
expenditures’ approval by State health planning agencies to
avoid unnecessary duplications of healthcare investment against
wasteful practices.

Index Terms—Simulation software, hospitals national
repository, cost and benefit, physician- and bed-capacity,
emergency, risk

I. INTRODUCTION AND MOTIVATION

Cloud computing is one of the vital research topics of the
new century because it focuses on offering a variety of
computing services conveniently and prudently through the
internet, the largest of all online networks. A quantitative risk
assessment, such as per the QoS (Quality of Service) in such
enterprises, proves indispensable in modern trends. Cloud
computing’s QoS can be challenging to measure, not only
qualitatively, but most importantly, quantitatively. An index-
based Cloud-networked simulation is favorable to the
intractably lengthy calculations by the theoretical Markov
models, overly-limited in scope [1].

Manuscript received April 11, 2022; revised August 29, 2022; accepted
September 13, 2022.

Mehmet Sahinoglu is with Computer Science Dept., Troy University,
Troy, AL 36082, USA.

Ferhat Zengul is with Dept. of Health Admin. Health Care Management
Program, the University of Alabama at Birmingham (UAB), Birmingham,
AL 35294, USA.

*Correspondence: mesa@troy.edu

DOI: 10.7763/1JCTE.2023.V15.1327

Cloud computing will be implemented to healthcare
service networks to form a Cloud backbone in this research
article. For such purposes, a detailed Cloud-based math-
statistical queuing simulation modeling is presented. This
research study proposes an algorithmic, discrete-event
simulated cost and benefit analysis in the realm of queuing
principles to estimate hospitals healthcare service oriented
Cloud network’s bed-capacity indices by mimicking feasible
scenarios. It similarly plans to run a computationally
intensive discrete-event simulation software to queuing
patients for managing critical emergency-physician needs,
provided cost and benefit analyses. The article plans to
concurrently run an economic analysis to identify the cost of
operating the queuing system and then, develop a cost-
optimal decision for the count of physicians to employ on an
hourly operating cost basis to justify demand at times of
emergency [2]. Digital simulations allow policy-makers to
proactively prepare States’ CON laws for investment. Popular
illustrations of Cloud Computing in Fig. 1 allude to ref. [3]:

Fig. 1. lllustrative CLOUD (Hospital Healthcare Network) Computing.

The Cloud model’s central idea for on-demand (or in-
service) access to a shared pool of resources is to utilize the
JIT resources instead of depending on local servers to run
applications or provide data access. In the proposed
framework of hospitals, the healthcare industry modeled as a
Cloud network poses no exception to the wider sense of
Cloud computing. CLOURAM software, whereas, acts to
benefit for estimating the bed-inadequacy risks, and
mitigating those risks by providing cost and benefit analyses
on planning and deployment of future bed-capacity needs.
This article will help assess a critical risk that hospitals faced
all over the World and USA, resulting from insufficient
planning to abruptly rising bed- and physician-demands [4].
The problem addressed is of great importance considering the
dire need for optimizing hospitals' bed-capacities and
physician-count, especially during the COVID-19 pandemic
that culminated to its peak damage in mid-2020 prior to
invention of life-saver vaccinations such as BioNTECH [5].
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Il. METHODS, SURVEY, AND INPUT DATA MANAGEMENT

Motivations: A) To assess and manage risk of bed-
shortages by deploying bedding requirements justified by the
associated cost and benefit analysis to facilitate the States’
CON laws with CLOURAM per Appendix button #13. B) To
economize emergency-physician planning with MCQS and
Hospital Scheduling per Appendix buttons #25 and #27. For
both, Poisson arrivals and negative exponential service times
by M/M/k (Poisson/Negative Exponential/k #channels)
queuing on FCFS (First-Come-First-Served) are used [2].

A. Assessment and Management of Risk of Bed-Shortages
with Cost and Benefit

The task of quantifying the lack of service due to the bed-
shortages using the LOLP (Loss of Load or Loss of Service
Probability) in a defined hospital healthcare network gains
momentum. Authors positively affirm that there already exist
Cloud applications albeit on a commercial and big-data basis,
such as works like Sahoo et al. simulating healthcare
employing CloudSim simulator [6]. Cloud computing is not
a new concept in healthcare in an administrative sense, such
that the adoption of Cloud technology has been increasing at
an unexpected pace. As recent data shows, the global market
for the general frame of Cloud technologies in the healthcare
industry is expected to grow by ~$26 billion during 2020-
2024 [7]. The required input data for this study, whereas,
includes the AHA (American Hospital Association) annual
survey [8] and IHME (The Institute for Health Metrics and
Evaluation)’s COVID-19 projections for 2020 [9]. In-depth
probabilistic modeling of Cloud computing can be found in
[10]. Moreover, this article conducts a digital time-dependent,
time-clocked, discrete event simulation in the framework of
a Cloud. It compares available bed vs. patient demand in the
realm of hospital healthcare network’s patients’ queuing
algorithm based on admission and discharge mechanism in
the CLOURAM software. This article also serves to design
new strategies for optimal stockpiling medical supply (e.g.
beds) and allocation for vital personnel demand such as
physicians [11].

Summing lack of bed-capacity hours yields LOLE (Loss of
Load Expected), i.e. an expected number of hours of the Loss
of Load (Service). Load or service here implies bed-demand.
LOLP=LOLE/NHRS, where NHRS=8760h, and d=LOLE/f
indicates how long on the average, a loss of patient service
due to bed-inadequacy endures before a spare bed is found.
Frequency of deficiency is calculated by dividing the count
of deficiencies by 8760h. Eq. (1) summarizes all:

LOLE = f(Annual Frequency of Occurrences of Deficiencies)
x d(Average Hourly Duration of a Deficiency) (1)

From the provided data initially, the OCR (Occupancy Rate)
input is calculated in dividing the total inpatient days by the
product of bed-count and 365 days. The OCR is the ratio of
the number of beds occupied. The bed-demand is calculated
in multiplying the hospital’s installed bed-count by its OCR.
Bed-demand determines the patient-demanded number of
actual beds in hospitals. The data from hospital raw data
mainly includes the hospitals’ year, patients’ admission and
discharge, inpatient days and hospital bed-demand. Egs. (2)
to (12) serve to build the input parameters. The LOS
symbolizes a patient’s average length of stay in days.

Capacity Value: Number of installed beds or bed-counts per
group, e.g., 175 beds 2)

Groups: 1 o ...n types of hospitals. Number of such identical
groups, e.g., n=50 groups or 50 hospitals. 3)

Components: 1 to ...m: How many such hospitals of identical
bed-capacity, e.g. m=5; in the article, all m=1. 4)

Weibull Shape: p=1, i.e., Weibull pdf (probability density
function) with its unity shape parameter to imply Negative
Exponential (1) pdf to be used. 5)

Failure Rate: Hospitalization arrivals’ or patient’s admission
rates, e.g., 4=0.1/h (1 every 10h), A < u. (6)

Repair Rate: De-hospitalization, departure, or patient’s
discharge rate, e.g., ©=0.2/h (1 every 5h), u > A. (7

AHD (American Hospital Directory) survey includes
organizational, operational, financial, and market-level
information of U.S. hospitals, but what’s still missing was the
patients’ admission and discharge rates [12]. The discharge
rate (h) is calculated from the total count of inpatient days
divided by the product of LOS and 8760h. Once the results
are tabulated, bed-demand sum is calculated and used as the
constant load for the CLOURAM input parameter. The sum
of bed-counts are also verified by the software output in the
form of total installed capacity, e.g. in Fig. 2. Once the
calculations finalized, input templates for the CLOURAM are
extracted from those tabulations of AHD’s EXCEL files.
CLOURAM receives the input data as follows, recursively.
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Standard Deviation = 5330 .47
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Fig. 2. State of AL hospitals network CLOUD simulation output LOLE =~ 1184 h (LOLP=13.52%) for LOS=2 days with installed bed-capacity: 9647 and
constant load (due to OCR) of 4627 beds demanded, and Multiplier: 0.95 (load curbing ratio) leading to 4396 beds below the red central line in Fig. 3.
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Fig. 3. State of AL CLOUD simulation deficiency (below the central red line = 4396 beds) plot with a total of ~1184h of bed-inadequacy in a year.

Occupancy Rate: OCR (unitless) = Bed Demand/Bed-Count
= Inpatient days / (365 x bed-count) (8)

Bed Demand (# of beds needed) = OCR x Bed-Count =

Inpatient days / 365 days 9)
Patient Admission Rate (ht) = #Patient Admissions /8760h
(10)
Patient Discharge Rate (h) = Inpatient days / (LOS x 8760h),
where LOS = 2 (or 3) days upon choice (11)
LOS in days = Inpatient days / Total #Discharges (12)

The authors use Cloud computing discrete (not continuous)
event simulation to research hospital network bed-resourcing
by employing a queuing algorithm based on patients being
admitted and discharged. If the available reserve bed capacity
(Installed Bed Capacity—Bed Outages—Bed Demands) has
less than a zero margin, an undesirable deficiency or bed-
count shortage occurs. Sample data is no less than n=31
(prototype) and around n=50 (accepted norm) hospitals to
display a statistically robust behavior for a Normal pdf
approximation to the summed missing bed-count’s purely
Poisson pdf with g=1 (Fig. 3’s upper right corner) for AL State:
LOL (Loss of Load) ~ Normal (u = LOLE = 1184h, ¢ = 864h)
with 68% of time of the LOL lying within one standard
deviation of the LOLE, i.e. u = o: (320h, 2048h). The input
templates are finalized, and are loaded to the CLOURAM
using the Cloud button #13 in Appendix. The constant load is
the sum of the bed demands for the hospitals. Cloud-based
digital simulation software, CLOURAM, assesses the bed-
inadequacy index, which is LOLP (Loss of Load or Lack of
Service) risk by conducting 2100 years of simulation per
annum (8760h). The risk management is conducted cost-
optimally to mitigate LOLP index. Noteworthy details are:

i) Not all data sets for the States are available for the same
calendar year due to different project undertakings by
different project analysts. Years show differences per 2010,
2014 and 2018. Therefore, the performances of the States are
not being compared to one another in terms of healthcare
service efficacy owing to different years and sampling styles.

ii) LOS = 2 days was accepted as a norm through Table 1-
V since the higher LOS days are unrealistic and pessimistic.

iii) The cost examples in Table VI were avoiding loss (-)

12

but aiming for profit (+). Profit is not always possible.
However, the breakeven cost values were calculated for when
the income trend reversed from positive to negative, or else.
iv) The bed-capacity graphs are fully plotted when the
LOLP<0.15. The hospitals’ identities are hidden for privacy.
Varying simulation runs such as from n=100 to 200, or to
10,000 years whereas yielded slight differences converging
to the true estimate, but intensive computations lasted longer.
v) The States’ healthcare networks are assumed to be
within easy reach of one another rather than too far away to
enable the patients to be moved via medically equipped
helicopters (or ambulances in prime condition) at hospitals’
helipads ready to act to compensate for missing beds. The
urgently needy patients are transferred in case of emergency.
vi) The patients’ data refer to pre-COVID projected ahead.
1) States’ hospital cases and varying scenarios
This article will quantitatively study five randomly
selected States based on EXCEL-enabled hospital repository
data banks from AHD and more to observe how the input data
are processed to arrive at results where the five worst hospital
bed-shortages were in CT, MA, NJ, NY and RI [13]. Table VI
exhibits the calculated statistics of the networked-hospital
healthcare indices for the MI (Northern), TX (Southern), AZ
(South-Western), South-Eastern (AL) and Eastern (PA)
dispersed under watch “where hospitals in the U.S. are under
siege” [14]. Admission interarrival and discharge sojourn
times are simulated by Negative Exponential pdf (1) as a
special case of the Weibull pdf, i.e. Wei (8=1, a=11).
Footnote of Table VI should state: For the cost and benefit
analysis, a 1 million dollars ($1,000,000 or $1M) potential
benefit is assumed per 1% rise of bed-availability of the
hospital network regarding any State. For example, in the 3™
row of Table VI, i.e. Ml state, LOLP (COL.8) drops to
0.26604909 (Fig. 4) from 0.28553231 (Fig. 5) with %1.948
improvements, roughly equal to 1.948% x $1M ~ $1.948M
benefit, and 200 new beds cost, 200 x $7500 ~ $1.5M. The
overall profit is $1.948M — $1.5M =~ $448K in Table VI’s
ROW 3, COL.9 for MI under profit per Fig. 4 using Table II1.
For the exceeded optimal step in Fig. 4, if LOLP newly
drops to ~0.25684 from ~0.28553 with ~%2.869
improvements, Benefit ~ 2.869% x $1M =~ $2.869M. The
State of MI’s 300 new beds cost 300 x $7500 ~ $2.25M. The
final Profit = $2,689M — $2.25M = $619K is in Table VI,
ROW 3, COL.13.
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Fig. 4. State of MI hospitals CLOUD simulation bed-size (product) planning outcomes using input Table I11.
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Fig. 5. State of MI Hospitals Network CLOUD Simulation Output LOLE=2498h (LOLP=28.5%) for LOS=2 days with installed bed-capacity=9586 and
constant load (due to OCR) of 6292 beds demanded and Multiplier: 0.8 (load curbing ratio) of 6292 leading to 5034 beds below the central red line in Fig. 6.
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Fig. 6. State of MI CLOUD simulation deficiency (below the central red line =5034 beds) plot with a total of ~2498h of bed-inadequacy in a year.
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Fig. 7. State of AZ hospitals network CLOUD simulation output LOLE ~ 1796h (LOLP = 20.5%) for LOS=2 days with installed bed-capacity=7521 and
constant load (due to OCR) of 4776 beds demanded and Multiplier: 0.8 (load curbing ratio) of 4776 leading to 3821 beds below the central red line in Fig. 8.
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Fig. 8. State of AZ CLOUD computing simulation deficiency (below the central red line = 3821 beds) plot with a total ~1796h of bed-inadequacy in a year.
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Fig. 9. State of PA hospitals network CLOUD simulation output LOLE = 875h (LOLP ~ 9.99%) for LOS=2 days with installed bed-capacity=7718 and
constant load (due to OCR) of 5227 beds demanded and Multiplier: 0.8 (load curbing ratio) of 5227 yielding 4182 beds below the central red line in Fig. 10.
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Fig. 10. State of PA CLOUD computing simulation deficiency (below the redciri;e =4182 beds) plot with a total of ~875h of bed-inadequacy in a year.
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Fig. 11. State of TX hospitals network CLOUD simulation output LOLE ~ 2564h (LOLP ~ 29.3%) for LOS=2 days with installed bed-capacity=9763 and
constant load (due to OCR) of 6423 beds demanded and Multiplier: 0.8 (load curbing ratio) of 6423 yielding 5138 beds below the central red line in Fig. 12.
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Fig. 12. State of TX CLOUD simulation deficiency (below the central red line = 5138 beds) plot with a total 2564h of bed-inadequacy in a year.

2) Interpretative clarifications for the five different states:

standard algorithmic approach

In the following sections, one will observe pertinent
interpretations for the five different randomly selected States
as indicated by the columnar numerical input and output
entries of Table V1. The following list of input data and output
results follow the indicated sequence through Table 1-V:

a) Hospital Network Input: Tables I-V.

b) Cloud LOLP Index Output: Fig. 2, Figs. 5-8.

c) Bed-Count Time-Series: Figs. 3, 6, 8, 10, 12.

d) Analytical Bed-Count Planning: Figs. 4, 13-16.

e) Plotted Bed-Count Planning: Figs. 17-21.

Standard Algorithm: Given one of USA’s randomly
selected hospital networks in Table VI, as analyzed from
input Tables 1-V; follow the input steps in the indicated
manner for State per AHA, IHME and AHD [8, 9, 12].

i) The randomly selected microcosm of hospitals of a
hypothetical contiguous State (AL) covered 44 to 51 beds.

ii) The OCR multiplied by the individually installed beds
sum up to the total bed-demand per year.

iii) A computationally feasible X% of the bed-demand
yielding #Y beds, is taken as a constant load of demanded
beds to be serviced per year.

Follow the output steps in the following manner for any
hypothetical State of USA in Figs. 2-21.

i) Obtain the LOLP index for the risk assessment step (Figs.
2-12).

ii) Improve the LOLP index by deploying #Z new beds
while each new bed is assumed to cost $W (Fig. 4, Figs. 13—
16).

iii) The improved CLOURAM software risk (Fig. 4, Figs.
13-16) yielded LOLP ~ U % equivalent to LOLE = V hours.

iv) The improved CLOURAM software showed a profit of
~$P at a breakeven cost of ~$B implying that unless the
breakeven cost/bed exceeds ~$B, the Profit (+) prevails.

v) Figs. 13, 17; 14, 18; 4, 19; 15, 20; 16, 21 show
alternatives when #Q more beds instead of less. CLOURAM
yielded LOLP = U% with LOLE = V hours with ~$P profit if
$1M is gained per every 1% LOLP improved.

vi) Figs. 3, 8, 6, 10, 12 are the oscillatory plots of humber
of beds on hourly basis with the central red line indicating the
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cut-off level between the adequate and deficient bed-counts.
3) The state of Alabama hospitals network (Table VI,
Row 1; Table I, Cols. 1 to 7; Figs. 2, 3, 13, 17, 22, 23)

Follow the input steps in the following manner for the State
of AL as instructed in subsection I1-A.2’s standard algorithm:

i) The forty-four randomly selected hospitals for the State
of AL (Table VI, ROW 1, COL.2) covered 9,647 beds.

ii) The OCR (Table I, ROW 1, COL.3), multiplied by the
individually installed beds sum up to the actual number of
bed-demands, 4,627 beds (Table I, ROW 1, COL.4) per year.

iii) A computationally feasible 95% (below which
CLOURAM can feasibly yield solutions) of the bed-demand,
4,396 beds/h, is the curbed constant bed-demand (Fig. 2’s
input Multiplier = 0.95). Fig. 3 is the time-series of bed-
counts.

Follow the output steps in the following manner for the
State of AL as instructed in subsection 11-A.2’s algorithm:

i) When AL’s input template in Fig. 2 was utilized, the
CLOURAM software solution was LOLP =~ 13.55% with
LOLE = 1,184h (Table VI, ROW 1, COL.5) and o = 864h.

ii) The AL hospital network desires to improve by
deploying 700 new beds (Table VI, ROW 1, COL.6) while
each additional bed-cost is assumed to be $5,000 (Table VI,
ROW 1, COL.7).

iii) CLOUD software risk in Fig. 13 was LOLP = 9.66%
equivalent to LOLE ~ 852 hours (Table VI, ROW 1, COL.8).

iv) Fig. 13 software showed a profit of [(13.55-9.66) x
$1M] — [$5000 x (10,347-9,647)] = $397K (Table VI, ROW
1 COL.9) after 700+ beds at a breakeven cost of ~$5,566
(Table VI, ROW 1 COL.10) implying that unless the
paraphernal cost per bed exceeds ~$5,566, then the overall
profit prevails.

v) Figs. 13 and 17 show alternatives that when 800 more
beds (Table VI, ROW 1, COL.11) instead of 700 (Table VI,
COL.6), CLOURAM software yielded LOLP ~ 9.15% with
LOLE =~ 802 hours (Table I, ROW 1, COL.12) for $407K
profit (Table VI, ROW 1, COL.13) if $1M gain per every 1%
LOLP increase.

vi) Fig. 3 is the annual oscillatory plot of number of bed-
counts on an hourly basis with the central red line marking
the cut-off level between adequate and deficient bed supplies.
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Fig. 15. State of PA hospitals CLOUD simulation bed-count (product) planning outcomes from Table IV input data.
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Fig. 16. State of TX hospitals CLOUD simulation bed-count (product) planning outcomes from Table V input data.

4) Cloud queuing simulation of planning for hospitals’
networked-services deployed bed-capacity
It is timely to review a description of CLOURAM’s
architecture in terms of its computational building blocks [15].
What happens when the statewide or U.S.-wide hospital
networks administration managers plan to increase the bed-
capacity to avoid bottlenecks in the possible event of a real-
life emergency such as the notorious COVID-19 pandemic?
At what level should they stop adding and installing extra
beds to achieve an optimal ROI (Return on Investment) or one
with a feasible cost and benefit analysis [16]? The goal is to
optimize the quality of a hospital Cloud-based operation and,
therefore, what to do? Namely, at the risk management level
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‘Cost and Benefit Parameters - Crew Analysis

S0 as to economize the customer service quality by reserve
planning of the additional bed-capacity cost and benefit (and
the resultant Profit or Loss) will follow this step. Let’s follow
the algorithmic steps to the generic product- or bed-capacity
plan for the AL State in input Table | and Fig. 2 per Appendix:

Step 1: Normal Button: This is selected for risk assessment
step’s input data in Fig. 2 to observe LOLP ~ 13.52%.

Step 2: Product (Bed) Planning: This button is selected as
in Fig. 13 for the risk management step’s input data.

Step 3: # of Product Increments: This in default is given as
10, which indicates the number of product intervals required
to plot the extra bed deployment performance graph.
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Step 4: Product Multiplier: This in default is given as 1,
which indicates the default number of components (=100)
multiplied for the horizontal axis, such as 1x100=100 beds or
2x100=200 beds or 3x100=300 beds, or 10x100=1,000 beds
for extra bed units incremented in the CLOURAM For
example, change the product multiplier from 1 to 100 to get a
range of 100x100=10K, 200x100=20K,...,80K, 90K, 100K.

Step 5: %LOLP Reduced: This in Fig. 13 is 30% feasibly
given. For MlI, 10% (Fig. 4); for AZ, PA and TX, 20% (Figs.
14-16). This says, if the difference between the starting and
the next-optimized LOLP value is larger than e.g. ~30% of
the latter, the capacity value stops at LOLP not exceeding the
~30% of the LOLP (=13.55%) due to a new simulation run.

Step 6: Starting Product (#Beds) Value: 9647 is the
initially installed total bed-capacity in Fig. 13 and Fig. 17.

Step 7: Starting LOLP Value: ~13.55% is the LOLP value
for the initial total bed-capacity of 9647 in Fig. 13 and Fig.
17.

Step 8: Optimal Product (#Beds) Value: Stops the product
when 10,347 is the optimal capacity as in Fig. 13 and Fig. 17
give product (bed-count) plan which increases the beds in the
AL hospital network by 700 (= 10,347 — 9,647).

Step 9: Optimal LOLP Value: ~ 9.66% is optimal if at least
~30% of the initial ~13.55% is achieved in Fig. 13 and Fig.
17. ~$397K is profited in Table VI’s COL. 9 since
[(13.557477 —9.660959) % x $1M] — [700 x 5,566] =~ $397K

Step 10: Exceeded Optimal Products#: 10,447(= 9,647 +
800) beds is the total installed capacity at the end of the
reserve product planning, exceeding beyond the target if not
satisfied with the preceding optimal value.

Step 11: Exceeded Optimal LOLP Value: ~9.15% is the
LOLP index for the total bed-capacity of 10,447 for one more
attempt around and exceeding beyond the planning target.

Step 12: Cost in Fig. 13 given as $5,000 per bed in Table
VI, ROW 1, COL.7, which indicates the dollar amount of the
investment expense for one additional bed towards extra
production- or bed-capacity.

Step 13: Benefit is given as $1,000,000 per 1% increase for
bed-capacity efficiency per Table VI’s footnote defined in
I1.A.1 This value indicates the dollar gained to improve the
annual serviceability, i.e. as accrued by 1% decrease in the
Loss of Load Probability, LOLP. See Fig. 13 and Fig. 17.

Step 14: Here is a brief recap of the algorithm for adding
new beds for the State of AL:

Total Capacity Value (=9647) is the original installed bed-
capacity before incrementing more beds.

Profit or loss (= $397K) indicates whether there is a Profit
(+) or Loss (—) from the preceding steps 2 to 13.

Breakeven Cost (~$5566) indicates the calculated cost
amount for one bed above which the profit becomes a loss.
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Solution for AL exceeded optimality is as follows in Table
VI, ROW 1 for the CoLs. 11 to 13:

Benefit (B) = (ALOLP = 0.13557477-0.09150057) x 100%
x $1,000,000 = $4,407K gained. Cost(C) = (10447-9647) x
$5000 = 800 x $5,000 = $4M.

Therefore, Benefit(B) — Cost(C) =~ $407K roughly is the
hand-calculated and rounded-off profitas in Table VI, ROW1,
COL.13. So, Table VI, ROW 1, COL. 11 shows the increase
from an initial 9,647 beds to 10,447 with 800 more beds
added as the new bed-capacity. As a result of the new extra
bed-capacity, the Loss of Load Probability favorably drops to
LOLP = 9.15% from LOLP ~ 13.55% initially.

Step 15: Cost and benefit analysis initially showed a profit
of ~$397K in Fig. 13 with +700 beds for an optimal increase
of bed-count in Table VI, ROW 1, COL. 9. This comes with
a breakeven cost per each additive bed, as shown to be
roughly $5,566 instead of the initial input of $5,000. This
implies that if the break-even cost per each additional bed
~$5,566, not $5,000 as an arbitrary placeholder, the “Benefit
— Cost” difference (positive Profit or negative L0sS) outcome
would come to even out to the zero Loss or Profit (=$0).

A core summary of the hospital CLOURAM discrete event
simulation application boils down to the contents of the pair
of Figs. 13 and 17 (AZ: Figs. 14, 18; PA: Figs. 15, 20; MI.
Figs. 4, 19; TX: Figs. 16, 21) in the case of randomly sampled
AL hospitals where the central red threshold line reveals:
LOLE ~ 1,184h and frequency of loss =1,184 (unitless);
hence, yielding an average duration of loss = 1h by equation
(1) of I.A per Fig. 2. This is interpreted as the sum of hours
to recuperate due to bed-unavailability, or the sum of
deficiencies under the red threshold in the varying hourly
time-series per annum of 8760h. The standard deviation of
LOLE, ~864h, in Fig. 2 outcome will diminish owing to more
simulation runs from 100 years’ up to >1000s. EUPU
(Expected Unserved Production Units/year) =~ 5,206,353
beds/year, found at the right hand bottom corner of Fig. 2,
signifies the #bed-hours to be salvaged by the hospital, had
the annual average bed-capacity index been quasi—perfect to
patients’ demands with an ideal zero defect. If this implies
that the LOLP so drops down to 0% from 13.52%, and if the
hospital plans and premeditates $1M profit per 1% drop of
unavailability, the overall profit is $13.52M. The State-wide
hospital network can profit 13.52M / $5,000 (cost/bed) =
2,700 beds in the context of a static index. Dynamic index,
however, shows that $13.52M / 5,206,353 bed-h (by Fig. 2’s
EUPU) = $2.6 per bed-h should be profited by the hospital’s
daily services. This example for a dynamic index argument is
valid for other States” EUPU values in the coming sections.
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Fig. 17. State of AL hospitals’ CLOUD computing simulation for the bed-count planning’s full-plotted diagram using Fig. 7 with 700 and 800+ beds
respectively, justified by the cost and benefit analysis obtained from Table | input data.

o} 4 4 4 4 4 4 4 4 4
100 200 300 400 a00 BO0 Foo 200 900 ;DD
Starting Product value : 7521 (0 product capacity added)
Starting LOLP value : 0.2049
Optimal Product Walue © 7821 (200.0 product capacity added)
Optitnal LOLP Yalue : 01655 { To stop bhefore %20 .0 of 02049 5t 0.0394 decreased)
Exceeeded Optimal Product value : 7921 (400 product capacity added)
Exceeded Optimal LOLP Yalue . 01535 fatra921)

Fig. 18. State of AZ hospitals’ CLOUD computing simulation for the bed-count planning’s line-plotted diagram using Fig. 11 with 300+ and 400+ beds
respectively, justified by the cost and benefit analysis obtained from Table Il input data.
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Fig. 19. State of Ml hospitals’ CLOUD simulation for the bed-count planning’s line-plotted diagram using Fig. 15 with 200+ and 300+ beds respectively,
justified by the cost and benefit analysis obtained from Table I1I input data.
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Fig. 20. State of PA hospitals CLOUD computing simulation for the bed-capacity planning’s full-plotted diagram using Fig. 19 with 200+ and 300+ beds
respectively, justified by the cost and benefit analysis obtained from Table IV input data.
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Fig. 21. State of TX hospitals CLOUD simulation for the bed-capacity planning’s line-plotted diagram using Fig. 23 with 700+ and 800+ beds respectively,
justified by the cost and benefit analysis obtained from Table V input data.

5) Tables and figures for bed-capacity risk
Refer to Tables I-X and Figs. 2-23, in II1.A’s bed-capacity-
oriented input data and output computations.

B. Assessment and Management of Emergency Physician-
Scarcity Risk with Cost and Benefit

Section 11.-B. supported by Tables I-XXIII (except for
Table V1) and Fig. 24 [2, 22] which studied the bed-shortfalls,
is quite justifiably concerned with the provision of another
but equally decisive significant factor of a hospital healthcare
network. This is no other than the emergency physician-count
at epochs of epidemics as evidenced by recent events. Table
X1, fundamentally independent of Table VI, outlines input
data and output solutions for all five different States from a
lack of personnel (i.e. physicians) perspective. Table Xl is a
compact tabulation of all five States’ input data of descriptive
Cots. 1 to 3 followed by CoLs. 4 to 5, such as: Patient’s
Admission’s and Patient Discharge’s Poisson rates (A and p)
in turn, and negative exponential mean times referring to
MTTA (Mean Time to Admission) and MTTD (Mean Time to
Discharge). Table XI has the number of #Waiting out of the
daily patient or bed- demand and W (the average time a unit
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spends in the system) when k=1 or k=2 or k=3 physicians or
doctors are available as in the MCQS and Hospital Scheduling
software of Appendix referring to buttons #25 and 27.

The principal author’s MCQS is also software for financial
banking. It can be adapted to a hospital emergency-ward
setting. For an average e.g. AL clinic’s arrival: A (admission)
and service: u (discharge) rates, use Table I caption. For other
States’ averaged A and u rates, use captions of Tables I1-V.

The pursuant CoLs. 6, 7 and 8 that denote the number of
patients queuing (#Waiting) for any of the five States’ daily
#bed demands, also symbolized as the number of simulation
runs for each State in their respective MCQS outcomes. The
capitalized letter W (average system time) in MCQS-related
tables when multiplied by their respective admission rate (A)
will find the average #system units, i.e. L (Little’s Eq.) = Aw
in CoLs. 9, 10 and 11. This is evidenced by Tables VI1-X for
k=1, 2 or 3 physicians for the State of AL. This finally leads
to CoLs. 12, 13 and 14 to yield the general equation of TC:

TC (Total Cost) = Cwaiting*L + Cservice*k, k = #physicians (13)
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For an example, Cwaiting=%1,000 since the loss or premature
departure of an over-waiting patient can cause the hospital
emergency-ward a financial loss of roughly $1,000 with
health insurance-related plus co-pay expenses for an hour of
consultation. Cservice=40/h by any attending emergency
physician roughly brings his/her annual salary to $350,400
during an 8760h-long service period to 40$/h x 8760h=$350K
for k(#physicians) =1. Fig. 24 carries an important message
as such, evident from Table XI’s CoLs. 12, 13 and 14 because
after employing k (#channels) = 1 physician, the overall
hospital’s TC (total cost) of employing k=2 physicians drops,
and one more hire yielding k=3 again raises the hospital TC.
Fig. 24 out of scale clarifies graphically that TC reaches an
inflection point roughly at a certain channel evident from
Table XI to judge that k=2 is a cost-optimal count of
physicians to employ in an emergency setting with the
scenario input data here provided.

I11. CONCLUSIONS, COMPARISONS AND CONTRASTS WITH
OTHER WORKS

A. Conclusions

The objectives of this article’s computationally intensive
simulations are: a) To assess the bed-shortage-risk in
hospitals by providing a cost and benefit analysis; and b) To
assess the physician-inadequacy risk in the hospital
emergency wards during epidemics and thus, manage in the
most economic manner a much-needed cost-optimal
physician-count, a fact recently exposed to the entire world
after an unprecedented COVID-19 onslaught reaching 6.3M
deaths in June 2022 [5].

Appendix outlines how the reader can install the
CyberRiskSolver to run the CLOURAM and MCQS, and
Hospital Scheduling apps created by the principal author [1].
Tables I, VII-X, and Tables 11-V, XII-XXIII display the
individual five States’ outcomes tabulated by the input and
output columns of the pivotal summary rows and columns of
Tables VI and XI. This article, as Section II: METHODS,

SURVEY, AND INPUT DATA MANAGEMENT’S initiating
paragraph describes, proposes an application of a)
CLOURAM and b) MCQS, both discrete event simulators, in
the realm of hospital healthcare networks servicing an influx
of queuing patients. Both computationally intensive
simulation software use Poisson count of patient arrivals and
Weibull patient service times with their scale parameter =1,
thus yielding a Negative Exponential pdf.

The motivation of this article is that once the distinct State-
wide hospitals systems are treated as a centralized Cloud-
network of healthcare services within the structure of patients
being involved in a queuing episode, and once the patients are
admitted for seeking cure to their ailments and maladies; the
risk assessment and management of the lack of physicians
and bed-shortage at hospitals take over the severest priority.
Thus, how to improve or mitigate the unsatisfactory risk
follows suit, justified by their corresponding cost and benefit
analyses, which were covered and discussed throughout
sections 11-A.1 to 11-A.5, and Tables I-V, and Figs. 2, 3, 13,
17, 22-24. The primary goal of this article is to assess and
then, manage the bed-capacity and physician-scarcity risks
where cost and benefit parameters are introduced to discern
the extent of profit or loss in need-based State hospital
networks. Best practices dictate counter-measurable
precautions to mitigate the undesirable risk of bed- and
physician-inadequacy to facilitate useful CON laws [19, 20].

Therefore, equally significant What-If scenarios [15, 16]
previously reviewed in Section I1.A.4. are, i) How does one
profit more by Cloud computing in optimizing the bed-
capacity resources? ii) How does one save and profit from
Cloud computing by optimizing to manage the load cycle
while varying the load multiplier constant (<1) as practiced
in Figs. 2, 4, 5,7, 9, 11, 13-16. This novel research effort
makes a tangible contribution to healthcare service’s dual bed
and physician capacity planning initiatives, given the
financial and quality implications of COVID-19 pandemic on
hospitals with unimaginable levels of aggressive, albeit
professional competition in the healthcare industry [17].

TABLE I: STATE OF ALABAMA (AL) RANDOMLY SAMPLED HOSPITALS NETWORK INPUT DATA SPREADSHEET* EXPECTED ADMISSION RATE: 1.92/H, MEAN
TIME: 0.52H, EXPECTED DISCHARGE RATE: 5.23/H, MEAN TIME: 0.19H
AL STATE INPUT DATA SETS FOR BED- AND PHYSICIAN-COUNT RELATED ANALYTICAL OUTPUT
STATE OF ALABAMA (AL) FOR THE YEAR 2018

Total # Total #Bed A Discharge Rate Discharge
(()1':22; Hospital ggf:?gnccé) Demands Adm;fg:Jorql Rate | pourt Rate hour

Beds per year (LOS=2) (LOS=3)

1 252 0.50 126 1.263 2.629 1.753
2 83 0.36 30 0.399 0.617 0.411
3 270 0.60 161 0.163 3.348 2.232
4 129 0.09 12 0.877 0.245 0.163
5 231 0.39 91 0.877 1.889 1.259
6 595 0.35 209 2.904 4.364 2.909
7 204 0.51 104 0.607 2.174 1.449
8 156 0.02 3 0.054 0.069 0.046
9 145 0.55 80 0.769 1.673 1.115
10 46 0.09 4 0.094 0.091 0.061
11 264 0.43 113 0.890 2.359 1.573
12 235 0.65 152 1.265 3.169 2.113
13 327 0.80 262 2.162 5.454 3.636
14 99 0.28 28 0.457 0.577 0.385
15 47 0.23 11 0.189 0.224 0.150
16 141 0.75 106 0.914 2.206 1471
17 167 0.04 7 0.153 0.144 0.096
18 358 0.47 169 0.058 3.521 2.347
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19 185 0.07 12 0.200 0.252 0.168
20 28 0.15 4 0.064 0.085 0.056
21 90 0.58 52 0.511 1.082 0.721
22 879 0.77 678 4.857 14.118 9.412
23 183 0.67 123 1.127 2.572 1.715
24 259 0.25 65 0.810 1.363 0.909
25 49 0.07 4 0.123 0.076 0.050
26 669 0.60 402 3.132 8.374 5.583
27 349 0.57 197 1.691 4.113 2.742
28 209 0.78 163 1.034 3.397 2.265
29 149 0.91 136 0.762 2.839 1.892
30 176 0.80 141 1.150 2.944 1.963
31 389 0.60 233 2.123 4.860 3.240
32 270 0.75 203 1.473 4.232 2.821
33 184 0.08 15 0.317 0.311 0.207
34 207 0.35 73 0.965 1.527 1.018
35 515 0.41 210 1.634 4.365 2.910
36 89 0.24 21 0.235 0.448 0.298
37 218 0.13 28 0.466 0.574 0.382
38 163 0.30 48 0.822 1.003 0.669
39 178 0.43 77 0.742 1.598 1.065
40 115 0.14 16 0.171 0.331 0.220
41 54 0.12 6 0.185 0.133 0.089
42 187 0.17 32 0.319 0.662 0.441
43 33 0.30 10 0.128 0.205 0.137
44 71 0.11 8 0.232 0.170 0.113
9647 4627

TABLE Il: STATE OF ARIZONA (AZ) RANDOMLY SAMPLED HOSPITALS NETWORK INPUT DATA SPREADSHEET* EXPECTED ADMISSION RATE: 1.78/H, MEAN

AZ STATE INPUT DATA SETS FOR BED- AND PHYSICIAN-COUNT RELATED ANALYTICAL OUTPUT

TIME: 0.56H, EXPECTED DISCHARGE RATE: 4.55/H, MEAN TIME: 0.22H

STATE OF ARIZONA (AZ) FOR THE YEAR 2010

Order Total # Hospital Occupancy Tgt;:}iﬁgd Qg{:'ﬁzlﬁg Discharge Rate Discharge Rate
(1-50) Beds Rate(OCR) q hour? (LOS=2) hour? (LOS=3)
per year
1 48 0.48 23 0.142 0.487 0.325
2 22 0.42 9 0.078 0.193 0.129
3 583 0.69 404 4.109 8.468 5.645
4 51 0.58 30 0.048 0.622 0.415
5 500 0.75 377 3.715 7.908 5.272
6 59 0.60 35 0.558 0.744 0.496
7 23 0.35 8 0.096 0.167 0.111
8 111 0.56 62 0.712 1.302 0.868
9 224 0.87 196 2.058 4.104 2.736
10 15 0.53 8 0.030 0.166 0.110
11 60 0.72 43 0.133 0.907 0.605
12 144 0.39 56 0.599 1.184 0.789
13 16 0.38 6 0.072 0.127 0.085
14 19 0.74 14 0.222 0.295 0.197
15 139 0.59 82 0.916 1.714 1.143
16 172 0.56 97 0.840 2.029 1.353
17 25 0.27 7 0.068 0.142 0.095
18 16 0.44 7 0.028 0.149 0.099
19 72 0.37 27 0.384 0.557 0.371
20 25 0.46 11 0.037 0.239 0.159
21 180 0.55 99 0.938 2.081 1.387
22 65 0.56 36 0.216 0.761 0.057
23 70 0.24 17 0.188 0.357 0.238
24 74 0.72 53 0.157 1.116 0.744
25 345 0.62 213 1.430 4.459 2.973
26 20 0.33 7 0.132 0.137 0.091
27 338 0.73 247 0.013 5.181 3.454
28 80 0.75 60 0.248 1.252 0.834
29 85 0.75 63 0.263 1.330 0.887
30 266 0.72 193 1.919 4.039 2.693
31 100 0.63 63 0.830 1.323 0.882
32 24 0.32 8 0.064 0.160 0.107
33 225 0.64 144 1.084 3.020 2.013
34 301 0.59 178 0.409 3.741 2.494
35 134 0.53 71 0.874 1.485 0.990
36 15 0.06 1 0.013 0.020 0.013
37 59 0.40 23 0.319 0.489 0.326
38 8 0.33 3 0.053 0.055 0.036
39 21 0.26 5 0.048 0.114 0.076
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40 496 0.67 331 2.930 6.943 4.628
41 110 0.58 64 0.696 1.340 0.893
42 54 0.50 27 0.100 0.568 0.379
43 373 0.63 234 2.314 4.901 3.267
44 449 0.58 262 2.380 5.488 3.659
45 422 0.79 331 2.620 6.948 4.632
46 236 0.72 170 0.601 3.557 2.371
47 19 0.28 5 0.064 0.113 0.076
48 25 0.43 11 0.162 0.223 0.149
49 333 0.53 176 1.999 3.684 2.456
50 270 0.66 178 2.111 3.724 2.482
7521 4776

TABLE I1: STATE OF MICHIGAN (MI) RANDOMLY SAMPLED HOSPITALS NETWORK INPUT DATA SPREADSHEET* EXPECTED ADMISSION RATE: 2.45/H,
MEAN TIME: 0.41H, EXPECTED DISCHARGE RATE: 6.02/H, MEAN TIME: 0.17H
MI STATE INPUT DATA SETS FOR BED-AND PHYSICIAN-COUNT RELATED ANALYTICAL OUTPUT
STATE OF MICHIGAN (MI) FOR THE YEAR 2010

Order Total # Hospital Occupancy gg:ﬁlazgsd Admission1 Rate Dischlarge Rate g;ihﬁggi-l
(1-51) Beds Rate (OCR) per year hour hour™ (LOS=2) (LOS=3)
1 44 0.60 27 0.041 0.553 0.368
2 25 0.28 7 0.089 0.144 0.096
3 80 0.55 44 0.101 0.917 0.611
4 391 0.75 291 2.712 6.072 4.048
5 387 0.64 248 2.312 5.171 3.447
6 989 0.69 683 6.343 14.226 9.484
7 141 0.64 91 0.355 1.886 1.257
8 530 0.72 383 3.586 7.971 5.314
9 65 0.55 36 0.493 0.740 0.493
10 49 0.35 17 0.220 0.357 0.238
11 560 0.75 421 3.700 8.770 5.847
12 620 0.73 452 3.832 9.425 6.283
13 20 0.14 3 0.041 0.057 0.038
14 208 0.71 147 1.193 3.062 2.041
15 96 0.79 75 0.221 1572 1.048
16 84 0.61 51 0.404 1.069 0.712
17 96 0.89 85 0.018 1.779 1.186
18 74 0.75 56 0.134 1.162 0.775
19 119 0.42 50 0.478 1.040 0.694
20 68 0.35 24 0.251 0.497 0.332
21 24 0.31 7 0.101 0.154 0.102
22 24 0.20 5 0.071 0.099 0.066
23 37 0.31 12 0.175 0.242 0.161
24 348 0.18 63 0.239 1.322 0.881
25 221 0.73 161 0.058 3.362 2.242
26 188 0.60 113 0.500 2.352 1.568
27 335 0.78 260 2.487 5.413 3.609
28 220 0.54 118 0.947 2.468 1.645
29 157 0.53 83 0.873 1.721 1.147
30 80 0.40 32 0.304 0.662 0.441
31 49 0.30 15 0.207 0.310 0.206
32 38 0.26 10 0.100 0.203 0.136
33 203 0.54 110 1.057 2.300 1.533
34 25 0.38 10 0.104 0.199 0.132
35 65 0.80 52 0.082 1.086 0.724
36 62 0.31 19 0.226 0.400 0.267
37 268 0.68 181 1419 3.773 2.515
38 306 0.67 206 1.929 4.285 2.856
39 39 0.36 14 0.193 0.296 0.197
40 25 0.17 4 0.060 0.086 0.058
41 25 0.31 8 0.107 0.161 0.107
42 78 0.56 44 0.472 0.909 0.606
43 407 0.82 332 2.603 6.918 4.612
44 73 0.61 44 0.064 0.921 0.614
45 214 0.54 116 1.158 2421 1.614
46 77 0.67 51 0.330 1.071 0.714
47 244 0.69 169 1.458 3.529 2.353
48 319 0.82 261 0.351 5.434 3.623
49 394 0.77 303 3.183 6.305 4.203
50 355 0.79 280 2.364 5.830 3.887
51 40 0.47 19 0.120 0.388 0.259
9586 6292
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TABLE IV: STATE OF PENNSYLVANIA (PA) RANDOMLY SAMPLED HOSPITALS NETWORK INPUT DATA SPREADSHEET* EXPECTED ADMISSION RATE: 0.97/H,
MEAN TIME: 1.03H, EXPECTED DISCHARGE RATE: 3.91/H, MEAN TIME: 0.26H
PA STATE INPUT DATA SET FOR BED- AND PHYSICIAN-COUNT RELATED ANALYTICAL OUTPUT
STATE OF PENNSYLVANIA (PA) FOR THE YEAR 2010

Order Jgst;iltil Occupancy TS;?YI,:,?:: Admissioanate Dischlarge Rate Dischlarge Rate
(1-49) Beds Rate (OCR) per year hour hour™ (LOS=2) hour™ (LOS=3)
1 158 0.71 112 0.96 2.32 1.55
2 80 0.75 60 0.20 1.25 0.83
3 109 0.86 94 0.65 1.95 1.30
4 448 1.07 480 1.00 10.01 6.67
5 68 0.44 30 0.19 0.63 0.42
6 36 0.47 17 0.12 0.35 0.24
7 40 0.42 17 0.11 0.35 0.23
8 146 0.95 138 0.54 2.88 1.92
9 32 0.48 15 0.09 0.32 0.21
10 73 0.47 34 0.11 0.71 0.47
11 150 0.64 96 0.84 2.00 1.34
12 152 0.69 106 0.51 2.20 147
13 165 0.47 78 0.66 1.63 1.08
14 96 0.48 46 0.42 0.96 0.64
15 25 0.57 14 0.16 0.30 0.20
16 42 0.74 31 0.03 0.65 0.43
17 254 0.62 158 131 3.30 2.20
18 95 0.50 47 0.31 0.99 0.66
19 145 0.44 63 0.48 1.32 0.88
20 76 0.60 45 0.49 0.94 0.63
21 141 0.64 91 0.77 1.89 1.26
22 25 0.52 13 0.13 0.27 0.18
23 150 0.51 76 0.56 1.59 1.06
24 44 0.61 27 0.08 0.55 0.37
25 59 0.93 55 0.29 1.14 0.76
26 276 0.65 179 1.57 3.73 248
27 20 0.24 5 0.04 0.10 0.07
28 254 0.55 140 1.17 291 1.94
29 130 0.61 80 0.75 1.66 111
30 164 0.71 116 0.98 242 1.61
31 496 0.60 299 2.12 6.24 4.16
32 96 0.79 76 0.13 1.58 1.06
33 58 0.58 33 0.10 0.70 0.46
34 374 0.59 222 0.51 4.62 3.08
35 312 0.72 224 2.33 4.67 3.11
36 312 0.72 224 2.33 4.67 3.11
37 312 0.72 224 2.33 4.67 3.11
38 234 0.54 126 1.23 2.62 1.75
39 95 0.56 53 0.24 111 0.74
40 224 0.71 158 154 3.30 2.20
41 209 0.50 104 1.15 217 1.45
42 30 0.34 10 0.10 0.21 0.14
43 335 0.88 296 0.04 6.17 411
44 250 0.75 188 0.03 3.92 2.61
45 278 0.78 216 0.01 4.50 3.00
46 59 0.57 34 0.38 0.71 0.47
47 224 0.61 136 1.36 2.83 1.89
48 65 0.81 53 0.16 1.10 0.73
49 102 0.85 86 0.11 1.80 1.20
7718 5227
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TABLE V: STATE OF TEXAS (TX) RANDOMLY SAMPLED HOSPITALS NETWORK INPUT DATA SPREADSHEET* EXPECTED ADMISSION RATE: 2.13/H, MEAN
TIME: 0.47H, EXPECTED DISCHARGE RATE: 7.81/H, MEAN TIME: 0.13H
TX STATE INPUT DATA SET FOR BED- AND PHYSICIAN-COUNT RELATED ANALYTICAL OUTPUT
STATE OF TEXAS (TX) FOR THE YEAR 2014

Total # Occupancy Total #Bed Al Discharge Discharge Rate
Order (1-49) Hospital Beds Rate Demands Rate hour-: Rate hour hour*
(OCR) per year (LOS=2) (LOS=3)
1 65 0.48 31 0.424 0.652 0.435
2 381 0.08 31 0.086 0.651 0.434
3 25 0.53 13 0.079 0.274 0.183
4 34 0.73 25 0.101 0.516 0.344
5 30 0.07 2 0.011 0.045 0.030
6 209 0.63 131 1.018 2.731 1.821
7 40 0.40 16 0.155 0.335 0.223
8 53 0.39 21 0.210 0.435 0.290
9 875 0.75 655 1.321 13.645 9.096
10 241 0.62 149 1.147 3.108 2.072
11 167 0.53 88 0.961 1.833 1.222
12 553 0.64 353 2.615 7.357 4.905
13 16 0.73 12 0.048 0.243 0.162
14 24 0.87 21 0.014 0.437 0.291
15 25 0.31 8 0.121 0.164 0.109
16 237 0.65 155 1.620 3.232 2.154
17 15 0.34 5 0.077 0.107 0.071
18 923 0.69 641 4.280 13.345 8.897
19 679 0.65 444 3.760 9.257 6.171
20 562 0.63 357 2.905 7.433 4.956
21 766 0.79 606 3.746 12.618 8.412
22 422 0.73 310 2.174 6.452 4.302
23 718 0.77 551 3.697 11.481 7.654
24 62 0.85 53 0.071 1.096 0.731
25 66 0.95 63 0.204 1.310 0.874
26 381 0.90 345 0.106 7.183 4.789
27 70 0.68 48 0.514 0.996 0.664
28 85 0.38 32 0.448 0.669 0.446
29 78 0.38 30 0.228 0.624 0.416
30 121 0.37 45 0.553 0.938 0.625
31 142 0.61 87 1.021 1.816 1.211
32 148 0.21 31 0.407 0.649 0.432
33 86 0.53 46 0.531 0.952 0.635
34 101 0.61 62 0.570 1.293 0.862
35 44 0.38 17 0.220 0.351 0.234
36 58 0.86 50 0.303 1.045 0.697
37 92 0.72 66 0.498 1.380 0.920
38 314 0.85 266 0.290 5.550 3.700
39 55 0.61 34 0.194 0.698 0.466
40 35 0.41 14 0.055 0.299 0.200
41 80 0.54 43 0.229 0.897 0.598
42 58 0.86 50 0.303 1.045 0.697
43 92 0.72 66 0.498 1.380 0.920
44 55 0.61 34 0.194 0.698 0.466
45 11 0.25 3 0.040 0.058 0.038
46 35 0.41 14 0.055 0.299 0.200
47 266 0.61 162 1.359 3.367 2.245
48 44 0.31 14 0.068 0.287 0.192
49 124 1.00 124 0.525 2.575 1.717
9763 6423

TABLE VI: INPUT DATA AND OUTPUT SOLUTIONS FOR AL, AZ, MI, PA, AND TX ON BED-CAPACITY MANAGEMENT (APPENDIX BUTTON #13)

1 2 3 4 5 6 7 8 9 10 11 12 13
NETWORKED #GROUPS= DAILY CURBED LOLP #BEDS+ $COST LOLP PROFIT(+) BREAKEVEN #BEDS+ LOLP PROFIT(+)
HOSPITALS #HOSPITALS #BED #BED (unitless) ADDED Per BED unitless or LOSS(-) BED $COST ADDED unitless or LOSS(-)
IN STATES (#BEDS) DEMAND DEMAND (LOLE hour) for for (LOLE for COL.6 for COL.6 for (LOLE hour) forCOL.11
for COL.2 (curb%) for COL.2 COL.5 COL.6 hour) for COL.5 for COL.11
for COL.3 COL.6
AL* 44 (9647) 4627 4396 0.1355 700 $5,000 0.0966 $397K $5,566 800 0.0915 $407K
(95%) | (1184h) (852 h) (802 h)
AZ* 50 (7521) 4774 3821 0.205 300 $7,500 0.165 $1674K $13,079 400 0.154 $2089K
(80%) | (1796 h) (1445 h) (1346 h)
MI* 51 (9586) 6292 5034 0.286 200 $7,500 0.266 $448K $9,742 300 0.257 $619K
(80%) | (2498 h) (2330 h) (2251 h)
PA 49 (7718) 5227 4182 0.0999 200 $7,500 0.0821 $259K $8,795 300 0.0741 $310K
(80%) | (875h) (719 h) (649 h)
X 49 (9763) 6423 5138 0.293 700 $7,500 0.238 $249K $7,855 800 0.230 $292K
(80%) | (2564 h) (2085 h) (2018 h)

(*Indicates those States in Table VI with CON programs in place from Fig. 22; in collecting States’ data, PA and TX were not known to be non-CON States)
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Service Time Probability Distr. Parameter{s):

Waiting Cost per time period for each unit Cwin $: |1000 Trials

Service Cost per time period for each channel Csin $: |40

Help

CRETE EVENT SIMULATION OF AL HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL COST, TC(k=1) = $612

4627
Channels : |1

Display Results(first and last #): |10
Simulate

Patient Service Distribution Parameters : Inpatient Ward Settings Simulation
Patient Arrival Distribution Parameters L
Weibull [ 052 L= Weibull v 019 s i TR 15 Enter Ne.OF Doctors | 1
Beta Beta
1 1 Generate 02702 Enter No. Of Patients 4627
Wards InternalMedAL
Generate ‘0‘3630 Clear All
Outpatient/Inpatient Simulation
Patient | Inter-Arrival Time | Arrival Time | Service Start Time | Wait Time | Senvice Time | Completion Time | Time in System | Doctor 1 Available |
1 0.019231 0.019231 0.019231 0.0 0.555649 0.57488 0.555649 0.57488
2 0.194976 0.214207 0.57488 0.360673 0.542645 1.117525 0.903318 1.117525
3 0.069441 0.283648 1.117525 0.833877 0.035724 1.153249 0.869601 1.153249
4 0.181551 0.465199 1.153249 0.68805 0.591286 1.744535 1.279336 1.744535
5 0.072713 0.537912 1.744535 1.206623 0.055571 1.800106 1.262194 1.800106
6 0.829338 1.36725 1.800106 0.432856 0262666 2062772 0695522 2062772
7 0.43854 1.80579 2.062772 0.256982 0.176402 2239174 0.433384 2239174
2 0.214273 2.020063 2239174 0.219111 0.106715 2345889 0.325826 2345889
9 1.210829 3.230892 3.230892 0.0 0.006391 3.237283 0.006391 3.237283
10 0.540606 3771498 3771498 0.0 0684654 4456152 0684654 4 456152
4617 0.10811 2393.827618 2394.209102 0.351484 5.62E-4 2394 209664 0.382046 2394209664
4618 0.362318 2394.129936 2394209664 0.019728 0.099241 2394.308905 0.118969 2394.308905
4619 0.528474 2395.01841 2395.01841 0.0 0.008594 2385.027004 0.008594 2395.027004
4620 0.455571 2395473981 2395.473981 0.0 0.404853 2305.878834 0.404853 2395.878834
4621 0.501087 2395975068 2395.975068 0.0 0.352157 2396.327225 0.352157 2396.327225
4622 0.239282 2396.21435 2396.327225 0.112875 0.38641 2396.713635 0.499285 2396.713635
4623 0.209457 2396.423807 2396713635 0289828 0.024481 2386.738116 0.3143089 2396738116
4624 0.23996 2396.663767 2396.738116 0.074349 0.005517 2396743633 0.079866 2396.743633
4625 0.071283 2396.73505 2396.743633 0.008583 0.077624 2396.821257 0.086207 2396.821257
4626 0.102041 2396.837001 2396.837091 0.0 0.45969 2397.296781 0.45969 2397.296781
4627 0.142985 2396.980076 2397 296781 0.316705 0.131491 2387 428272 04453196 2397 428272
Summary Statistics
Number Waiting 1702
Probability of Waiting 0.367841
Average Wait Time 0109124
Maximum Wait Time 231048
Average Utilization of Channel  0.364839
Number Waiting = 1 min 51
Probability of Waiting = 1 min.  0.011022
Average System Time 0.298109
Total Cost per time period $612.36928

The following outcome with 10,000 runs is almost
identical to a preceeding Table IV with 4627 trials, since
simulation results will end up roughly the same as long as

#runs > ~500, since results vary from #runs to more unless

TABLE VIII:

| Multi Cha

Arrival Time Probability Distr. Parameter({s):

|Exponenl\al |V‘
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Aoz ]

nfm

Service Time Probability Distr. Parameter(s):

Waiting Cost per time period for each unit Cwin $: 1000
Service Cost per time period for each channel Cs in $: |40

100M times causing subtle changes, i.e. Prob. of Waiting:
0.3669 (for 4627 runs) =0.3678 (for 10K runs) when #runs
increased 20-fold, i.e. a comparatively negligible increase.

DISCRETE EVENT SIMULATION OF AL HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL COST: TC(k=1) = $619

Trials : {10000
Channels: |1

Display Results(first and last &) : |10

Customer Inter-Arrival Time Arrival Time Senvice Start Time Wait Time Senvice Time Completion Time Time in System Channel 1 Available

1 0.05452 0.05452 0.05452 0.0 0321278 0.375798 0.321278 0.375798
2 0.6617 0.71622 0.71622 0.0 0.160941 0.877161 0.160941 0.877181
3 1.399372 2115592 2115592 0.0 0.325306 2.440898 0.325306 2.440898
4 0.055448 217104 2.440898 0.269858 0.109932 2.55083 037979 2.55083
5 0.139745 2.310785 2.55083 0.240045 0.081642 2.632472 0.321687 2.632472
6 1.716394 4.027179 4027179 0.0 0.132857 4160036 0.132857 4.160036
7 0.350242 4377421 4377421 0.0 0.030434 4407855 0.030434 4407855
2 0.424951 4802372 4.802372 0.0 0.110842 4.913214 0.110842 4.913214
9 0.056956 4859328 4.913214 0.053886 0.210843 5.124057 0.264729 5.124057
10 0.329229 5.188557 5.188557 0.0 0.106927 5.295484 0.106927 5.205484
9990 0.237048 5267.376168 5267753565 0.377387 0.13944 5267.892995 0.516827 5267.892995
9991 0.684147 5268.060315 5268.060315 0.0 0.044563 5268.104878 0.044563 5268.104878
9992 0.326961 5268.387276 5268387276 0.0 0.158218 5262.545491 0.158215 5268.545491
9993 0.20794 5288.595216 5268.595216 0.0 0.234299 5268.829515 0.234299 5268.829515
9994 0.349621 5268.944837 5268.944837 0.0 0.050722 5268.995559 0.050722 5268.995559
9995 0.447194 5269.392031 5269.392031 0.0 0.013319 5269.40535 0.013319 5269.40535
9996 0.038399 5269.43043 5269.43043 0.0 0.165062 5269.595492 0.165062 5269.585492
9997 0.293774 5269.724204 5260724204 0.0 0.018182 5269.742387 0.012183 5269.742387
9998 1.1478 5270.872004 5270.872004 0.0 0.155531 5271.027535 0.155531 5271.027535
9999 0.798729 5271.670733 5271.670733 0.0 0.096727 5271.76746 0.096727 5271.76746
10000 1.210472 5272.881205 5272.881205 0.0 0.146293 5273.027493 0.146293 5273.027498

Summary Statistics

MNumber Waiting 3669

Probability of Waiting 0.3669

Average Wait Time 0.109964

Maximum Wait Time 2233751

Average Utilization of Channel  0.363608

Number Waiting = 1 min. 143

Probability of Waiting = 1 min.  0.0143

Average System Time 0301708

[Total Cost per time period $619.27936
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TABLE IX: DISCRETE EVENT SIMULATION OF AL HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL COST: TC(k=2) =~ $456

[E3]

Arrival Time Probability Distr. Parameter(s): service Time Probability Distr. Parameter(s): Waiting Cost per time period for each unit Cw in $: [1000 Trials : [4627
‘Expmlenlla\ |v| ‘Exponenlla\ |v| Service Cost per time period for each channel Cs in $: |40 Channels : [2
a: [z a: 523 Display Results{first and last #): |10
Patient Service Distribution Parameters : Inpatient Ward Settings Simulation
Patient Arrival Distribution Parameters P
v > | Alpha = [o19 | Alpha No. Of Wards s | —
| weibull v 0.52 P | Weibull v 0.19 P! 15 Enter No. Of Doctors | 2
Beta Beta lozroz | —
: L Generate 0.2702 Enter No. Of Patients 4627
P InternalMedAL

Simulate Clear
Generate 0.3630 Clear All

Outpatient/Inpatient Simul

Patient | Inter-Arrival Time | Arrival Time | seniice Start Time | Wait Time | senice Time | Completion Time | Time in System | Doctor 1 Available | Doctor 2 Available |
1 0.725848 0.725848 0.725848 0.0 0.19234 0.918188 0.19234 0.818188 0.0

2 0.050447 0.776205 0776295 0.0 0.120387 0.806682 0.120287 0.0181288 0.806682

3 0.055281 0.831578 0.896682 0.065106 0.014329 0.911011 0.079435 0.918188 0.911011

4 0.465647 1.297223 1.297223 0.0 0.212161 1509384 0.2121681 1.509384 0.911011

5 0.282723 1.679945 1.679946 0.0 0.053157 1.733103 0.053157 1733103 0.911011

6 0.209958 1.889904 1.889904 0.0 0.176051 2.085955 0.176051 2.065955 0.911011

7 1.379161 3.269065 3.269065 0.0 0.289154 3558219 0.289154 3.558219 0.911011

3 0.196981 3.466046 3.466046 0.0 0.133887 3.599933 0.133887 3.558219 3.599933

9 0.193489 3.659535 3.659535 0.0 0.199787 3.859322 0.199787 3.859322 3.599933

10 0.051605 371114 371114 0.0 0.13695 3.84200 0.13695 3.850322 3.84200
4617 0.141483 2400.402183 2400.402183 0.0 0.194159 2400.596342 0.194159 2400.596342 2400.163472
4618 0.390891 2400.793074 2400.793074 0.0 0.032441 2400.825515 0.032441 2400.825515 2400.163472
4619 1.502057 2402.207031 2402.297031 0.0 0.187827 2402.484858 0.187827 2402 484858 2400.163472
4620 1179644 2403.476675 2403.476675 0.0 0.198078 2403674753 0.198078 2403.674753 2400.163472
4621 0.858172 2404.434847 2404.434847 0.0 0.084141 2404512088 0.084141 2404.513988 2400.163472
4622 0.230639 2404.665486 2404.665486 0.0 0.075389 2404.740885 0.075399 2404.740885 2400.163472
4523 1.456163 2406.121649 2406.121649 0.0 0.257273 2406.378922 0.257273 2406.378922 2400.163472
4624 0.740052 2406.861701 2406.861701 0.0 0.077202 2406.938902 0.077202 2406.938903 2400.163472
4625 1180274 2408.041975 2408.041975 0.0 0.225854 2408 267829 0.225854 2408.267829 2400.163472
4626 1.246505 2409.28848 2409.28848 0.0 0.214315 2409.502795 0.214315 2409.502795 2400.163472
4827 0.428167 2409.716647 2409.716647 0.0 0.033392 2409.750039 0.033392 2409.750039 2400.163472

Summary Statistics

MNumber Waiting 247

Probability of Waiting 0.053382
Average Wait Time 0.005749
Maximum Wait Time 0735143

Average Utilization of Channels 0.18258
MNumber Waiting = 1 min. o
Probability of Waiting = 1 min. 0.0
Average System Time 0.19569
Total Cost per time period $4557248

TABLE X: DISCRETE EVENT SIMULATION OF AL HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL COST: TC(k=3) = $491

[£) Multi Channel Simulatien — >
Arrival Time Probability Distr. Parameter(s): Service Time Probability Distr. Parameter(s): Waiting Cost per time period for each unit Cw in $: [1000 Trials : [4627
[Exponential [~]  [Exponential |+ | Service Cost per time period for each channel Cs in $: [40 Channels: [2
Az [192 A: [5.23 Display and last #): [10 |
e e D e e e Patient Service Distribution Parameters : Inpatient Ward Settings Simulation
| Weibull =] [osz2 Alpha | Weibull v 0.19 Alpha No.Of wards 15 e |
L Bet L seta Generate Enter No. Of Patients | 4627
Wards InternalMedAl]
Simulate Clear
Generate 0.3630 Clear All
OQutpatient/Inpatient Simulation
Patient | Inter-Arrival Time | Arrival Time | Service Start Time | Wait Time | Senvice Time | Completion Time | Time in System | Doctor 1 Available | Doctor 2 Available | Doctor 3 Available |
1 1.425888 1.425888 1.425888 0.0 0.091375 1517263 0.091375 1517263 0.0 0.0
2 0.36943 1.795318 1.795318 0o 0.317342 211266 0.317342 211266 0.0 00
3 0.024712 1.82003 1.82003 0.0 0.04707 1.8671 0.04707 211266 1.8671 0.0
4 0.093507 1.913537 1.913537 0.0 0.026006 1.939543 0.025006 211266 1.939543 0.0
5 0.697556 2611093 2611093 0o 0.21053 2821623 0.21053 2821623 1.939543 0.0
6 0.195147 2.80624 280624 0.0 0.101968 2908208 0.101968 2821623 2908208 0.0
7 0.642189 3.448429 3.448429 0.0 0.02494 3473369 0.02494 3473369 2.908208 0.0
8 1.610394 5.058823 5.058823 0.0 0.083954 5142777 0.083954 5142777 2908208 0.0
9 0.95652 6.0152343 6.015343 0.0 0.325979 6.341322 0.325979 6.341322 2.908208 0.0
10 0339957 6.3553 6.3553 0.0 0.03962 6.39492 0.03962 6.39492 2908208 0.0
4617 0.097082 2364.943523 2364943523 0.0 0.145796 2365089319 0.145796 2365.262272 2365.089319 2333.629758
4618 0.655779 2365.599302 2365.599302 0.0 0125147 2365.725449 0125147 23B5.725449 2365.089319 2333.629758
4619 0.291013 2365990315 2365990315 0o 0.059072 2366.049387 0.0593072 2366.049387 2365.089319 2333629758
4620 1.331093 2367.321408 2367.321408 0.0 0285872 2367.60728 0285872 2367.60728 2365.089319 2333.629758
4521 0.220949 2367.542357 2367542357 0.0 0.210105 2367.852462 0.310105 2387.60728 2367.852462 2333.629758
4622 0.892097 2368 434454 2368 434454 00 0.064444 2368.498898 0.064444 2368.498898 2367.852462 2333.629758
4623 0.671853 2369.106307 2369.106307 0.0 0.186433 2369.29274 0.186433 2369.29274 2367.852462 2333.629758
4624 2620092 2371.726399 2371726389 0.0 0.334702 2372061101 0.334702 2372061101 2367852482 2333.629758
4625 0.270086 2371.996485 2371996485 0.0 0.020166 2372.016651 0.020166 2372.061101 2372.016651 2333.629758
4626 0221503 2372217988 2372217988 0.0 0.02456 2372242548 0.02456 2372242548 2372.016651 2333.629758
4827 1.012887 2373230875 2373230875 0.0 0.076803 2373.307678 0.076803 2373.307678 2372.016651 2333.629758
Summary Statistics
Number Waiting 45
Probability of Waiting 0.009726
Average Wait Time 0.001493
Maximum Wait Time 0379182
Average Utilization of Channels 0.124985
Number Waiting = 1 min o
Probability of Waiting = 1 min. 0.0
Average System Time 0193129
Total Cost per time period £490 80763
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TABLE XI: INPUT DATA AND OUTPUT SOLUTIONS FOR AL, AZ, MI, PA AND TX ON DOCTORS-CAPACITY MANAGEMENT (APPENDIX BUTTON #25)
AL Tables I, VII-X; 2AZ Tables 11, X11-X1V; 3MI Tables 111, XV-XVII; “PA Tables IV, XVIII-XX; 5TX Tables V, XXI-XX11I

1 2 3 4 5 6 7 8 9 10 11 12 | 13 | 14
NETWORKED #GROUPS DAILY#BED | Admissions | Discharge | #Waiting(W) | #Waiting(W) | #Waiting (W) L=AW L=AW L=AW TC=Cieiing X L + Coanicex k
STATES (#HOSPITALS) DEMAND AMTTA) | u(MTTD) #Doctors (1) #Dodtors (2) #Dodtors (3) #Doctors(1) | #Doctors(2) | #Doctors(3) | #Doctors(1) | # Doctors(2) | # Doctors (3)
TAL* 44 (9647) 4627 1.92/h 5.23/h 1702 247 45 0.57216 0.3744 0.37056 T$612.37 1$455.73 T$490.81
(0.52h) | (0.19h) (0.298) (0.195) (0.193)
2pZ* 50 (7521) 4776 1.78/h 4.55/h 2509 445 25 0.66750 0.41118 0.40228 1$707.36 1849192 1$523.00
(056h) | (0.22h) | (0.375) (0.231) (0.226)
SMI* 51 (9586) 6292 2.45/h 6.02/h 2540 460 54 0.66885 0.42385 0.41405 1$708.09 18504.76 1$534.62
(0.41h) | (017h) | (0.273) (0.173) (0.169)
‘PA 49 (7718) 5227 97/h 3.91/h 1300 137 9 0.32689 0.24541 0.23862 1$367.48 1$325.23 1$359.05
(1.03h) | (0.26h) (0.337) (0.253) (0.246)
TX 49 (9763) 6423 2.13/h 7.81/h 1696 229 18 0.36636 0.28329 0.27477 1$406.70 1$361.79 1$359.05
(047h) | (0.13h) | (0.172) (0.133) (0.129)

(MTTA: Admission Mean Time = 2~*; MTTD: Discharge Mean Time = u~*; L = Avg system units, W, = Avg waiting time, W = Avg system time, Cy =
$1,000, Cs = $40)

TABLE XII: DISCRETE EVENT SIMULATION OF AZ HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL CosT: TC(k=1) = $707

Patient Arrival Distribution Parameters Patient Service Distribution Parameters : Inpatient Ward Settings Simulation
| weibun = 056 s | weibun Bl 022 RinEs B B 1s T |
T | Beta 1 Bem Generate [ozses | Enter No.Of Patients | 4776 |
e InternalMedAZ
—_—
Generate 0.4918 Clear All
Outpatient/Inpatient Si
Patient | Inter-arrival Time | Arrival Time | senvice start Time | wait Time | service Time | Completion Time | Time in System | Doctor 1 Availanie |
1 0.394855 0.394855 0.394855 0.0 0.2133 0.608155 0.2133 0.608155
2 0.001168 0.396023 0.608155 0.212132 0.059972 0.668127 0272104 0.668127
3 0.03746 0.433483 0.668127 0234644 0.204045 0.872172 0.438689 0.872172
4 0.066544 0.500027 0.872172 0.372145 0.161005 1.033177 0.53315 1.033177
5 0.154918 0.654945 1.033177 0.375232 0.581879 1.615056 0.960111 1.615056
3] 0.00861 0.663555 1.615056 0.951501 0.14918 1764236 1100881 1.764236
7 0190174 0.853729 1764236 0.910507 0.201181 1.965417 1.111688 1.965417
8 0.640279 1.494008 1.965417 0.471409 0.490257 2.455674 0.961666 2.455674
9 0.711549 2205557 2455674 0.250117 0.069219 2524893 0.319336 2524803
10 0.112588 2318145 2524893 0.206748 0.016274 2541167 0.223022 2541167
65282 0323913 3480639271 3480.639271 0.0 0.083889 3480.72316 0.083889 348072316
6283 1.102764 3481.742035 3481.742035 0o 0.015869 3481.757904 0.015869 3481.757904
6284 0.755861 3482.4978096 3482.497896 0.0 0.038666 3482536562 0.038666 3482536562
6285 1.013357 3483.511253 3483.511253 0o 0.112052 3483.623305 0112052 3483.623305
6286 0.110581 3483621834 3483.623305 0.001471 0.033688 3483.656993 0.035159 3483656993
6287 0.207566 34828204 3483.8294 0o 0.195628 3484.025028 0.195628 3484025028
6288 1.486322 3485.315722 3485.315722 0.0 0.036438 3485.35216 0.036438 3485.35216
6289 0.139521 3485.455543 3485 455543 0o 0.479973 3485.935516 0.479973 3485.935516
5290 1.001559 34B86.457102 3486.457102 0.0 0.085036 3486.542138 0.085036 3486542138
6291 0.200464 3486.657566 3486.657566 0o 0.156947 3486.814513 0.156947 3486.814513
5292 0.734565 3487392131 3487.392131 0.0 0.200458 3487.592589 0.200458 3487.502589

Summary Statistics

Mumber Waiting 2509
Probability of Waiting 0.39876
Average Wait Time 0.148909
Maximum Wait Time 2342348
Average Ulilization of Channel 0407829
Number Waiting = 1 min 189
Probability of Waiting = 1 min.  0.030038
Average System Time 0374923

Total Cost pertime period $707.26294

TABLE XIII: DISCRETE EVENT SIMULATION OF AZ HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL COST: TC(K=2)= $492

Patient Service Distribution Parameters : Inpatient ‘Ward Settings Simulation
Patient Arrival Distribution Parameters =
| weibull v 056 Alpha | weibull v 0.22 Alpha No. Of Wards 15 I T
Beta Beta 2 e
: L Generate 02868 Enter No. Of Patients | 4776
Wards InternalMedaz

([ simdate | [ Clear
Generate 0.4918 Clear All

Outpatient/Inpatient Simulation

Patient | Inter-Arrival Time | Arrival Time | Service Start Time | Wait Time | Service Time | Completion Time | Time in System | Doctor 1 Available | Doctor 2 Available
1 0.667219 0.667219 0.667219 0.0 0.007008 0.674227 0.007008 0.674227 0.0

2 0.372689 1.039908 1.039908 0.0 0.47935 1519258 0.47935 1.519258 0.0

3 0.453088 1.492096 1.492096 0.0 0.213578 1708574 0.213578 1.519258 1.706574

4 1.508628 3.001624 3.001624 0.0 0.072462 3.074086 0.072462 3.074086 1.706574

5 0.124452 3126076 3126076 0.0 0.308918 3.434994 0.208918 3.434994 1.706574

& 0.244569 3370645 3370645 0.0 0.040568 3411213 0.040568 3.434994 3411213

7 1.175073 4545718 4545718 0.0 0.044823 4590541 0.044823 4580541 3411213

8 1.49476 6.040478 6.040478 0.0 1.9E-5 6.040497 1.9E-5 6.040497 3411213

a 1.686585 7727063 7727063 0.0 0.092452 7.819515 0.092452 7.819515 3411213

10 0.070286 7.797349 7.797349 0.0 0.353864 8.151213 0.353864 7.819515 8.151213
G282 1.868131 3526.890136 3526.890136 0.0 0.090601 3526.980737 0.090601 3526.980737 3525.182729
6283 0.427383 3527.317519 3527.317519 0.0 0.170237 3527 487756 0.170237 3527 487756 3525.182729
6284 0.354565 3527 672084 3527 672084 0.0 0.252351 3527924435 0.252351 3527924435 3525182729
6285 0.413176 3528.08526 3528.08526 0.0 0.08883 3528.17409 0.08882 3528.17409 3525.182729
6286 0.758833 3528.844003 3528.844093 0.0 0.096619 3528.940712 0.096619 3528.940712 3525.182729
6287 0.453171 3520 297264 3520 297264 0.0 0.299512 3529 596776 0.299512 3529 596776 3525182729
G288 0.839722 3530136986 3530136986 0.0 0.067924 3530.20491 0.067924 3530.20481 3525182729
6289 1.661197 3531.798183 3531.798183 0.0 0511108 3532.309291 0.511108 3532.309291 3525.182729
6290 0.475424 3532.273607 3532.273607 0.0 1.052569 3533.326176 1.0525860 3532.200291 3533.326176
6291 0.18205 3532 465657 3532 465657 0.0 0.143684 3532 609341 0.143684 3532609341 3533326176
6292 0.868059 3533.333716 3533.333716 0.0 0.014472 3533.348188 0.014472 3533.348188 3533.326176
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Summary Statistics

Number Wal

iting

Probability of Waiting
Average Wait Time

Maximum Wait Time
Average Utilization of Channels 0.196781

Number Wal

iting = 1 min

Probability of Waiting = 1 min
Average System Time
Total Cost pertime period

445

0.070725
0.010238
0726218

a

0.0
0231416
$491.92048

TABLE XIV: DISCRETE EVENT SIMULATION OF AZ HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL COST: TC(k=3) = $523

Patient Arrival Distribution Parameters Patient Service Distribution Parameters : Inpatient ‘Ward Settings Simulation
[weibun  |v] 036 Alpha [wetbun | 7] dlpha No. Of Wards 15 Emter No.Of Doctore. |3
L seta 1 Beta Generate Enter No. Of Patients | 4776
Wards InternalMedAZ
Simulate Clear
Generate 0.3630 Clear All
Outpatient/Inpatient Simulation
Patient | Inter-Arrival Time | Arrival Time | Service Start Time | Wait Time | Service Time | Completion Time | Time in Systern | Doctor 1 lable | Doctor 2 lable | Doctor 3 lable |

1 0.338419 0.338419 0.338419 0.0 0.073831 0.41225 0.073831 0.41225 0.0 0.0
2 0.246582 0.585001 0.585001 0.0 0.300587 0.885588 0.300587 0.885588 0.0 0.0
3 0.518952 1.203953 1.203953 0.0 0101616 1.205569 0.101616 1.205569 0.0 0.0
4 1.15809 2362043 2362043 0.0 0.013826 2375869 0.013826 2375869 0.0 0.0
5 0.008505 2370548 2370548 0.0 0.112861 2483409 0.112861 2375869 2483400 0.0
6 0.084326 2454874 2454874 0.0 0.068863 2523737 0.068863 2523737 2.483409 0.0
7 0.030812 2485686 2485886 0.0 0.156881 2 642587 0.156881 2623737 2642567 0.0
8 0.175808 2661494 2661494 0.0 0.090476 275197 0.090476 275197 2 642567 0.0
9 0197437 2858031 2858921 0.0 0.580063 3.438004 0.580063 3.438004 2642567 0.0
10 0.035805 2894736 2894736 0.0 0.086813 2981549 0.086813 3.438994 2981549 0.0
4766 0.021854 2691.041475 2601.041475 0.0 0182518 2691.223003 0.182518 2691.348789 2601.225232 2691.223003
4767 0.642005 2691.68348 269168348 0.0 0.216322 2691.899802 0.216322 2691.899802 2691.225232 2691.223993
4768 1100643 2692.784123 2692784123 0.0 0.086341 2692 870464 0.086341 2692 870464 2691225232 2691.223993
4769 0.502346 2693.286469 2693286469 0.0 0.316728 2693.603197 0.316728 2693.603197 2691225232 2691.223003
4770 0.424665 2693711134 2693711134 0.0 0.665016 2694.37615 0.665016 2694.37615 2691225232 2691.223993
4771 0.678779 2694.380013 2604.380913 0.0 0.243901 2694.633814 0.243901 2694.633814 2691225232 2691.223003
4772 0.616049 2695.005962 2695.005962 0.0 0.197055 2695.203017 0.197055 2695.203017 2691225232 2691.223993
4773 0.677605 2695.683567 2695683567 0.0 0.811379 2696.494946 0.811379 2696.494946 2691225232 2691.223003
4774 0.039631 2695.723198 2695723198 0.0 0.35466 2696.077858 0.35466 2696.494946 2696.077858 2691.223993
4775 0137013 2695.860211 2605860211 0.0 0210824 2696.071035 0.210824 2696.494046 2696.077858 2696.071035
4776 0.342707 2696.202918 2696.202918 0.0 0.333418 2696.536336 0.333418 2696.494946 2696.536336 2696.071035

Summary Statistics

Mumber Waiting 25

Probability of Waiting 0.005235

Average Wait Time 97E-4

Maximum Wait Time 0.379194

Average Utilization of Channels 0.133465

Mumber Waiting = 1 min. 0

Probability of Waiting = 1 min. 0.0

Average System Time 0.226445

Total Cost pertime period $523.07388

TABLE XV: DISCRETE EVENT SIMULATION OF MI HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(k=1) = $708

Patient Arrival Distribution Parameters Patient Service Distribution Parameters : Inpatient ‘Ward Settings Simulation
| weibull - 041 i | Gamma - 017 iz U T 15 e e s B
1 seta L Bets Generate 0.2842 Enter No. Of Patients 6292
Wards InternalMedM1
Simulate Clear
Generate 0.4074 Clear All
Outpatient/Inp

Patient | Inter-Arrival Time | Arrival Time | Service Start Time | Wait Time: | Senvice Time | Completion Time | Time in Systemn | Doctor 1 Available
1 0.253613 0.253613 0.253613 0.0 0171802 0.425416 0171803 0.425416
2 0.266942 0.520555 0.520555 0.0 0.173067 0.693622 0173067 0693622
3 0.140249 0.660804 0.693622 0.032818 0.0466 0.740222 0.079418 0740222
4 1.018271 1.679075 1.679075 0.0 0.013742 1.692817 0013742 1.692817
5 1.337372 3.016447 3.016447 0.0 0.090879 3.107326 0.090879 3.107326
6 0.800163 3.81661 3.81661 0.0 0.391855 4.208465 0.291855 4208465
7 0.269711 4086321 4 208465 0122144 0.404323 4612788 0526467 4612788
] 1.036682 5.123003 5.123003 0.0 0.320122 5.443135 0.320132 5.443135
a 0172177 5.20518 5.443135 0.147955 0.2103 5.653435 0.358255 5653435
10 0.630054 5.925234 5.925234 0.0 0.035024 5.960258 0.035024 5.960258
6282 0.901529 2586.120885 2586.120885 0.0 0.36122 2586.542115 0.26123 2586.542115
6283 0.277368 2586 458253 2586 542115 0.083862 0.284157 2586 826272 0.368019 2586 826272
6284 0.243558 2586.701811 2586.826272 0.124461 0.181078 2587.00725 0.205539 2587.00735
6285 0.252175 2586 953986 2587 00735 0.053364 0.490777 2587 498127 0544141 2587 498127
6286 0.427279 2587.381265 2587.498127 0.116862 0.087527 2587 585654 0.204389 2587.585654
6287 0.306933 2587 638198 2587 638198 0.0 0.29776 2587 9385958 0.29776 2587 985958
6288 0.035336 2587 723534 2587 985958 0262424 031192 2588 297878 0574344 2588 297878
6289 0.458648 2588.182182 2588 297878 0.115696 0.029911 2588.327789 0.145607 2588.327789
6290 0.133168 2588 31535 2588 327789 0.012439 0.080707 2588 4084896 0.093146 2588 408496
6291 0.3738124 25886934384 2588693434 0.0 0.290028 2588923523 0.290039 2588.983523
6292 0.310426 2589.00391 2589.00391 0.0 0.10521 2589.10912 0.10521 2589.10912

Summary Statistics

MNumber Waiting 2540

Probability of Waiting 0.403687

Average Wait Time 0107124

Waximum Wait Time 1.971807

Average Utilization of Channel 0.40249

MNumber Waiting = 1 min 50

Probability of Waiting = 1 min.  0.007947

Average System Time 0272691

Total Cost per time period $708.09295
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TABLE XVI: DISCRETE EVENT SIMULATION OF MI HOSPITALS” COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(K=2) = $505

Patient Arrival Distribution Parameters Patient Service Distribution Parameters : Inpatient ‘Ward Settings Simulation
| weibull =] [oa1 Alpha [ Gamma I 0.17 Alpha No. Of Wards 15 e NN
[T |Beta [t | Bem Generate ozeaz | Enter No.Of Patients | 5292 |
Wards InternalMedMI
Simulate Clear
Generate 0.4074 Clear All
Outpatient/Inpatient Simulation

Patient | Inter-Arrival Time | Arrival Time | Service Start Time | Wait Time | Service Time | Completion Time | Time in System | Doctor 1 Available | Doctor 2 Available |
1 '0.202531 0202531 0202531 0.0 0011915 0214446 0011915 0.214446 00
2 1.213169 1.4157 1.4157 0.0 0.015413 1431113 0.015413 1431113 0.0
3 0.05898 1.47468 1.47468 0.0 0.327648 1.802328 0.327648 1.802328 0.0
4 0797193 2271873 2271873 0.0 0.036724 2308597 0.036724 2308597 0.0
5 0.32011 25081883 2501983 0.0 0.080871 2672854 0.080871 2672854 0.0
6 0.024493 2616476 2616476 0.0 0.334762 2951238 0.334762 2 672854 2951238
7 0.132391 2748867 2743867 0.0 0.003365 2752232 0.003365 2752232 2951238
8 0.031209 2780076 2780076 0o 0.235201 3.015277 0.235201 3.015277 2951238
9 0.584108 3.364184 3.364184 0.0 0173239 3637423 0.173239 3.537423 2951238
10 1.215042 4579226 4579226 0o 0.028259 4 607485 0.028259 4.607485 2951238
6252 1257364 2550264634 2550 264634 0.0 0172789 2550437423 0172789 2550.437423 2558250626
6283 0.032055 2559.296689 2559 296689 0.0 0.230447 2559 527136 0.230447 2550.437423 2559527136
6284 1.279771 256057646 2560 57646 0.0 0.054862 2560631322 0.054862 2560.631322 2559 527136
6285 1.225356 2561.801816 2561.801816 0.0 0.381942 2562 183758 0.381942 2562183758 2559527136
6286 0752145 25625530961 2562 553961 0.0 0.105645 2562 659606 0.105645 2562659606 2559 527136
6287 0.002939 25625569 2562 5568 0.0 0.001652 2562 558552 0.001652 2562659606 2562558552
6288 0.570113 2563.127013 2563.127013 0.0 0.095744 2563222757 0.095744 2563222757 2562558552
6259 0.442478 2563.569491 2563 560491 0.0 0170313 2663.739804 0.170313 2563.739804 2562558552
6290 0.325919 2563.89541 2563.89541 0o 0.00517 2563.90058 0.00517 2563.90058 2562558552
6291 0.321717 2664.217127 2664 217127 0.0 0.155239 2664 372366 0.155239 2564.372366 2562558552
6292 0.423905 2564.641032 2564.641032 0.0 0.221527 2564.862559 0.221527 2564.862559 2562558552

Summary Statistics

MNumber Waiting 480
Probability of Waiting 0.073109
Average Wait Time 0.00806
Maximum Wait Time 0.612214
Average Utilization of Channels 0.203046
Number Waiting = 1 min V]
Probability of Waiting = 1 min. 0.0
Average System Time 017337
Total Cost per time period $504.7565

TABLE XVII: DISCRETE EVENT SIMULATION OF MI HOSPITALS” COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL CosT: TC(K=3) = $535

Patient Arrival Distribution Parameters Patient Service Distribution Parameters : Inpatient ‘Ward Settings Simulation
| weibull v 041 Bies | weibull v 017 iz LI @R 15 e |
L see L seea Generate 02702 Enter No.Of Patients | 6292 |
s InternalMedM1
Simulate Clear
Generate 0.3630 Clear All
OQutpatient/Inpatient Simulation
Patient | Inter-Arrival Time | Arrival Time | Service Start Time | Wait Time | Senvice Time | Completion Time | Time in System | Doctor 1 ilable | Doctor2 ilabl. | Doctor 3 lable |
1 0.145091 0.145091 0.145091 0.0 0.011877 0.156968 0.011877 0.156968 0.0 0.0
2 0.509388 0.654479 0.654479 0o 0.27149 0.925969 0.27149 0.925969 0.0 0o
3 2.386066 3.040545 3.040545 0.0 0.048563 3.089108 0.048563 3.089108 0.0 0.0
4 0.253328 3.203873 3.293873 0.0 0.126529 3420402 0.126529 3.420402 0.0 0.0
5 1.664216 4958089 4958089 0o 0.037248 4995337 0.037248 4995337 0.0 0.0
G 0.297101 525519 5.25519 0.0 0.029663 5284853 0.029663 5.284853 0.0 0.0
7 0.448399 5.703589 5.703589 0.0 0.140321 5.84302 0.140321 5.84302 0.0 0.0
8 0.005029 5708618 5708618 0.0 0.654764 6.363382 0.654764 5.84302 5.363382 0.0
9 0.851437 6.560055 6.560055 0o 0.036812 6.596867 0.036812 6.596867 6.363382 0.0
10 0.167176 6.727231 6.727231 0.0 0141382 6.868613 0141382 6.868613 6.363382 0.0
6282 0.207842 2584.620192 2584.620192 0.0 0.290144 2584.910336 0.290144 2584.910336 2584.432588 2554.269453
6283 0.62696 2586 247152 2585247152 00 0.061963 2586.309115 0.061963 2586.309115 2584 432588 2584 269453
6284 0.108096 2586.365248 2585.365248 0o 0.230082 2686.68533 0.230082 2586.68533 2684432588 2584.269453
6285 0.68998 2586.045208 2586.045208 0.0 0.028581 2586.073799 0.028581 2586.073799 2584432588 2554.2609453
G286 0.107776 2586.152984 2586.152984 0.0 0.064645 2586.217629 0.064645 2586.217629 2584.432588 2554.269453
6287 0.134445 2586.287429 2586.287429 0o 0.110526 2586.397955 0.110526 2586.397955 2584 432588 2584 269453
6288 0.036129 2586.323558 2586.323558 0.0 0.276055 2586.500613 0.276055 2586.397955 2586.500613 2584.260453
6289 0.519402 2586.84298 2586.84296 0.0 0.076403 2586.919363 0.076403 2586.919363 2586.500613 2554.2609453
6290 0.799537 2587 642497 2587 642497 00 02758242 2587.920739 02758242 2587.920739 2586.599613 2584 269453
6291 0.091849 2587734346 2587.734346 0o 0.139479 2587.873825 0.139479 2587.920739 2587.873825 2584.269453
6292 0.803806 2588.538152 2588.538152 0.0 0.105445 2588.643597 0.105445 2588.643507 2587.873825 2584.260453

Summary Statistics

MNumber Waiting 54
Probability of Waiting 0.008582
Average Wait Time 0.001345
Maximum Wait Time 0.317583
Average Utilization of Channels 0.136709
Mumber Waiting = 1 min. 0
Probability of Waiting = 1 min. 0.0

Average System Time 0.169233
Total Cost pertime period $534.62085
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TABLE XVIII: DISCRETE EVENT SIMULATION OF PA HOSPITALS” COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(k=1) =~ $367

Patient Arrival Distribution Parameters Patient Service Distribution Parameters : Inpatient Ward Settings Simulation
[webal x| [10s Alpha [Weibul 7] 026 Alpha No. Of Wards 15 FnterNoOfDocters |1 |
1 Beta 1 B Generate 0.2702 Enter No.Of Patients | 5227 |
Wards InternalMedPA
Simulate Clear
Generate 0.3630 Clear All
Qutpatient/Inpatient Simulation

Patient | Inter-Arrival Time | Arrival Time | Service Start Time | Wait Time | Service Time | Completion Time | Time in System | Doctor 1 Available |
1 0.078894 0.073894 0.073894 0.0 0.303455 0.472349 0.393455 0.472349
2 0.130878 0.209772 0.472349 0.262577 0.431992 0.904341 0.594569 0.904341
3 0.229228 0.439 0.904341 0.465341 0231713 1.136054 0.697054 1.136054
4 0141558 0.580558 1.136054 0.555496 0.467995 1.604049 1.023491 1.604048
5 3.009704 3500262 3.590262 0.0 0.254598 3.844858 0.254596 3.844858
] 0.483148 407341 407341 0.0 0.068959 4142369 0.068959 4142369
7 0.729996 4803408 4.803406 0.0 0.317058 5.120482 0.317056 5120462
8 0.104319 4907725 5.120452 0212737 0.0253848 5.14631 0238585 5.14631
] 0.559696 5467421 5.467421 0.0 0.207099 5.77452 0.307099 577452
10 0.262604 5.730025 5.77452 0.044495 1.193508 6.973029 1.243004 6.973029
5217 0.763785 5433794609 5433794609 0.0 0227532 5434 022141 0227532 5434 022141
5218 0.788632 5434 583241 54345383241 0.0 0.182592 5434765833 0.182592 5434765833
5219 1497757 5436.080998 5436.080098 0.0 0.469144 5436.550142 0.469144 5436550142
5220 0160278 5436 241276 5436.550142 0.308866 0.309793 5436.859935 0.618659 5436.859935
5221 285474 5439.096016 5439.096016 0.0 0.098334 5430.19435 0.098334 543919435
5222 0.617792 5430713808 5430713808 0.0 0.464833 5440178641 0.464833 5440178641
5223 0.812636 5440 526444 5440526444 0.0 0.052785 5440579229 0.052785 5440579229
5224 0.04392 5440570364 5440579229 0.008865 0.126325 5440.704554 0.13419 5440704554
5225 0.426513 5440 998877 5440996877 0.0 0.245054 5441.242931 0.246054 5441242931
5226 0.346406 5441343283 5441.343283 0.0 0.00383 5441.347113 0.00383 5441347113
5227 0.304324 5441 647607 5441.647607 0.0 0.167063 5441.81467 0.167083 5441.81467

Summary Statistics

MumberWaiting 1300
Probability of Waiting 0.248709
Average Wait Time 0.082125
Maximum Wait Time 1.8316544
Average Utilization of Channel 0245395
Number Waiting = 1 min 66
Probability of Waiting = 1 min.  0.012627
Average System Time 0.337606
Total Cost pertime period $367 47782

TABLE XIX: DISCRETE EVENT SIMULATION OF PA HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(K=2) = $325

Patient Service Distribution Parameters : Inpatient Ward Settings Simulation
Patient Arrival Distribution Parameters =
[weibul  |*| 103 Alpha |Weibul | ¥) 026 Alpha No. Of Wards 15 Enter Ne.Of Docters | 2
L peta L get2 Generate 02869 Enter No. Of Patients | 5227
T InternalMedPA

Simulate Clear
Generate 0.4918 Clear All

Outpatient/Inpatient Simulation

‘ Patient | Inter-Arrival Time | Arrival Time | Service Start Time | Wait Time | Service Time | Completion Time | Time in System | Doctor 1 Available | Doctor 2 Available |

1 0.98263 0.98263 0.98263 0.0 0.445747 1.428377 0.445747 1.428377 0.0

2 0.266526 1.249156 1.249156 0.0 0.732576 1.981732 0.732576 1428377 1981732

3 0.20105 1.450206 1450206 0.0 0.058135 1.508341 0.058135 1.508341 1.981732

4 1.13869 2638896 2638896 0.0 0.204423 2933319 0.294423 2933319 1.981732

5 0.767516 3.406412 3406412 0.0 0.444793 3.851205 0.444793 3.851205 1.981732

6 0.790255 4196667 4196667 0.0 0.287562 4484329 0.287562 4484229 1.981732

[ 3916023 8.11269 8.11269 0.0 0.031042 8.143732 0.031042 8.143732 1.981732

8 0.566319 8.679009 8.679009 0.0 0.198093 8.877102 0.192093 8.877102 1.981732

] 1.510088 10.189097 10.189097 0.0 0.276729 10.465826 0.276729 10465826 1981732
10 0.90465 11.093747 11.093747 0.0 0.134139 11.227886 0.134139 11.227886 1.981732
5217 0726918 5401.524513 5401524513 0.0 0145606 5401.670119 0.145606 5401.670119 5383.325771
5218 1.97051 5403.495023 5403.495023 0.0 0.482904 5403.977927 0.482904 5403.977927 5383.325771
5219 0.312996 5403.808019 5403.808019 0.0 0.033531 5403.84155 0.033531 5403.977927 5403.84155
5220 0.316086 5404124105 5404124105 0.0 0.346919 5404.471024 0.346919 5404471024 5403.84155
5221 1.074875 5405.19898 5405.19898 0.0 0.575865 5405.774845 0.575865 5405774845 5403.84155
5222 2729881 54079258861 5407928861 0.0 0.122469 5408.05133 0.122469 5408.05133 5403.84155
5223 0.861626 5408.790487 5408.790487 0.0 0.05816 5408.848647 0.05816 5408.848647 5403.84155
5224 0.030346 5408 870833 5408.870833 0.0 0.145056 5409.015889 0.145056 5409.015889 5403.84155
5225 1191116 5410.061949 5410.061049 0.0 0.049587 5410111536 0.049587 5410.111538 5403.84155
5226 1.858656 5411.920605 5411.920605 0.0 0.102099 5412.022704 0.102099 5412.022704 5403.84155
5227 1.473235 5413.39384 5413.39384 0.0 0.432618 5413.826458 0.432618 5413.626458 5403.84155

Summary Statistics

Mumber Waiting 137
Probability of Waiting 0.02621
Average Wait Time 0.00325
Maximum Wait Time 0.886723
Average Utilization of Channels 0.120377
Mumber Waiting = 1 min. V]
Probability of Waiting = 1 min. 0.0
Average System Time 0252812

Total Cost pertime period 532622764
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TABLE XX: DISCRETE EVENT SIMULATION OF PA HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(k=3) = $359

Patient Service Distribution Parameters : Inpatient ‘Ward Settings Simulation
Patient Arrival Distribution Parameters L
| Weibun | 1.03 Alpha | Weibull |- 0.26 Alpha No. Of Wards 15 -
Beta T Beta PeTTresmm P
! L Generate 0.2702 Enter No. Of Patients | 5227
Wards InternalMedPA

Simulate Clear
Generate 03630 Clear All

Outpatient,/Inpatient Simulation

Patient | Inter-Arrival Time | Arrival Time | Service Start Time | Wait Time | Service Time | Completion Time | Time in System | Doctor 1 lable | Doctor 2 labl | Doctor 3 lable |

1 2268777 2268777 2268777 0.0 0.186824 2455601 0166824 2.455601 0.0 0.0
4614782 6.883559 6.883559 0.0 0.0535 6.937059 0.0535 6.937059 0.0 0.0

3 0.050283 6.933842 6.933842 0.0 0.23058 7.164422 0.23058 6.937059 7164422 0.0

4 0.511795 7445637 7.445637 0.0 0.043528 7.489165 0.043528 7.429165 7164422 0.0

5 4937369 12.383006 12.383006 0.0 0.203342 12.586348 0.203342 12.586348 7164422 0.0

G 0.053167 12.436173 12436173 0.0 0774478 13.210651 0.774478 12586348 13.210651 0.0

7 0108838 12.545011 12.545011 0.0 0.006071 12.551082 0.006071 12586348 13210651 12551082

8 2698615 15.243626 15.243626 0.0 0.120364 15.36399 0.120364 15.36399 13.210651 12.551082

9 1157606 16.401232 16.401232 0.0 0.021585 16.422817 0.021585 16.422817 13210851 12651082

10 0.541487 16.942719 16.942719 0.0 017382 17.116539 017382 17.116539 13.210651 12.551082

5217 0.070048 5520.471981 5520.471981 0.0 0597923 5521.069904 0.567923 5621.069904 5520407375 5496317396

5218 0.021034 5520.483015 5520493015 0.0 0.30026 5520793275 0.30026 5521.069904 5520.793275 5496.317396

5219 0.544313 5521.037328 5521.037328 0.0 0.030413 5521.067741 0.030413 5621.069904 5521.067741 5496317396

5220 0.280547 5521.317875 5521.317875 0.0 0.164565 552148244 0.164565 5521.48244 5521.067741 5496.317396

5221 0.628504 5521.948379 5621.946379 0.0 0.388116 55622334405 0.288118 5622334405 5521.067741 5496317396

5222 1.077637 5523.024016 5523.024016 0.0 1.105937 5524129953 1.105937 5524.129953 5521.067741 5496.317396

5223 0.126619 5523150635 5623.150635 0.0 0.207196 55623357831 0.207198 5624129953 5623.357831 5496317396

5224 1.368137 5524.518772 5524518772 0.0 0.014977 5524533749 0.014977 5524533749 5523.357831 5496.317396

5225 5.206861 5520.825633 5620.825633 0.0 0.248595 5530074228 (0.243505 5530.074228 5623.357831 5496317396

5226 0919994 5630.745627 5530.745627 0.0 0.976335 5531.721962 0.976335 5531.721962 55623357831 5496.317396

5227 0.552771 5531.208308 5531.298308 0.0 0.485329 5531783727 0.485329 5531.721962 5531.783727 5496.317396

Summary Statistics

Number Waiting ]
Probability of Waiting 0.001722
Average Wait Time 4.06E-4
Maximum Wait Time 0.124605
Average Utilization of Channels 0.077618
MNumber Waiting = 1 min 0
Probability of Waiting = 1 min. 0.0
Average System Time 0.246444

Total Cost pertime period £359.05068

TABLE XXI. DISCRETE EVENT SIMULATION OF TX HOSPITALS COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(k=1) = $407

Patient Service Distribution Parameters : Inpatient ‘Ward Settings Simulation
Patient Arrival Distribution Parameters =
| wetbull B 047 iEi= | weibull B 0.13 sl CEEFvEnE 15 e
Beta Beta 2702 —
+ : Generate 02702 Enter No. Of Patients 6423
o InternalMedTX

Simulate Clear
Generate 0.3e30 Clear All

Outpatient/Inpatient Simulation

Patient | Inter-Arrival Time | Arrival Time | Service Start Time | Wait Time | Sernvice Time | Completion Time | Time in System | Doctor 1 Available |
1 1.106583 1.106583 1.106583 0.0 0.080819 1.197402 0.090819 1.197402

2 1.888712 3.105295 3.105295 0.0 6.11E-4 3105906 6.11E-4 3.105906

3 0.20099 3.306285 3.306285 0.0 0.59483 4001115 0.69483 4001115

4 4.36E-4 3306721 4.001115 0694394 0.029961 4031076 0.724355 4031076

5 0923843 4230564 4230564 0.0 0.190789 4421353 0.190789 4421353

3 0.175076 440564 4421353 0.015713 0.136671 4558024 0.152384 4558024

7 0.139204 4544934 4558024 0.01309 0.085029 4623053 0.078119 4623053

8 0.224956 476989 4.76989 0.0 0.119511 4889401 0.119511 4.889401

9 0.730582 5500472 5.500472 0o 0.039709 55407181 0.039709 5.540181

10 0.451136 5951608 5.951608 0.0 0.109123 6.060731 0.109123 6.060731
6413 0.147207 2034003797 2084.057844 0.054047 0.053558 2034.111402 0.107605 2034111402
G414 07038092 2034 707689 2084707689 0.0 0.069047 2084 776736 0.059047 2984 776736
6415 1.331633 2986.039322 2986.039322 00 0.320617 2986.359939 0.320617 2986.359939
6416 0.117457 2986.156779 2986.359939 0.20316 0.107487 2986 467426 0.310647 2986 467426
6417 0.970568 2087 127347 2087.127347 0.0 0.02326 2087 150807 0.02326 2987 150607
6418 0.570613 2087 69796 2087.69796 0.0 0.046415 2087 744375 0.048415 2087 744375
6419 0.366804 2038.064764 2088.064764 0.0 0.002835 2038.067599 0.002835 2938.067599
6420 0.423909 2988 488673 2988.488673 0o 0.18942 2988 678093 0.18942 2988 678093
6421 0.942222 2089.430895 2080.430895 0o 0.053999 2080.434394 0.053099 2089.434394
6422 0.650462 2090.081357 2000.081357 0.0 0.010113 2090.09147 0.010113 2090.09147
6423 0.354951 2090.436308 2000436308 0.0 0.03814 2090.474448 0.03814 2090.474448

Summary Statistics

Mumber Waiting 1697
Probability of Waiting 0.264207
Average Wait Time 0.0457
Maximum Wait Time 1126464
Average Utilization of Channel 0.271842
Number Waiting = 1 min. 3
Probability of Waiting = 1 min. 4.67E-4
Average System Time 0.172164
Total Cost pertime period $406.70293
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TABLE XXII: DISCRETE EVENT SIMULATION OF TX HOSPITALS COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(k=2) = $362

Patient Service Distribution P ters: I tient ‘Ward Setti Simulati
Patient Arrival Distribution Parameters atientaervice P L ard Settings on
| Weibull v 047 Alpha | Weibull 1 013 Alpha No. Of Wards 15 S TmatTr e B
L Beta L gea Generate | 02702 Enter No. Of Patients | 6423
Wards InternalMedTX
Simulate | Clear |
Generate | [0.3630 Clear All |
Outpatient,/Inpatient Simul
Patient | Inter-Arrival Time | Arrival Time | Service Start Time | Wait Time | Service Time | Completion Time | Time in System | Doctor 1 Available | Doctor 2 Available |
1 0.037537 0.037537 0.037537 0.0 0.05543 0.092967 0.05543 0.092967 0.0
2 1.309884 1.437421 1.437421 0.0 0.229515 1.666938 0.220515 1.666936 0.0
3 0.377732 1.815153 1.815153 0.0 0.122963 1.938116 0.122963 1.938116 0.0
4 1.342839 3157992 3.157992 0.0 0.034111 3192103 0.034111 3192103 0.0
] 0.280352 3538344 3.538344 0.0 0.0052786 3.54362 0.005276 3.54362 0.0
6 0.023686 356203 3.56203 0.0 0.101567 3.663597 0.101567 3.663597 0.0
7 0.221818 4383848 4383848 0.0 0.123751 4507599 0.123751 4507599 0.0
] 0.564228 4948076 4948076 0.0 0.068995 5017071 0.068995 5.017071 0.0
9 0925815 5.873891 5.873891 0.0 0.344623 6218514 0.344623 6.218514 0.0
10 0.211393 6.085284 6.085284 0.0 0.030424 6.115708 0.030424 6.218514 6.115708
6413 0.009369 3023.106466 3023.106466 0.0 0.291256 3023397722 0.291256 3023.147369 3023397722
6414 0.89207 3023.998536 3023.998536 0.0 0.116337 3024114873 0116337 3024114873 3023397722
6415 0.979562 3024978098 3024978098 0.0 0.020801 3024993399 0.020801 3024998399 3023.397722
6416 0.186858 3025.164956 3025.164956 0.0 0.784454 302594941 0.784454 3025.94941 3023397722
6417 0.575304 302574035 302574035 0.0 0.377522 3026117872 0.377522 3025.94941 3026.117872
6418 0.316328 3026.056678 3026.056878 0.0 0.024729 3026.081407 0.024729 3026.081407 3026.117872
6419 0.514408 3026571084 3026.571084 0.0 0.244794 3026815878 0.244794 3026.815878 3026.117872
6420 0.059451 3026.630535 3026.630535 0.0 0.014947 3026645482 0.014947 3026.815878 3026.645482
6421 0.505495 3027.13603 3027.13603 0.0 0.008042 3027144072 0.008042 3027.144072 3026.645482
6422 0.489483 3027.625513 3027625513 0.0 0.021643 3027647156 0.021643 3027 647156 3026.645482
6423 0.233143 3027.858656 3027.858856 0.0 0.185733 3028.044389 0.185733 3028.044389 3026.645482

Summary Statistics

Mumber Waiting 229

Probability of Waiting 0.035653
Average Wait Time 0.003175
Maximum Wait Time 0.377443

Average Utilization of Channels 0.137645
Mumber Waiting = 1 min.
Probability of Waiting = 1 min. 0.0

0

Average System Time 0.132297
Total Cost pertime period $361.79261

TABLE XXIII: DISCRETE EVENT SIMULATION OF TX HOSPITALS COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(k=3) = $395

Patient Service Distribution Parameters : Inpatient ‘Ward Settings Simulation
Patient Arrival Distribution Parameters =
| Weibull i~ 0.47 S | Weibull ~ 0.13 Air= L BT TR 15 s |
Beta Seta = 2702
1 ¢ 1 © Generate | 0.2702 Enter No. Of Patients | 6423
e — InternalMedTX

Simulate Clear |
Generate | [0.3630 Clear All |

Outpatient/Inpatient Simulation

Patient | Inter-Arrival Time | Arrival Time | Service Start Time | Wait Time | Senvice Time | Completion Time | Time in System | Doctor 1 Available | Doctor 2 Avai | Doctor 3 Availabl

1 1.529292 1.529292 1.529292 0.0 0.042419 1571711 0.042419 1571711 0.0 0.0

2 0.201764 1.731056 1.731056 0.0 0.402036 2.133092 0.402036 2133092 0.0 0.0

3 0791616 2.522672 2522672 0.0 0.196213 2718885 0.196213 2718885 0.0 0.0

4 0.200552 2723224 2723224 0.0 0.261886 2.98511 0.261886 298511 0.0 0.0

5 0774372 3.497598 3.497596 0.0 0.086973 3.564569 0.066973 3564569 0.0 0.0

3 0.021487 3.519083 3519083 0.0 0.169975 3.689058 0.169975 3564569 3.689058 0.0

7 0.030472 3.549555 3.549555 0.0 0.049521 3.599076 0.049521 3564569 3.689058 3599076

8 0514232 4063787 4.063787 0.0 0.028625 4092412 0.028625 4092412 3.689058 3.599076

9 0.270058 4333845 4333845 0.0 0119477 4453322 0119477 4453322 3.689058 3.589076
10 0.008163 4342008 4.342008 0.0 0.258727 4 600735 0.258727 4453322 4.600735 3.589076
65413 0.389225 3072.192337 3072.192337 0.0 0.019835 072212172 0.019335 aora.z212172 3071.83327 3067.07728
6414 0501084 3072.693421 3072.693421 0.0 0.005231 3072.698652 0.005231 3072.698652 3071.83327 3067.07728
6415 0.606702 3073.300123 3073.300123 0.0 0.166658 3073.466781 0.166658 3073.466781 3071.83327 3067.07728
6416 0.951978 3074.252101 3074.252101 0.0 0.00163 3074.253731 0.00183 3074.253731 3071.83327 3067.07728
6417 0.078521 3074.330622 3074.330622 0.0 0.092692 3074423314 0.092692 3074423314 3071.83327 3067.07728
6418 0.892054 3075.222676 3075222676 0.0 0.425801 3075.648477 0.425801 3075.648477 3071.83327 3067.07728
6419 0.095117 3075.317793 3075317793 0.0 0.031207 3075.349 0.031207 3075.648477 3075.349 3067.07728
6420 1.423759 3076.741552 3076.741552 0.0 0.137454 3076.879006 0.137454 3076.879006 3075.349 3067.07728
6421 0.207291 3076.948843 3076.948843 0.0 0.324918 3077.273761 0.324918 3077.273761 3075.349 3067.07728
6422 0.3699 3077.318743 3077.318743 0.0 0.085225 3077.403968 0.085225 3077.403968 3075.349 3067.07728
5423 0763347 3078.08209 3078.08209 0.0 0.032499 3078.114589 0.032489 3078.114589 3075.349 3067.07728

Summary Statistics

MNumber Waiting 18
Probability of Waiting 0.002802
Average Wait Time 4.B9E-4
Maximum Wait Time 0131022

Average Utilization of Channels 0.089758
Number Waiting = 1 min.
Probability of Waiting = 1 min. 0.0

Average System Time

Total Cost per time period

0

012913
$395.0469

Regarding the economic analysis of waiting lines, a total cost model, with the cost of waiting and the cost of
manager may identify the cost of operating the waiting line  service, must be developed. To develop a total cost model for
system and then base the decision regarding the system  waiting line, one begins by defining the core notation to be

design on a minimum hourly or daily operating cost. Before
an economic analysis of a waiting line can be conducted, a
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used [2]:
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L = The average number of units (patients) in the system,
L=Aw (referred to as Little’s Flow Equation #1)

Cw = Waiting (Queuing) Cost per time period of each unit

Lq = The average number of units in the queue, Ly= Awqg
(referred to as Little’s Flow Equation #2)
Cs = The service cost per time period for each channel
(emergency—physician in this context)

k = The number of channels (#Emergency Physicians)

TC = The total cost per time period for an hourly visit by an
e.g. emergency patient = Cyx L + Csx k by Eq. (13)

Then, the total cost, TC, is the sum of waiting cost and the
service cost; where L=Aw with A=arrival rate and w= the

average time a unit spends in the system such that Lq= Awg
denotes the average number of units in the waiting line (or
queue). In the following for TC, Cw=$1000 insurance fee per
patient/h lost, Cs=$40 hourly fee for the specialist (re; COVID
care). In a hospital emergency ward, $40/h x 8760h =~ $350K
allocated for an emergency physician shown by the industry’s
compensation statistics.

The healthcare industry is among the top highly federal-
and state-regulated industries [17]. By providing insights to
the States’ health planning agencies, this study alerts the
potential hospital bed-needs as well as physician-hires
through CLOURAM and MCQS as well as Hospital
Scheduling algorithms within a framework of discrete event
simulation models [18]. Currently, 35 states have CON State
laws that require the approval of capital expenditures by
States’ health planning agencies, which aims to prevent
duplication of services. and meet the need of the local
communities [19]. This study should be especially useful in
relation to the certificate of need-based States’ laws, which
governs the expansion of healthcare facilities and services,

where Fig. 22 depicts a map of 35 States with CON Laws [20].

Overall, the CLOURAM and MCQS, and Hospital Scheduling
provide insights into certain best practices for assessing, and
proactively taking precautions to improve the undesirable and
life-and-death risk of bed- and physician-inadequacy in
hospitals—a task for health planning agencies by the States’
CON laws. See Appendix for CLOURAM and MCQS, and
Hospital Scheduling. Fig. 23’s Chart Diagram mindfully
shows the simple hospital management flow [21].

Certificate of Need State Laws

o e Dizplay all states

Fig. 22. States with the CON (Certificate of Need) Program in Place [20].
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bill genemted]

[ discharged ]

end

Fig. 23. State Chart Diagram for Hospital Management [21].
Total Cost
- Service Cost

‘Waiting Cost

operated

MCMWH(M

Number of Channels (k)

Fig. 24. The general trend of Waiting Cost, Service Cost, and Total-Cost
Curves in Waiting Line Models from Table XI, such as for AL: TC(k=1) =
$612 down to TC(k=2) = $456 and up to TC(k=3) = $491 yielding the best
choice of k=2 doctors [2]. As for TX: TC(k=1) = $407 down to TC(k=2) =
$362, then up to TC(k=3) =~ $395 yielding the most lucrative for k=2 doctors.
States using the same cost parameters of Cw=$1000 insurance fee and
Cs=$40/h fee for the specialist, k=2 proved optimal. Equation (13) is used.

For subsection 11-B, Anderson et al. inspired by Agnithori
and Taylor studied hospital staffing based on a multi-channel
waiting line model [2, 22]. To further investigate the
practicality of the two pivotal Tables VI and XI, based on the
obvious fact that without adequate bed-count, the physicians
are of no use. Thus, without the adequate supply of the
emergency-physicians despite the abundance of beds, or vice
versa, there is no added benefit. However, to synergize the
independent Tables VI and XI, CPNP (Composite Patient
Non-Denial Probability), e.g. for AL, is the cross product of
probabilities of BA: bed-availability (Table VI, ROW 1, COL.
12) where P(BA) = 100%-9.15%= 90.85%, and the physician-
availability (Table XI, ROW 1, COL.6) vyielding the
probability of the patients who are Not-Waiting:
P(NW)=1-P(W)=1- (1702/4627) =~ 100%—37%=63% for k=1,
Next, the product of independent events, P(BA) x P(NW) =
90.85% x 0.63 =57.24%. If P(NW)=1 is a perfect case, P(BA)
remains as is, which never happens. This implies ~57 out of
100 patients will not be denied or ~43 denied. Likely, ~86 out
of every 100 patients for k=2 will not be denied, or only 14
will be denied. Then P(BA) x P(NW) = (1-.0915) x [1-
(45/4627)] = .85% x 0.99~90%, or 90 out of 100 for k=3 will
not be denied, or 10 patients will be, due to physician- and
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bed-shortages despite a higher hospital cost than k=2. States’
composite patient denials can be calculated for k =1, 2 and 3.
The proposed probabilistic index, CPNP, may invoke value-
added alarms for CON laws. The patients’ data allude to pre-
COVID. The research will continue once the post-COVID-19
data is publicized to tell normal from the abnormal data.

B. Comparisons and Contrasts with Other Works

Several other works have been cited to predict hospital
bed-and physician—capacity crises during or after the COVID-
19 pandemic, as follow in six itemized sources, i to vi:

i) Deschepper et al. [23] used a Poisson distribution
assumption for the number of newly admitted patients on
each day with a multistate rather than 2-state, COVID-19 or
non-COVID-19 (instead with possible transitions as Cohort,
ICU Midcare, ICU Standard and ICU Ventilated) statistical
model for the transitions to the different wards, discharge or
death. These 203 piece of data used were from COVID-19
patients from April 20™ to April 27™ in 2020 by Monte-Carlo
simulation of the capacity of beds by ward type over the
upcoming 10 days, along with the worst- and best-case
bounds using R statistical software (version 3.6.1).

ii) RGmmele et al. [24] created a Monte Carlo simulation-
based prognostic tool that provides the management of the
University Hospital of Augsburg to plan and guide the
disaster response for the pandemic. Especially the number of
beds needed on isolation wards and intensive care units (ICU)
were the biggest concerns. Using this information, RGmmele
et al. started Monte Carlo simulation with 10,000 runs to
predict the range of the number of hospital beds needed, and
favorably compared it with the available resources. 306
patients were treated with confirmed or suspected COVID-19,
of which 84 needed treatment on the ICU. Using simulation-
based forecasts, the required ICU and normal bed capacity at
Augsburg University Hospital and the ambulance service in
the period from 3/28/2020 to 6/8/2020 could be predicted
with high degree of reliability. Simulations before the impact
of the restrictions in daily life showed that one would have
run out of ICU bed capacity within approximately one month.

iii) Rhodes et al. [25] hypothesized that in quantifying the
numbers of critical care beds per country when corrected for
population size were positively correlated with GDP (Gross
Domestic Product) in Europe covering 7/2010 to 7/2011.
Sources were identified in each country that could provide
data on numbers of critical care beds. On average there were
11.5 critical care beds per 100,000 head of population with
marked differences between Germany’s 29 and Portugal’s 4.

iv) Tippong et al. [26] considers healthcare coordination
plans including the latest COVID-19 pandemic to have
caused a shortage of healthcare resources and change in
healthcare operations. This paper whereas provides a focused
literature review of the OR (Operations Research)
contributions in the coordination of healthcare systems during
disasters on how to improve and manage the emergency
medical response.

v) Weissman et al. [27] with an objective to estimate the
timing of surges in clinical demand and the best- and worst-
case scenarios of local COVID-19-induced strain on hospital
capacity, designed a Monte Carlo simulation of a susceptible,
infected model with a 1-day cycle. They concluded that this
modeling tool can inform preparations for capacity strain
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during the early days of a pandemic. Current capacity across
the 3 hospitals was defined as 1045 hospital beds, 253 ICU
beds, and 183 ventilators, on the basis of internal estimates.
Study was conducted in March 2020 within Philadelphia city.
vi) Emanuel et al. [28] declared that among others in USA
such as the scarcity of high-filtration N-95 masks and full-
featured ventilators, South Korea in Daegu faced a hospital
bed-shortage with some patients dying at home. While in UK
protective gear requirements for health workers have been
downgraded, causing condemnation among providers. How
can medical resources be allocated fairly during a COVID-19
pandemic? They believe guidelines should be provided at a
higher level of authority, both to alleviate physician burden
and to ensure equal treatment without jeopardizing lives.
When the right moment arrives on what this contributing
article proposes versus readers’ plausible “So-What?”” query,
the two features are predominant: 11.A) Risk assessment and
management of bed-shortages, and 11.B) Risk assessment and
management of emergency (or e.g. pulmonary) physician-
scarcities. Synthesizing instead of merely summarizing, the
authors’ contributions deserve to be compared and contrasted
with other works in the current literature. Similarities and
differences, or pros and cons, which one could outline as such
are itemized in 10 categories as follow: 1) This article
proposes a macro-level design with a quasi-representative
sample of five States (in USA) each with 44 to 51 networked-
hospitals ranging from ~7500 to ~9800 installed beds during
years of 2010 to 2018 vyielding a high percentage of the
installed beds as bed-demands according to the past patient
visits obtained from AHA [8], IHME [9] and AHD [12] and
similar resources in USA. 2) Each State has an averaging
(expected) effect of admission and discharge rates calculated.
These rates are then utilized to evaluate the CLOURAM
outcomes to design for bed-capacity and MCQS results to
plan for physician-adequacy where each channel is a
physician in residence. 3) This genre of approach is not
available in the literature so far as these authors have screened
although Emanuel et al. [28] touches upon physician-scarcity
but not offering a difference-making solution proposal.
Tippong et al.’s research [26] is rather a review paper of OR
considerations at large, not a specific solution oriented
approach. In terms of bed-shortages where there exists
multiplicity of micro-design studies within a particular
University (Ghent or Augsburg etc.) hospital [23, 24] or of a
city enclave such as Philadelphia [27], or Europe at large
correlated with the nations> GDP [25], all which were
beneficial during the hot-bed rampant pandemic. 4)
Deschepper et al. [23] for short-term predictions similar to
authors’ proposals used Poisson modeling with a multistate
model whereas this article used a two-state model due to only
COVID or non-COVID from the Johns Hopkins University
data bank [29]. 5) CLOURAM software from a macro-level
perspective of five contiguous States’ treats each state as in a
Cloud-framework, interconnected and calculates the bed-
count deficiency after at least 100 years of annual 8760h-long
discrete event simulations. Though, similarities exist, others
employ Monte Carlo simulations but may often last only for
a short period of time ahead. Whereas, CLOURAM and
MCQS are discrete-event-simulated cover a dynamic
stochastic process, not static, ~1,000 or 10,000 more years
ahead [1, 10, 18]. 6) One other contrast between the two genre



International Journal of Computer Theory and Engineering, Vol. 15, No. 1, February 2023

of approaches is that CLOURAM software uses the States’
input data during the pre-COVID era before the advent of the
pandemic at the outset of this research, whereas the other
works used data at the scene of events at a limited scope. 7)
Another difference is that both of this article’s approaches of
risk management of bed- and physician-shortages follow a
resource-optimization agenda in detail outlining the cost and
benefit parameters in Tables VI and XI if additional beds or
physicians are deemed necessary. 8) This research is index
oriented, i.e. besides the LOLE and EUPU of section Il.A
where loss of beds is the primary concern; whereas in 11.B
cost-optimal k count of physicians is introduced. In lILLA, a
probabilistic CPNP is defined utilizing Tables VI and Xl in
synergy for all States to compute the probability of a hospital
network for not denying the needy patients. 9) The CON laws
for United States’ future investments are critical. 10) What
does all this say at the terminal stage? This article differently
yields a premeditated scientific message to design preventive
and life-saving, remedial pandemic contingency plans for
future on critical capacities, a process which was not feasible
in 2020.

APPENDIX

How TO INSTALL CYBERRISKSOLVER TO RUN THE CLOUD
ASSESSMENT DERATED AND MCQS/HOSPITAL SCHEDULING:

1. Click wwwe.areslimited.com. Type in the user name: mehmetsuna,
password: Mehpareanne, click OK.

2. Go to DOWNLOAD on www.areslimited.com for left hand side menu’s
4™ from the top.

3. Click on the Cyber Risk Solver in red and download the application
which a ZIP file. Unzip or extract the downloaded application into
C:\myapp folder. See C:\myapp\dist. Open a

| £ Cyber-Risk-5olver applications for Text, CYBER RISK INFORMATICS by M. Sahinoglu, PhD

' Decoding ' ERBDC ) MESAT ' SecurityMeter ' Flat

Command Prompt and go to C:\myapp\dist folder and run the command:
/IFor Cyber Risk Solver, java —jar twcSolver.jar. Use license code:
EFE28SEP2020 for twcSolver.jar.

4. Click Cloud Assessment Derated and/or MCQS and Hospital Scheduling
apps both (checked). Click Open. Enter input from Figs. 1-24 and Tables
I-XXI1I input and output data as deemed necessary.

< - 0 o * = L &

) www.areslimited.com/

Enter text to search No results { > Options v bl

Find on page

g
Cloud Assessment Derated
g
Cloud Management 2
g
Cloud Management 4
7
Cloud Management 4 Derated
o
Cyber Risk Solver
g
Security Meter
g

TWC Salver

What do you want to do with
CyberSolverd.0KS.zip (19.2 MB)?
From:; areslimited.com

Open Save ~ Cancel

[ cyberSolver.0KS (1).zip - ZIP archive, unpacked size 51,342,060 bytes

MName Size Packed Type Modified CRC32

.. File folder

dist File folder 10/27/201912:...
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.. File folder

lib File folder 10/27/2019 12...,
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€ launch.htm! 609 300 Chrome HTML Do...  10/27/201912:... BD21FF3A
=| README.TXT 1,325 607 Text Document 10/27/201912:...  CC5BOT4F
] tweSolverjnlp 2132 715 JNLP File 10/27/2019 12:...  B554A3C4
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