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Abstract—This article employs a discrete event simulator, 

CLOURAM (Cloud Risk Assessor and Manager), so to estimate 

risk indices in modern-day Cloud computing setting applicable 

to Hospital Healthcare Service Networks. This innovative 

approach has not been implemented earlier using a Cloud 

framework for digital queuing simulation. The article also 

innovatively examines emergency-physician management 

strategy through MCQS (Multi-Channel Queuing Simulation) 

and Hospital Scheduling. The macro-level goal is to assess and 

manage risk with tangible mitigation targets and to improve the 

operational quality of interconnected health care services for 

crucial needs such as improving the critical bed-count and dire 

physician-availability to meet growing demands towards 

designing pandemic contingency plans. The proposed methods 

are applied to five randomly selected States. The raw data 

originated from the national repository of States’ hospital 

networks. Such in-depth analyses not only assess the bed- and 

physician-inadequacy risk, but also foster feasibility plans by 

conducting cost and benefit analysis for future provisions of 

infrastructural needs to improve networked-healthcare services 

with cost-saving justifications. The results indicate that if 

physician-scarcities’ and bed-shortfalls’ admission and 

discharge input data can be traced to the States’ healthcare 

networks, the administrative and financial analysts can timely 

benefit from proactive digital simulations. JIT (Just-in-time) 

simulations would similarly help toward the States’ CON 

(Certificate of Need) laws, which require the capital 

expenditures’ approval by State health planning agencies to 

avoid unnecessary duplications of healthcare investment against 

wasteful practices.  

 
Index Terms—Simulation software, hospitals national 

repository, cost and benefit, physician- and bed-capacity, 

emergency, risk 

 

I. INTRODUCTION AND MOTIVATION  

Cloud computing is one of the vital research topics of the 

new century because it focuses on offering a variety of 

computing services conveniently and prudently through the 

internet, the largest of all online networks. A quantitative risk 

assessment, such as per the QoS (Quality of Service) in such 

enterprises, proves indispensable in modern trends. Cloud 

computing’s QoS can be challenging to measure, not only 

qualitatively, but most importantly, quantitatively. An index-

based Cloud-networked simulation is favorable to the 

intractably lengthy calculations by the theoretical Markov 

models, overly-limited in scope [1]. 

Cloud computing will be implemented to healthcare 

service networks to form a Cloud backbone in this research 

article. For such purposes, a detailed Cloud-based math-

statistical queuing simulation modeling is presented. This 

research study proposes an algorithmic, discrete-event 

simulated cost and benefit analysis in the realm of queuing 

principles to estimate hospitals healthcare service oriented 

Cloud network’s bed-capacity indices by mimicking feasible 

scenarios. It similarly plans to run a computationally 

intensive discrete-event simulation software to queuing 

patients for managing critical emergency-physician needs, 

provided cost and benefit analyses. The article plans to 

concurrently run an economic analysis to identify the cost of 

operating the queuing system and then, develop a cost-

optimal decision for the count of physicians to employ on an 

hourly operating cost basis to justify demand at times of 

emergency [2]. Digital simulations allow policy-makers to 

proactively prepare States’ CON laws for investment. Popular 

illustrations of Cloud Computing in Fig. 1 allude to ref. [3]:  

 

 
Fig. 1. Illustrative CLOUD (Hospital Healthcare Network) Computing. 

 

The Cloud model’s central idea for on-demand (or in-

service) access to a shared pool of resources is to utilize the 

JIT resources instead of depending on local servers to run 

applications or provide data access. In the proposed 

framework of hospitals, the healthcare industry modeled as a 

Cloud network poses no exception to the wider sense of 

Cloud computing. CLOURAM software, whereas, acts to 

benefit for estimating the bed-inadequacy risks, and 

mitigating those risks by providing cost and benefit analyses 

on planning and deployment of future bed-capacity needs. 

This article will help assess a critical risk that hospitals faced 

all over the World and USA, resulting from insufficient 

planning to abruptly rising bed- and physician-demands [4]. 

The problem addressed is of great importance considering the 

dire need for optimizing hospitals' bed-capacities and 

physician-count, especially during the COVID-19 pandemic 

that culminated to its peak damage in mid-2020 prior to 

invention of life-saver vaccinations such as BioNTECH [5]. 
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II. METHODS, SURVEY, AND INPUT DATA MANAGEMENT 

Motivations: A) To assess and manage risk of bed-

shortages by deploying bedding requirements justified by the 

associated cost and benefit analysis to facilitate the States’ 

CON laws with CLOURAM per Appendix button #13. B) To 

economize emergency-physician planning with MCQS and 

Hospital Scheduling per Appendix buttons #25 and #27. For 

both, Poisson arrivals and negative exponential service times 

by M/M/k (Poisson/Negative Exponential/k #channels) 

queuing on FCFS (First-Come-First-Served) are used [2].  

A. Assessment and Management of Risk of Bed-Shortages 

with Cost and Benefit  

The task of quantifying the lack of service due to the bed- 

shortages using the LOLP (Loss of Load or Loss of Service 

Probability) in a defined hospital healthcare network gains 

momentum. Authors positively affirm that there already exist 

Cloud applications albeit on a commercial and big-data basis, 

such as works like Sahoo et al. simulating healthcare 

employing CloudSim simulator [6]. Cloud computing is not 

a new concept in healthcare in an administrative sense, such 

that the adoption of Cloud technology has been increasing at 

an unexpected pace. As recent data shows, the global market 

for the general frame of Cloud technologies in the healthcare 

industry is expected to grow by ~$26 billion during 2020-

2024 [7]. The required input data for this study, whereas, 

includes the AHA (American Hospital Association) annual 

survey [8] and IHME (The Institute for Health Metrics and 

Evaluation)’s COVID-19 projections for 2020 [9]. In-depth 

probabilistic modeling of Cloud computing can be found in 

[10]. Moreover, this article conducts a digital time-dependent, 

time-clocked, discrete event simulation in the framework of 

a Cloud.  It compares available bed vs. patient demand in the 

realm of hospital healthcare network’s patients’ queuing 

algorithm based on admission and discharge mechanism in 

the CLOURAM software. This article also serves to design 

new strategies for optimal stockpiling medical supply (e.g. 

beds) and allocation for vital personnel demand such as 

physicians [11]. 

Summing lack of bed-capacity hours yields LOLE (Loss of 

Load Expected), i.e. an expected number of hours of the Loss 

of Load (Service). Load or service here implies bed-demand. 

LOLP=LOLE/NHRS, where NHRS=8760h, and d=LOLE/f 

indicates how long on the average, a loss of patient service 

due to bed-inadequacy endures before a spare bed is found. 

Frequency of deficiency is calculated by dividing the count 

of deficiencies by 8760h. Eq. (1) summarizes all:  

LOLE = f(Annual Frequency of Occurrences of Deficiencies) 

 d(Average Hourly Duration of  a Deficiency)                    (1) 

 

From the provided data initially, the OCR (Occupancy Rate) 

input is calculated in dividing the total inpatient days by the 

product of bed-count and 365 days. The OCR is the ratio of 

the number of beds occupied. The bed-demand is calculated 

in multiplying the hospital’s installed bed-count by its OCR. 

Bed-demand determines the patient-demanded number of 

actual beds in hospitals. The data from hospital raw data 

mainly includes the hospitals’ year, patients’ admission and 

discharge, inpatient days and hospital bed-demand. Eqs. (2) 

to (12) serve to build the input parameters. The LOS 

symbolizes a patient’s average length of stay in days.   

 

Capacity Value: Number of installed beds or bed-counts per 

group, e.g., 175 beds                                                                 (2) 

 

Groups: 1 to …n types of hospitals. Number of such identical 

groups, e.g., n=50 groups or 50 hospitals.                                  (3)  

  

Components: 1 to …m:  How many such hospitals of identical 

bed-capacity, e.g. m=5; in the article, all m=1.                       (4) 

    

Weibull Shape: β=1, i.e., Weibull pdf (probability density 

function) with its unity shape parameter to imply Negative 

Exponential (λ) pdf to be used.                                                       (5)   

   

Failure Rate: Hospitalization arrivals’ or patient’s admission 

rates, e.g., λ=0.1/h (1 every 10h), λ < μ.                                  (6) 

 

Repair Rate: De-hospitalization, departure, or patient’s 

discharge rate, e.g., μ=0.2/h (1 every 5h), μ > λ.                      (7) 

 

AHD (American Hospital Directory) survey includes 

organizational, operational, financial, and market-level 

information of U.S. hospitals, but what’s still missing was the 

patients’ admission and discharge rates [12]. The discharge 

rate (h-1) is calculated from the total count of inpatient days 

divided by the product of LOS and 8760h. Once the results 

are tabulated, bed-demand sum is calculated and used as the 

constant load for the CLOURAM input parameter. The sum 

of bed-counts are also verified by the software output in the 

form of total installed capacity, e.g. in Fig. 2. Once the 

calculations finalized, input templates for the CLOURAM are 

extracted from those tabulations of AHD’s EXCEL files. 

CLOURAM receives the input data as follows, recursively. 

 

 
Fig. 2. State of AL hospitals network CLOUD simulation output LOLE ≈ 1184 h (LOLP≈13.52%) for LOS=2 days with installed bed-capacity: 9647 and 
constant load (due to OCR) of 4627 beds demanded, and Multiplier: 0.95 (load curbing ratio) leading to 4396 beds below the red central line in Fig. 3. 
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Fig. 3. State of AL CLOUD simulation deficiency (below the central red line = 4396 beds) plot with a total of ~1184h of bed-inadequacy in a year. 

 

Occupancy Rate: OCR (unitless) = Bed Demand/Bed-Count 

= Inpatient days / (365  bed-count)                                   (8)  

 

Bed Demand (# of beds needed) = OCR  Bed-Count = 

Inpatient days / 365 days                                                               (9)  

 

Patient Admission Rate (h-1) = #Patient Admissions /8760h                                                                                                    

                                                                                           (10) 

  

Patient Discharge Rate (h-1) = Inpatient days / (LOS  8760h), 

where LOS = 2 (or 3) days upon choice                            (11) 

  

LOS in days = Inpatient days / Total #Discharges                  (12) 

 

The authors use Cloud computing discrete (not continuous) 

event simulation to research hospital network bed-resourcing 

by employing a queuing algorithm based on patients being 

admitted and discharged. If the available reserve bed capacity 

(Installed Bed Capacity−Bed Outages−Bed Demands) has 

less than a zero margin, an undesirable deficiency or bed-

count shortage occurs. Sample data is no less than n=31 

(prototype) and around n=50 (accepted norm) hospitals to 

display a statistically robust behavior for a Normal pdf 

approximation to the summed missing bed-count’s purely 

Poisson pdf with q≈1 (Fig. 3’s upper right corner) for AL State: 

LOL (Loss of Load) ~ Normal (μ = LOLE ≈ 1184h, σ ≈ 864h) 

with 68% of time of the LOL lying within one standard 

deviation of the LOLE, i.e. μ ± σ: (320h, 2048h). The input 

templates are finalized, and are loaded to the CLOURAM 

using the Cloud button #13 in Appendix. The constant load is 

the sum of the bed demands for the hospitals. Cloud-based 

digital simulation software, CLOURAM, assesses the bed-

inadequacy index, which is LOLP (Loss of Load or Lack of 

Service) risk by conducting ≥100 years of simulation per 

annum (8760h). The risk management is conducted cost-

optimally to mitigate LOLP index. Noteworthy details are: 

i) Not all data sets for the States are available for the same 

calendar year due to different project undertakings by 

different project analysts. Years show differences per 2010, 

2014 and 2018. Therefore, the performances of the States are 

not being compared to one another in terms of healthcare 

service efficacy owing to different years and sampling styles.  

ii) LOS = 2 days was accepted as a norm through Table I–

V since the higher LOS days are unrealistic and pessimistic.  

iii) The cost examples in Table VI were avoiding loss (−) 

but aiming for profit (+). Profit is not always possible. 

However, the breakeven cost values were calculated for when 

the income trend reversed from positive to negative, or else.   

iv) The bed-capacity graphs are fully plotted when the 

LOLP<0.15. The hospitals’ identities are hidden for privacy. 

Varying simulation runs such as from n=100 to 200, or to 

10,000 years whereas yielded slight differences converging 

to the true estimate, but intensive computations lasted longer. 

v) The States’ healthcare networks are assumed to be 

within easy reach of one another rather than too far away to 

enable the patients to be moved via medically equipped 

helicopters (or ambulances in prime condition) at hospitals’ 

helipads ready to act to compensate for missing beds. The 

urgently needy patients are transferred in case of emergency.  

vi) The patients’ data refer to pre-COVID projected ahead.  

1) States’ hospital cases and varying scenarios 

This article will quantitatively study five randomly 

selected States based on EXCEL-enabled hospital repository 

data banks from AHD and more to observe how the input data 

are processed to arrive at results where the five worst hospital 

bed-shortages were in CT, MA, NJ, NY and RI [13]. Table VI 

exhibits the calculated statistics of the networked-hospital 

healthcare indices for the MI (Northern), TX (Southern), AZ 

(South-Western), South-Eastern (AL) and Eastern (PA) 

dispersed under watch “where hospitals in the U.S. are under 

siege” [14]. Admission interarrival and discharge sojourn 

times are simulated by Negative Exponential pdf (λ) as a 

special case of the Weibull pdf, i.e. Wei (β=1, α=λ-1).  

Footnote of Table VI should state: For the cost and benefit 

analysis, a 1 million dollars ($1,000,000 or $1M) potential 

benefit is assumed per 1% rise of bed-availability of the 

hospital network regarding any State. For example, in the 3rd 

row of Table VI, i.e. MI state, LOLP (COL.8) drops to 

0.26604909 (Fig. 4) from 0.28553231 (Fig. 5) with %1.948 

improvements, roughly equal to 1.948%  $1M ≈ $1.948M 

benefit, and 200 new beds cost, 200  $7500 ≈ $1.5M. The 

overall profit is $1.948M – $1.5M ≈ $448K in Table VI’s 

ROW 3, COL.9 for MI under profit per Fig. 4 using Table III.  

For the exceeded optimal step in Fig. 4, if LOLP newly 

drops to ~0.25684 from ~0.28553 with ~%2.869 

improvements, Benefit ≈ 2.869%  $1M ≈ $2.869M. The 

State of MI’s 300 new beds cost 300  $7500 ≈ $2.25M. The 

final Profit ≈ $2,689M – $2.25M ≈ $619K is in Table VI, 

ROW 3, COL.13. 
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Fig. 4. State of MI hospitals CLOUD simulation bed–size (product) planning outcomes using input Table III. 

 

  
Fig. 5. State of MI Hospitals Network CLOUD Simulation Output LOLE=2498h (LOLP=28.5%) for LOS=2 days with installed bed-capacity=9586 and 

constant load (due to OCR) of 6292 beds demanded and Multiplier: 0.8 (load curbing ratio) of 6292 leading to 5034 beds below the central red line in Fig. 6. 

 

 
Fig. 6. State of MI CLOUD simulation deficiency (below the central red line =5034 beds) plot with a total of ~2498h of bed-inadequacy in a year. 

 

 
Fig. 7. State of AZ hospitals network CLOUD simulation output LOLE ≈ 1796h (LOLP = 20.5%) for LOS=2 days with installed bed-capacity=7521 and 

constant load (due to OCR) of 4776 beds demanded and Multiplier: 0.8 (load curbing ratio) of 4776 leading to 3821 beds below the central red line in Fig. 8. 
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Fig. 8. State of AZ CLOUD computing simulation deficiency (below the central red line = 3821 beds) plot with a total ~1796h of bed-inadequacy in a year. 

 

 
Fig. 9. State of PA hospitals network CLOUD simulation output LOLE ≈ 875h (LOLP ≈ 9.99%) for LOS=2 days with installed bed-capacity=7718 and 

constant load (due to OCR) of 5227 beds demanded and Multiplier: 0.8 (load curbing ratio) of 5227 yielding 4182 beds below the central red line in Fig. 10. 
 

  
Fig. 10. State of PA CLOUD computing simulation deficiency (below the red line =4182 beds) plot with a total of ~875h of bed-inadequacy in a year. 

 

 
Fig. 11. State of TX hospitals network CLOUD simulation output LOLE ≈ 2564h (LOLP ≈ 29.3%) for LOS=2 days with installed bed-capacity=9763 and 

constant load (due to OCR) of 6423 beds demanded and Multiplier: 0.8 (load curbing ratio) of 6423 yielding 5138 beds below the central red line in Fig. 12. 
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Fig. 12. State of TX CLOUD simulation deficiency (below the central red line = 5138 beds) plot with a total 2564h of bed-inadequacy in a year. 

 

2) Interpretative clarifications for the five different states: 

standard algorithmic approach 

In the following sections, one will observe pertinent 

interpretations for the five different randomly selected States 

as indicated by the columnar numerical input and output 

entries of Table VI. The following list of input data and output 

results follow the indicated sequence through Table I–V: 

a) Hospital Network Input: Tables I–V. 

b) Cloud LOLP Index Output: Fig. 2, Figs. 5–8.  

c) Bed-Count Time-Series: Figs. 3, 6, 8, 10, 12.  

d) Analytical Bed-Count Planning: Figs. 4, 13–16. 

e) Plotted Bed-Count Planning: Figs. 17–21.   

Standard Algorithm: Given one of USA’s randomly 

selected hospital networks in Table VI, as analyzed from 

input Tables I–V; follow the input steps in the indicated 

manner for State per AHA, IHME and AHD [8, 9, 12]. 

i) The randomly selected microcosm of hospitals of a 

hypothetical contiguous State (AL) covered 44 to 51 beds. 

ii) The OCR multiplied by the individually installed beds 

sum up to the total bed-demand per year. 

iii) A computationally feasible X% of the bed-demand 

yielding #Y beds, is taken as a constant load of demanded 

beds to be serviced per year. 

Follow the output steps in the following manner for any 

hypothetical State of USA in Figs. 2–21. 

i) Obtain the LOLP index for the risk assessment step (Figs. 

2–12). 

ii) Improve the LOLP index by deploying #Z new beds 

while each new bed is assumed to cost $W (Fig. 4, Figs. 13–

16). 

iii) The improved CLOURAM software risk (Fig. 4, Figs. 

13–16) yielded LOLP ≈ U % equivalent to LOLE ≈ V hours. 

iv) The improved CLOURAM software showed a profit of 

~$P at a breakeven cost of ~$B implying that unless the 

breakeven cost/bed exceeds ~$B, the Profit (+) prevails.  

v) Figs. 13, 17; 14, 18; 4, 19; 15, 20; 16, 21 show 

alternatives when #Q more beds instead of less. CLOURAM 

yielded LOLP ≈ U% with LOLE ≈ V hours with ~$P profit if 

$1M is gained per every 1% LOLP improved.  

vi) Figs. 3, 8, 6, 10, 12 are the oscillatory plots of number 

of beds on hourly basis with the central red line indicating the 

cut-off level between the adequate and deficient bed-counts. 

3) The state of Alabama hospitals network (Table VI, 

Row 1; Table I, Cols. 1 to 7; Figs. 2, 3, 13, 17, 22, 23) 

Follow the input steps in the following manner for the State 

of AL as instructed in subsection II-A.2’s standard algorithm:  

i) The forty-four randomly selected hospitals for the State 

of AL (Table VI, ROW 1, COL.2) covered 9,647 beds. 

ii) The OCR (Table I, ROW 1, COL.3), multiplied by the 

individually installed beds sum up to the actual number of 

bed-demands, 4,627 beds (Table I, ROW 1, COL.4) per year.  

iii) A computationally feasible 95% (below which 

CLOURAM can feasibly yield solutions) of the bed-demand, 

4,396 beds/h, is the curbed constant bed-demand (Fig. 2’s 

input Multiplier = 0.95). Fig. 3 is the time-series of bed-

counts.  

Follow the output steps in the following manner for the 

State of AL as instructed in subsection II-A.2’s algorithm:  

i) When AL’s input template in Fig. 2 was utilized, the 

CLOURAM software solution was LOLP ≈ 13.55% with 

LOLE ≈ 1,184h (Table VI, ROW 1, COL.5) and σ ≈ 864h. 

ii) The AL hospital network desires to improve by 

deploying 700 new beds (Table VI, ROW 1, COL.6) while 

each additional bed-cost is assumed to be $5,000 (Table VI, 

ROW 1, COL.7).  

iii) CLOUD software risk in Fig. 13 was LOLP ≈ 9.66% 

equivalent to LOLE ≈ 852 hours (Table VI, ROW 1, COL.8).  

iv) Fig. 13 software showed a profit of [(13.55−9.66)  

$1M] – [$5000  (10,347−9,647)] = $397K (Table VI, ROW 

1 COL.9) after 700+ beds at a breakeven cost of ~$5,566 

(Table VI, ROW 1 COL.10) implying that unless the 

paraphernal cost per bed exceeds ~$5,566, then the overall 

profit prevails.  

v) Figs. 13 and 17 show alternatives that when 800 more 

beds (Table VI, ROW 1, COL.11) instead of 700 (Table VI, 

COL.6), CLOURAM software yielded LOLP ≈ 9.15% with 

LOLE ≈ 802 hours (Table I, ROW 1, COL.12) for $407K 

profit (Table VI, ROW 1, COL.13) if $1M gain per every 1% 

LOLP increase.  

vi) Fig. 3 is the annual oscillatory plot of number of bed-

counts on an hourly basis with the central red line marking 

the cut-off level between adequate and deficient bed supplies.  
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Fig. 13. State of AL hospitals CLOUD simulation bed-count (product) planning outcomes from Table I input data. 

 

 

 

Fig. 14. State of AZ hospitals CLOUD simulation bed-capacity (product) planning outcomes from Table II input data. 

 

 

 

Fig. 15. State of PA hospitals CLOUD simulation bed-count (product) planning outcomes from Table IV input data. 

 

 

 
Fig. 16. State of TX hospitals CLOUD simulation bed-count (product) planning outcomes from Table V input data. 

 

 

4) Cloud queuing simulation of planning for hospitals’ 

networked-services deployed bed-capacity  

It is timely to review a description of CLOURAM’s 

architecture in terms of its computational building blocks [15]. 

What happens when the statewide or U.S.-wide hospital 

networks administration managers plan to increase the bed-

capacity to avoid bottlenecks in the possıble event of a real-

life emergency such as the notorious COVID-19 pandemic? 

At what level should they stop adding and installing extra 

beds to achieve an optimal ROI (Return on Investment) or one 

with a feasible cost and benefit analysis [16]? The goal is to 

optimize the quality of a hospital Cloud-based operation and, 

therefore, what to do? Namely, at the risk management level 

so as to economize the customer service quality by reserve 

planning of the additional bed-capacity cost and benefit (and 

the resultant Profit or Loss) will follow this step. Let’s follow 

the algorithmic steps to the generic product- or bed-capacity 

plan for the AL State in input Table I and Fig. 2 per Appendix: 

 

Step 1:  Normal Button: This is selected for risk assessment 

step’s input data in Fig. 2 to observe LOLP ≈ 13.52%.  

Step 2: Product (Bed) Planning: This button is selected as 

in Fig. 13 for the risk management step’s input data. 

Step 3: # of Product Increments: This in default is given as 

10, which indicates the number of product intervals required 

to plot the extra bed deployment performance graph.  
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Step 4: Product Multiplier: This in default is given as 1, 

which indicates the default number of components (=100) 

multiplied for the horizontal axis, such as 1100=100 beds or 

2100=200 beds or 3100=300 beds, or 10100=1,000 beds 

for extra bed units incremented in the CLOURAM For 

example, change the product multiplier from 1 to 100 to get a 

range of 100100=10K, 200100=20K,...,80K, 90K, 100K. 

Step 5: %LOLP Reduced: This in Fig. 13 is 30% feasibly 

given.  For MI, 10% (Fig. 4); for AZ, PA and TX, 20% (Figs. 

14-16). This says, if the difference between the starting and 

the next-optimized LOLP value is larger than e.g. ~30% of 

the latter, the capacity value stops at LOLP not exceeding the 

~30% of the LOLP (≈13.55%) due to a new simulation run.  

Step 6: Starting Product (#Beds) Value: 9647 is the 

initially installed total bed-capacity in Fig. 13 and Fig. 17. 

Step 7: Starting LOLP Value: ~13.55% is the LOLP value 

for the initial total bed-capacity of 9647 in Fig. 13 and Fig. 

17.  

Step 8: Optimal Product (#Beds) Value: Stops the product 

when 10,347 is the optimal capacity as in Fig. 13 and Fig. 17 

give product (bed-count) plan which increases the beds in the 

AL hospital network by 700 (= 10,347 − 9,647). 

Step 9: Optimal LOLP Value: ~ 9.66% is optimal if at least 

~30% of the initial ~13.55% is achieved in Fig. 13 and Fig. 

17. ~$397K is profited in Table VI’s COL. 9 since 

[(13.557477 − 9.660959) %  $1M] − [700  5,566] ≈ $397K 

Step 10: Exceeded Optimal Products#: 10,447(= 9,647 + 

800) beds is the total installed capacity at the end of the 

reserve product planning, exceeding beyond the target if not 

satisfied with the preceding optimal value.  

Step 11: Exceeded Optimal LOLP Value: ~9.15% is the 

LOLP index for the total bed-capacity of 10,447 for one more 

attempt around and exceeding beyond the planning target.  

Step 12: Cost in Fig. 13 given as $5,000 per bed in Table 

VI, ROW 1, COL.7, which indicates the dollar amount of the 

investment expense for one additional bed towards extra 

production- or bed-capacity. 

Step 13: Benefit is given as $1,000,000 per 1% increase for 

bed-capacity efficiency per Table VI’s footnote defined in 

II.A.1 This value indicates the dollar gained to improve the 

annual serviceability, i.e. as accrued by 1% decrease in the 

Loss of Load Probability, LOLP. See Fig. 13 and Fig. 17. 

Step 14: Here is a brief recap of the algorithm for adding 

new beds for the State of AL: 

 

Total Capacity Value (=9647) is the original installed bed-

capacity before incrementing more beds. 

 

Profit or loss (≈ $397K) indicates whether there is a Profit 

(+) or Loss (−) from the preceding steps 2 to 13.  

 

Breakeven Cost (~$5566) indicates the calculated cost 

amount for one bed above which the profit becomes a loss.  

Solution for AL exceeded optimality is as follows in Table 

VI, ROW 1 for the COLS. 11 to 13: 

 

Benefit (B) = (∆LOLP = 0.13557477−0.09150057)  100% 

 $1,000,000 = $4,407K gained. Cost(C) = (10447−9647)  

$5000 ≈ 800  $5,000 = $4M.    

 

Therefore, Benefit(B) − Cost(C) ≈ $407K roughly is the 

hand-calculated and rounded-off profit as in Table VI, ROW1, 

COL.13. So, Table VI, ROW 1, COL. 11 shows the increase 

from an initial 9,647 beds to 10,447 with 800 more beds 

added as the new bed-capacity. As a result of the new extra 

bed-capacity, the Loss of Load Probability favorably drops to 

LOLP ≈ 9.15% from LOLP ≈ 13.55% initially. 

 

Step 15: Cost and benefit analysis initially showed a profit 

of ~$397K in Fig. 13 with +700 beds for an optimal increase 

of bed-count in Table VI, ROW 1, COL. 9. This comes with 

a breakeven cost per each additive bed, as shown to be 

roughly $5,566 instead of the initial input of $5,000. This 

implies that if the break-even cost per each additional bed 

~$5,566, not $5,000 as an arbitrary placeholder, the “Benefit 

– Cost” difference (positive Profit or negative Loss) outcome 

would come to even out to the zero Loss or Profit (≈$0). 

 

A core summary of the hospital CLOURAM discrete event 

simulation application boils down to the contents of the pair 

of Figs. 13 and 17 (AZ: Figs. 14, 18; PA: Figs. 15, 20; MI: 

Figs. 4, 19; TX: Figs. 16, 21) in the case of randomly sampled 

AL hospitals where the central red threshold line reveals: 

LOLE ≈ 1,184h and frequency of loss ≈1,184 (unitless); 

hence, yielding an average duration of loss ≈ 1h by equation 

(1) of II.A per Fig. 2. This is interpreted as the sum of hours 

to recuperate due to bed–unavailability, or the sum of 

deficiencies under the red threshold in the varying hourly 

time-series per annum of 8760h. The standard deviation of 

LOLE, ~864h, in Fig. 2 outcome will diminish owing to more 

simulation runs from 100 years’ up to >1000s. EUPU 

(Expected Unserved Production Units/year) ≈ 5,206,353 

beds/year, found at the right hand bottom corner of Fig. 2, 

signifies the #bed-hours to be salvaged by the hospital, had 

the annual average bed-capacity index been quasi–perfect to 

patients’ demands with an ideal zero defect. If this implies 

that the LOLP so drops down to 0% from 13.52%, and if the 

hospital plans and premeditates $1M profit per 1% drop of 

unavailability, the overall profit is $13.52M. The State-wide 

hospital network can profit 13.52M / $5,000 (cost/bed) ≈ 

2,700 beds in the context of a static index. Dynamic index, 

however, shows that $13.52M / 5,206,353 bed-h (by Fig. 2’s 

EUPU) ≈ $2.6 per bed-h should be profited by the hospital’s 

daily services. This example for a dynamic index argument is 

valid for other States’ EUPU values in the coming sections. 
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Fig. 17. State of AL hospitals’ CLOUD computing simulation for the bed-count planning’s full-plotted diagram using Fig. 7 with 700 and 800+ beds 

respectively, justified by the cost and benefit analysis obtained from Table I input data. 
 

 
Fig. 18. State of AZ hospitals’ CLOUD computing simulation for the bed-count planning’s line-plotted diagram using Fig. 11 with 300+ and 400+ beds 

respectively, justified by the cost and benefit analysis obtained from Table II input data. 
 

 
Fig. 19. State of MI hospitals’ CLOUD simulation for the bed-count planning’s line-plotted diagram using Fig. 15 with 200+ and 300+ beds respectively, 

justified by the cost and benefit analysis obtained from Table III input data. 
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Fig. 20. State of PA hospitals CLOUD computing simulation for the bed-capacity planning’s full-plotted diagram using Fig. 19 with 200+ and 300+ beds 

respectively, justified by the cost and benefit analysis obtained from Table IV input data. 

 

 
Fig. 21. State of TX hospitals CLOUD simulation for the bed-capacity planning’s line-plotted diagram using Fig. 23 with 700+ and 800+ beds respectively,  

    justified by the cost and benefit analysis obtained from Table V input data.    

 

5) Tables and figures for bed-capacity risk 

Refer to Tables I-X and Figs. 2–23, in III.A’s bed-capacity-

oriented input data and output computations.  

B. Assessment and Management of Emergency Physician-

Scarcity Risk with Cost and Benefit 

Section II.-B. supported by Tables I–XXIII (except for 

Table VI) and Fig. 24 [2, 22] which studied the bed-shortfalls, 

is quite justifiably concerned with the provision of another 

but equally decisive significant factor of a hospital healthcare 

network. This is no other than the emergency physician-count 

at epochs of epidemics as evidenced by recent events. Table 

XI, fundamentally independent of Table VI, outlines input 

data and output solutions for all five different States from a 

lack of personnel (i.e. physicians) perspective. Table XI is a 

compact tabulation of all five States’ input data of descriptive 

COLS. 1 to 3 followed by COLS. 4 to 5, such as: Patient’s 

Admission’s and Patient Discharge’s Poisson rates (λ and μ) 

in turn, and negative exponential mean times referring to 

MTTA (Mean Time to Admission) and MTTD (Mean Time to 

Discharge). Table XI has the number of #Waiting out of the 

daily patient or bed- demand and W (the average time a unit 

spends in the system) when k=1 or k=2 or k=3 physicians or 

doctors are available as in the MCQS and Hospital Scheduling 

software of Appendix referring to buttons #25 and 27.  

The principal author’s MCQS is also software for financial 

banking. It can be adapted to a hospital emergency-ward 

setting. For an average e.g. AL clinic’s arrival: λ (admission) 

and service: μ (discharge) rates, use Table I caption. For other 

States’ averaged λ and μ rates, use captions of Tables II–V.  

The pursuant COLS. 6, 7 and 8 that denote the number of 

patients queuing (#Waiting) for any of the five States’ daily 

#bed demands, also symbolized as the number of simulation 

runs for each State in their respective MCQS outcomes. The 

capitalized letter W (average system time) in MCQS-related 

tables when multiplied by their respective admission rate (λ) 

will find the average #system units, i.e. L (Little’s Eq.) = λw 

in COLS. 9, 10 and 11. This is evidenced by Tables VII–X for 

k=1, 2 or 3 physicians for the State of AL. This finally leads 

to COLS. 12, 13 and 14 to yield the general equation of TC:  

 

TC (Total Cost) = Cwaiting*L + Cservice*k, k = #physicians (13)  
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For an example, Cwaiting=$1,000 since the loss or premature 

departure of an over-waiting patient can cause the hospital 

emergency-ward a financial loss of roughly $1,000 with 

health insurance-related plus co-pay expenses for an hour of 

consultation. Cservice=40/h by any attending emergency 

physician roughly brings his/her annual salary to $350,400 

during an 8760h-long service period to 40$/h x 8760h≈$350K 

for k(#physicians) =1. Fig. 24 carries an important message 

as such, evident from Table XI’s COLS. 12, 13 and 14 because 

after employing k (#channels) = 1 physician, the overall 

hospital’s TC (total cost) of employing k=2 physicians drops, 

and one more hire yielding k=3 again raises the hospital TC. 

Fig. 24 out of scale clarifies graphically that TC reaches an 

inflection point roughly at a certain channel evident from 

Table XI to judge that k=2 is a cost-optimal count of 

physicians to employ in an emergency setting with the 

scenario input data here provided. 

 

III. CONCLUSIONS, COMPARISONS AND CONTRASTS WITH 

OTHER WORKS 

A. Conclusions  

The objectives of this article’s computationally intensive 

simulations are: a) To assess the bed-shortage-risk in 

hospitals by providing a cost and benefit analysis; and b) To 

assess the physician-inadequacy risk in the hospital 

emergency wards during epidemics and thus, manage in the 

most economic manner a much-needed cost-optimal 

physician-count, a fact recently exposed to the entire world 

after an unprecedented COVID-19 onslaught reaching 6.3M 

deaths in June 2022 [5].  

Appendix outlines how the reader can install the 

CyberRiskSolver to run the CLOURAM and MCQS, and 

Hospital Scheduling apps created by the principal author [1]. 

Tables I, VII–X, and Tables II–V, XII–XXIII display the 

individual five States’ outcomes tabulated by the input and 

output columns of the pivotal summary rows and columns of 

Tables VI and XI. This article, as Section II: METHODS, 

SURVEY, AND INPUT DATA MANAGEMENT’s initiating 

paragraph describes, proposes an application of a) 

CLOURAM and b) MCQS, both discrete event simulators, in 

the realm of hospital healthcare networks servicing an influx 

of queuing patients. Both computationally intensive 

simulation software use Poisson count of patient arrivals and 

Weibull patient service times with their scale parameter β=1, 

thus yielding a Negative Exponential pdf.  

The motivation of this article is that once the distinct State-

wide hospitals systems are treated as a centralized Cloud- 

network of healthcare services within the structure of patients 

being involved in a queuing episode, and once the patients are 

admitted for seeking cure to their ailments and maladies; the 

risk assessment and management of the lack of physicians 

and bed-shortage at hospitals take over the severest priority. 

Thus, how to improve or mitigate the unsatisfactory risk 

follows suit, justified by their corresponding cost and benefit 

analyses, which were covered and discussed throughout 

sections II-A.1 to II-A.5, and Tables I-V, and Figs. 2, 3, 13, 

17, 22–24. The primary goal of this article is to assess and 

then, manage the bed-capacity and physician-scarcity risks 

where cost and benefit parameters are introduced to discern 

the extent of profit or loss in need-based State hospital 

networks. Best practices dictate counter-measurable 

precautions to mitigate the undesirable risk of bed- and 

physician-inadequacy to facilitate useful CON laws [19, 20].  

Therefore, equally significant What-If scenarios [15, 16] 

previously reviewed in Section II.A.4. are, i) How does one 

profit more by Cloud computing in optimizing the bed-

capacity resources? ii) How does one save and profit from 

Cloud computing by optimizing to manage the load cycle 

while varying the load multiplier constant (≤1) as practiced 

in Figs. 2, 4, 5, 7, 9, 11, 13–16. This novel research effort 

makes a tangible contribution to healthcare service’s dual bed 

and physician capacity planning initiatives, given the 

financial and quality implications of COVID-19 pandemic on 

hospitals with unimaginable levels of aggressive, albeit 

professional competition in the healthcare industry [17]. 

 

 
TABLE I: STATE OF ALABAMA (AL) RANDOMLY SAMPLED HOSPITALS NETWORK INPUT DATA SPREADSHEET* EXPECTED ADMISSION RATE: 1.92/H, MEAN 

TIME: 0.52H, EXPECTED DISCHARGE RATE: 5.23/H, MEAN TIME: 0.19H 

AL STATE INPUT DATA SETS FOR BED- AND PHYSICIAN-COUNT RELATED ANALYTICAL OUTPUT 
STATE OF ALABAMA (AL) FOR THE YEAR 2018 

Order 

(1-44) 

Total #  

Hospital 

Beds 

Occupancy      

Rate (OCR) 

Total #Bed    

 Demands 

  per year 

Admission Rate 

hour-1 

Discharge Rate 

hour-1     

  (LOS=2) 

 Discharge  

Rate hour-1         

   (LOS=3) 

1 252 0.50 126 1.263 2.629 1.753 

2 83 0.36 30 0.399 0.617 0.411 

3 270 0.60 161 0.163 3.348 2.232 

4 129 0.09 12 0.877 0.245 0.163 

5 231 0.39 91 0.877 1.889 1.259 

6 595 0.35 209 2.904 4.364 2.909 

7 204 0.51 104 0.607 2.174 1.449 

8 156 0.02 3 0.054 0.069 0.046 

9 145 0.55 80 0.769 1.673 1.115 

10 46 0.09 4 0.094 0.091 0.061 

11 264 0.43 113 0.890 2.359 1.573 

12 235 0.65 152 1.265 3.169 2.113 

13 327 0.80 262 2.162 5.454 3.636 

14 99 0.28 28 0.457 0.577 0.385 

15 47 0.23 11 0.189 0.224 0.150 

16 141 0.75 106 0.914 2.206 1.471 

17 167 0.04 7 0.153 0.144 0.096 

18 358 0.47 169 0.058 3.521 2.347 
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19 185 0.07 12 0.200 0.252 0.168 

20 28 0.15 4 0.064 0.085 0.056 

21 90 0.58 52 0.511 1.082 0.721 

22 879 0.77 678 4.857 14.118 9.412 

23 183 0.67 123 1.127 2.572 1.715 

24 259 0.25 65 0.810 1.363 0.909 

25 49 0.07 4 0.123 0.076 0.050 

26 669 0.60 402 3.132 8.374 5.583 

27 349 0.57 197 1.691 4.113 2.742 

28 209 0.78 163 1.034 3.397 2.265 

29 149 0.91 136 0.762 2.839 1.892 

30 176 0.80 141 1.150 2.944 1.963 

31 389 0.60 233 2.123 4.860 3.240 

32 270 0.75 203 1.473 4.232 2.821 

33 184 0.08 15 0.317 0.311 0.207 

34 207 0.35 73 0.965 1.527 1.018 

35 515 0.41 210 1.634 4.365 2.910 

36 89 0.24 21 0.235 0.448 0.298 

37 218 0.13 28 0.466 0.574 0.382 

38 163 0.30 48 0.822 1.003 0.669 

39 178 0.43 77 0.742 1.598 1.065 

40 115 0.14 16 0.171 0.331 0.220 

41 54 0.12 6 0.185 0.133 0.089 

42 187 0.17 32 0.319 0.662 0.441 

43 33 0.30 10 0.128 0.205 0.137 

44 71 0.11 8 0.232 0.170 0.113 

 9647  4627    

 

 
TABLE II: STATE OF ARIZONA (AZ) RANDOMLY SAMPLED HOSPITALS NETWORK INPUT DATA SPREADSHEET* EXPECTED ADMISSION RATE: 1.78/H, MEAN 

TIME: 0.56H, EXPECTED DISCHARGE RATE: 4.55/H, MEAN TIME: 0.22H  

AZ STATE INPUT DATA SETS FOR BED- AND PHYSICIAN-COUNT RELATED ANALYTICAL OUTPUT  

STATE OF ARIZONA (AZ) FOR THE YEAR 2010 

Order 

(1-50) 

Total # Hospital 

Beds 

Occupancy 

Rate(OCR)    

Total #Bed 

Demand 

per year 

Admission 

Rate hour-

1 

Discharge Rate  

hour-1 (LOS=2) 

Discharge Rate 

hour-1 (LOS=3) 

1 48 0.48 23 0.142 0.487 0.325 

2 22 0.42 9 0.078 0.193 0.129 

3 583 0.69 404 4.109 8.468 5.645 

4 51 0.58 30 0.048 0.622 0.415 

5 500 0.75 377 3.715 7.908 5.272 

6 59 0.60 35 0.558 0.744 0.496 

7 23 0.35 8 0.096 0.167 0.111 

8 111 0.56 62 0.712 1.302 0.868 

9 224 0.87 196 2.058 4.104 2.736 

10 15 0.53 8 0.030 0.166 0.110 

11 60 0.72 43 0.133 0.907 0.605 

12 144 0.39 56 0.599 1.184 0.789 

13 16 0.38 6 0.072 0.127 0.085 

14 19 0.74 14 0.222 0.295 0.197 

15 139 0.59 82 0.916 1.714 1.143 

16 172 0.56 97 0.840 2.029 1.353 

17 25 0.27 7 0.068 0.142 0.095 

18 16 0.44 7 0.028 0.149 0.099 

19 72 0.37 27 0.384 0.557 0.371 

20 25 0.46 11 0.037 0.239 0.159 

21 180 0.55 99 0.938 2.081 1.387 

22 65 0.56 36 0.216 0.761 0.057 

23 70 0.24 17 0.188 0.357 0.238 

24 74 0.72 53 0.157 1.116 0.744 

25 345 0.62 213 1.430 4.459 2.973 

26 20 0.33 7 0.132 0.137 0.091 

27 338 0.73 247 0.013 5.181 3.454 

28 80 0.75 60 0.248 1.252 0.834 

29 85 0.75 63 0.263 1.330 0.887 

30 266 0.72 193 1.919 4.039 2.693 

31 100 0.63 63 0.830 1.323 0.882 

32 24 0.32 8 0.064 0.160 0.107 

33 225 0.64 144 1.084 3.020 2.013 

34 301 0.59 178 0.409 3.741 2.494 

35 134 0.53 71 0.874 1.485 0.990 

36 15 0.06 1 0.013 0.020 0.013 

37 59 0.40 23 0.319 0.489 0.326 

38 8 0.33 3 0.053 0.055 0.036 

39 21 0.26 5 0.048 0.114 0.076 
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40 496 0.67 331 2.930 6.943 4.628 

41 110 0.58 64 0.696 1.340 0.893 

42 54 0.50 27 0.100 0.568 0.379 

43 373 0.63 234 2.314 4.901 3.267 

44 449 0.58 262 2.380 5.488 3.659 

45 422 0.79 331 2.620 6.948 4.632 

46 236 0.72 170 0.601 3.557 2.371 

47 19 0.28 5 0.064 0.113 0.076 

48 25 0.43 11 0.162 0.223 0.149 

49 333 0.53 176 1.999 3.684 2.456 

50 270 0.66 178 2.111 3.724 2.482 

 7521  4776    

 

 
 

TABLE III: STATE OF MICHIGAN (MI) RANDOMLY SAMPLED HOSPITALS NETWORK INPUT DATA SPREADSHEET* EXPECTED ADMISSION RATE: 2.45/H, 

MEAN TIME: 0.41H, EXPECTED DISCHARGE RATE: 6.02/H, MEAN TIME: 0.17H    
MI STATE INPUT DATA SETS FOR BED-AND PHYSICIAN-COUNT RELATED ANALYTICAL OUTPUT 

STATE OF MICHIGAN (MI) FOR THE YEAR 2010 

Order 

(1-51) 

Total # Hospital 

Beds 

Occupancy 

Rate (OCR) 

Total #Bed 

Demands 

   per year 

Admission Rate 

hour-1 

Discharge Rate 

hour-1 (LOS=2) 

Discharge        

Rate hour-1   

   (LOS=3) 

1 44 0.60 27 0.041 0.553 0.368 

2 25 0.28 7 0.089 0.144 0.096 

3 80 0.55 44 0.101 0.917 0.611 

4 391 0.75 291 2.712 6.072 4.048 

5 387 0.64 248 2.312 5.171 3.447 

6 989 0.69 683 6.343 14.226 9.484 

7 141 0.64 91 0.355 1.886 1.257 

8 530 0.72 383 3.586 7.971 5.314 

9 65 0.55 36 0.493 0.740 0.493 

10 49 0.35 17 0.220 0.357 0.238 

11 560 0.75 421 3.700 8.770 5.847 

12 620 0.73 452 3.832 9.425 6.283 

13 20 0.14 3 0.041 0.057 0.038 

14 208 0.71 147 1.193 3.062 2.041 

15 96 0.79 75 0.221 1.572 1.048 

16 84 0.61 51 0.404 1.069 0.712 

17 96 0.89 85 0.018 1.779 1.186 

18 74 0.75 56 0.134 1.162 0.775 

19 119 0.42 50 0.478 1.040 0.694 

20 68 0.35 24 0.251 0.497 0.332 

21 24 0.31 7 0.101 0.154 0.102 

22 24 0.20 5 0.071 0.099 0.066 

23 37 0.31 12 0.175 0.242 0.161 

24 348 0.18 63 0.239 1.322 0.881 

25 221 0.73 161 0.058 3.362 2.242 

26 188 0.60 113 0.500 2.352 1.568 

27 335 0.78 260 2.487 5.413 3.609 

28 220 0.54 118 0.947 2.468 1.645 

29 157 0.53 83 0.873 1.721 1.147 

30 80 0.40 32 0.304 0.662 0.441 

31 49 0.30 15 0.207 0.310 0.206 

32 38 0.26 10 0.100 0.203 0.136 

33 203 0.54 110 1.057 2.300 1.533 

34 25 0.38 10 0.104 0.199 0.132 

35 65 0.80 52 0.082 1.086 0.724 

36 62 0.31 19 0.226 0.400 0.267 

37 268 0.68 181 1.419 3.773 2.515 

38 306 0.67 206 1.929 4.285 2.856 

39 39 0.36 14 0.193 0.296 0.197 

40 25 0.17 4 0.060 0.086 0.058 

41 25 0.31 8 0.107 0.161 0.107 

42 78 0.56 44 0.472 0.909 0.606 

43 407 0.82 332 2.603 6.918 4.612 

44 73 0.61 44 0.064 0.921 0.614 

45 214 0.54 116 1.158 2.421 1.614 

46 77 0.67 51 0.330 1.071 0.714 

47 244 0.69 169 1.458 3.529 2.353 

48 319 0.82 261 0.351 5.434 3.623 

49 394 0.77 303 3.183 6.305 4.203 

50 355 0.79 280 2.364 5.830 3.887 

51 40 0.47 19 0.120 0.388 0.259 

 9586  6292    
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TABLE IV: STATE OF PENNSYLVANIA (PA) RANDOMLY SAMPLED HOSPITALS NETWORK INPUT DATA SPREADSHEET* EXPECTED ADMISSION RATE: 0.97/H, 
MEAN TIME: 1.03H, EXPECTED DISCHARGE RATE: 3.91/H, MEAN TIME: 0.26H 

PA STATE INPUT DATA SET FOR BED- AND PHYSICIAN-COUNT RELATED ANALYTICAL OUTPUT   

STATE OF PENNSYLVANIA (PA) FOR THE YEAR 2010 

Order 

(1-49) 

Total # 

Hospital 

Beds 

Occupancy 

Rate (OCR) 

Total #Bed 

Demands 

per year 

Admission Rate 

hour-1 

Discharge Rate 

hour-1 (LOS=2) 

Discharge Rate 

hour-1 (LOS=3) 

1 158 0.71 112 0.96 2.32 1.55 

2 80 0.75 60 0.20 1.25 0.83 

3 109 0.86 94 0.65 1.95 1.30 

4 448 1.07 480 1.00 10.01 6.67 

5 68 0.44 30 0.19 0.63 0.42 

6 36 0.47 17 0.12 0.35 0.24 

7 40 0.42 17 0.11 0.35 0.23 

8 146 0.95 138 0.54 2.88 1.92 

9 32 0.48 15 0.09 0.32 0.21 

10 73 0.47 34 0.11 0.71 0.47 

11 150 0.64 96 0.84 2.00 1.34 

12 152 0.69 106 0.51 2.20 1.47 

13 165 0.47 78 0.66 1.63 1.08 

14 96 0.48 46 0.42 0.96 0.64 

15 25 0.57 14 0.16 0.30 0.20 

16 42 0.74 31 0.03 0.65 0.43 

17 254 0.62 158 1.31 3.30 2.20 

18 95 0.50 47 0.31 0.99 0.66 

19 145 0.44 63 0.48 1.32 0.88 

20 76 0.60 45 0.49 0.94 0.63 

21 141 0.64 91 0.77 1.89 1.26 

22 25 0.52 13 0.13 0.27 0.18 

23 150 0.51 76 0.56 1.59 1.06 

24 44 0.61 27 0.08 0.55 0.37 

25 59 0.93 55 0.29 1.14 0.76 

26 276 0.65 179 1.57 3.73 2.48 

27 20 0.24 5 0.04 0.10 0.07 

28 254 0.55 140 1.17 2.91 1.94 

29 130 0.61 80 0.75 1.66 1.11 

30 164 0.71 116 0.98 2.42 1.61 

31 496 0.60 299 2.12 6.24 4.16 

32 96 0.79 76 0.13 1.58 1.06 

33 58 0.58 33 0.10 0.70 0.46 

34 374 0.59 222 0.51 4.62 3.08 

35 312 0.72 224 2.33 4.67 3.11 

36 312 0.72 224 2.33 4.67 3.11 

37 312 0.72 224 2.33 4.67 3.11 

38 234 0.54 126 1.23 2.62 1.75 

39 95 0.56 53 0.24 1.11 0.74 

40 224 0.71 158 1.54 3.30 2.20 

41 209 0.50 104 1.15 2.17 1.45 

42 30 0.34 10 0.10 0.21 0.14 

43 335 0.88 296 0.04 6.17 4.11 

44 250 0.75 188 0.03 3.92 2.61 

45 278 0.78 216 0.01 4.50 3.00 

46 59 0.57 34 0.38 0.71 0.47 

47 224 0.61 136 1.36 2.83 1.89 

48 65 0.81 53 0.16 1.10 0.73 

49 102 0.85 86 0.11 1.80 1.20 

 7718  5227    
 

 

 

 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

International Journal of Computer Theory and Engineering, Vol. 15, No. 1, February 2023

23



  

TABLE V: STATE OF TEXAS (TX) RANDOMLY SAMPLED HOSPITALS NETWORK INPUT DATA SPREADSHEET* EXPECTED ADMISSION RATE: 2.13/H, MEAN 

TIME: 0.47H, EXPECTED DISCHARGE RATE: 7.81/H, MEAN TIME: 0.13H 
TX STATE INPUT DATA SET FOR BED- AND PHYSICIAN-COUNT RELATED ANALYTICAL OUTPUT 

STATE OF TEXAS (TX) FOR THE YEAR 2014  

Order (1-49) 
Total # 

Hospital Beds 

Occupancy 

Rate 

(OCR) 

Total #Bed 

Demands 

per year 

Admission 

Rate hour-1 

Discharge  

Rate hour-1 

 (LOS=2) 

Discharge Rate 

hour-1 

(LOS=3) 

1 65 0.48 31 0.424 0.652 0.435 

2 381 0.08 31 0.086 0.651 0.434 

3 25 0.53 13 0.079 0.274 0.183 

4 34 0.73 25 0.101 0.516 0.344 

5 30 0.07 2 0.011 0.045 0.030 

6 209 0.63 131 1.018 2.731 1.821 

7 40 0.40 16 0.155 0.335 0.223 

8 53 0.39 21 0.210 0.435 0.290 

9 875 0.75 655 1.321 13.645 9.096 

10 241 0.62 149 1.147 3.108 2.072 

11 167 0.53 88 0.961 1.833 1.222 

12 553 0.64 353 2.615 7.357 4.905 

13 16 0.73 12 0.048 0.243 0.162 

14 24 0.87 21 0.014 0.437 0.291 

15 25 0.31 8 0.121 0.164 0.109 

16 237 0.65 155 1.620 3.232 2.154 

17 15 0.34 5 0.077 0.107 0.071 

18 923 0.69 641 4.280 13.345 8.897 

19 679 0.65 444 3.760 9.257 6.171 

20 562 0.63 357 2.905 7.433 4.956 

21 766 0.79 606 3.746 12.618 8.412 

22 422 0.73 310 2.174 6.452 4.302 

23 718 0.77 551 3.697 11.481 7.654 

24 62 0.85 53 0.071 1.096 0.731 

25 66 0.95 63 0.204 1.310 0.874 

26 381 0.90 345 0.106 7.183 4.789 

27 70 0.68 48 0.514 0.996 0.664 

28 85 0.38 32 0.448 0.669 0.446 

29 78 0.38 30 0.228 0.624 0.416 

30 121 0.37 45 0.553 0.938 0.625 

31 142 0.61 87 1.021 1.816 1.211 

32 148 0.21 31 0.407 0.649 0.432 

33 86 0.53 46 0.531 0.952 0.635 

34 101 0.61 62 0.570 1.293 0.862 

35 44 0.38 17 0.220 0.351 0.234 

36 58 0.86 50 0.303 1.045 0.697 

37 92 0.72 66 0.498 1.380 0.920 

38 314 0.85 266 0.290 5.550 3.700 

39 55 0.61 34 0.194 0.698 0.466 

40 35 0.41 14 0.055 0.299 0.200 

41 80 0.54 43 0.229 0.897 0.598 

42 58 0.86 50 0.303 1.045 0.697 

43 92 0.72 66 0.498 1.380 0.920 

44 55 0.61 34 0.194 0.698 0.466 

45 11 0.25 3 0.040 0.058 0.038 

46 35 0.41 14 0.055 0.299 0.200 

47 266 0.61 162 1.359 3.367 2.245 

48 44 0.31 14 0.068 0.287 0.192 

49 124 1.00 124 0.525 2.575 1.717 

 9763  6423    
 
 

TABLE VI: INPUT DATA AND OUTPUT SOLUTIONS FOR AL, AZ, MI, PA, AND TX ON BED-CAPACITY MANAGEMENT (APPENDIX BUTTON #13)  

1 2 3 4 5 6 7 8 9 10 11 12 13 
NETWORKED 
HOSPITALS 

IN STATES 

#GROUPS= 
#HOSPITALS 

(#BEDS) 

DAILY 
#BED 

DEMAND 

for COL.2  

CURBED 
#BED 

DEMAND 

(curb%) 
for COL.3  

LOLP 
(unitless) 

(LOLE hour) 

for COL.2 

#BEDS+ 
ADDED 

for 

COL.5 

$COST 
Per BED 

for 

COL.6 

LOLP 
unitless 

(LOLE 

hour) for 
COL.6 

PROFIT(+) 
or LOSS(-) 

for COL.6 

BREAKEVEN 
BED $COST 

for COL.6 

#BEDS+ 
ADDED 

for 

COL.5 

LOLP 
unitless 

(LOLE hour) 

for COL.11 

PROFIT(+) 
or LOSS(-) 

for COL.11 

AL* 44 (9647) 4627 4396 

(95%) 

0.1355 

(1184 h) 

700 $5,000 0.0966 

(852 h) 

$397K $5,566 800 0.0915 

(802 h) 

$407K 

AZ* 50 (7521) 4774 3821 

(80%) 

0.205 

(1796 h) 

300 $7,500 0.165 

(1445 h) 

$1674K $13,079 400 0.154 

(1346 h) 

$2089K 

MI* 51 (9586) 6292 5034 

(80%) 

0.286 

(2498 h) 

200 $7,500 0.266 

(2330 h) 

$448K $9,742 300 0.257 

(2251 h) 

$619K 

PA 49 (7718) 5227 4182 

(80%) 

0.0999 

(875 h) 

200 $7,500 0.0821 

(719 h) 

$259K $8,795 300 0.0741 

(649 h) 

$310K 

TX 49 (9763) 6423 5138 

(80%) 

0.293 

(2564 h) 

700 $7,500 0.238 

(2085 h) 

$249K $7,855 800 0.230 

(2018 h) 

$292K 

(*Indicates those States in Table VI with CON programs in place from Fig. 22; in collecting States’ data, PA and TX were not known to be non-CON States) 
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TABLE VII: DISCRETE EVENT SIMULATION OF AL HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL COST, TC(K=1) ≈ $612 

 

  

 

 
 

The following outcome with 10,000 runs is almost 

identical to a preceeding Table IV with 4627 trials, since 

simulation results will end up roughly the same as long as 

#runs > ~500, since results vary from #runs to more unless 

100M times causing subtle changes, i.e. Prob. of Waiting: 

0.3669 (for 4627 runs) ≈0.3678 (for 10K runs) when #runs 

increased 20-fold, i.e. a comparatively negligible increase. 

 

TABLE VIII: DISCRETE EVENT SIMULATION OF AL HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL COST: TC(K=1) ≈ $619 
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TABLE IX: DISCRETE EVENT SIMULATION OF AL HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL COST: TC(K=2) ≈ $456 

 

 

 

 
 

TABLE X: DISCRETE EVENT SIMULATION OF AL HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL COST: TC(K=3) ≈ $491 
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TABLE XI: INPUT DATA AND OUTPUT SOLUTIONS FOR AL, AZ, MI, PA AND TX ON DOCTORS-CAPACITY MANAGEMENT (APPENDIX BUTTON #25) 
1AL Tables I, VII-X; 2AZ Tables II, XII-XIV; 3MI Tables III, XV-XVII; 4PA Tables IV, XVIII-XX; 5TX Tables V, XXI-XXIII 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
NETWORKED 

STATES 
#GROUPS 

(#HOSPITALS)  

DAILY #BED  

DEMAND 
Admissions 

𝜆 (MTTA) 

Discharge 

𝜇 (MTTD) 

#Waiting (W)  

# Doctors (1) 

#Waiting (W)  

# Doctors (2) 

#Waiting (W)  

# Doctors (3) 
L= 𝜆 W 

# Doctors (1) 

L= 𝜆 W 

# Doctors (2) 

L= 𝜆 W 

# Doctors (3) 
TC=CWaiting  L + CService  k 

# Doctors (1) # Doctors (2) # Doctors (3) 
1AL* 44 (9647) 4627 1.92/h 

(0.52 h) 

5.23/h 

(0.19 h) 

1702 

(0.298) 

247 

(0.195) 

45 

(0.193) 

0.57216 0.3744 0.37056 $612.37 $455.73 $490.81 

2AZ* 50 (7521) 4776 1.78/h 

(0.56 h) 

4.55/h 

(0.22 h) 

2509 

(0.375) 

445 

(0.231) 

25 

(0.226) 

0.66750 0.41118 0.40228 $707.36 $491.92 $523.00 

3MI* 51 (9586) 6292 2.45/h 

(0.41 h) 

6.02/h 

(0.17 h) 

2540 

(0.273) 

460 

(0.173) 

54 

(0.169) 

0.66885 0.42385 0.41405 $708.09 $504.76 $534.62 

4PA 49 (7718) 5227 97/h 

(1.03 h) 

3.91/h 

(0.26 h) 

1300 

(0.337) 

137 

(0.253) 

9  

(0.246) 

0.32689 0.24541 0.23862 $367.48 $325.23 $359.05 

5TX 49 (9763) 6423 2.13/h 

(0.47 h) 

7.81/h 

(0.13 h) 

1696 

(0.172) 

229 

(0.133) 

18 

(0.129) 

0.36636 0.28329 0.27477 $406.70 $361.79 $359.05 

(MTTA: Admission Mean Time = 𝜆−1; MTTD: Discharge Mean Time = 𝜇−1; L = Avg system units, Wq = Avg waiting time, W = Avg system time, CW = 

$1,000, CS = $40) 

 
TABLE XII: DISCRETE EVENT SIMULATION OF AZ HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL COST: TC(k=1) ≈ $707 

  

 

 
TABLE XIII: DISCRETE EVENT SIMULATION OF AZ HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL COST: TC(K=2)≈ $492 
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TABLE XIV: DISCRETE EVENT SIMULATION OF AZ HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD’S TOTAL COST: TC(k=3) ≈ $523 

  

  
 

TABLE XV: DISCRETE EVENT SIMULATION OF MI HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(k=1) ≈ $708 
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TABLE XVI: DISCRETE EVENT SIMULATION OF MI HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(K=2 ) ≈  $505 

 

 
 
 

TABLE XVII: DISCRETE EVENT SIMULATION OF MI HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(K=3) ≈ $535 
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TABLE XVIII: DISCRETE EVENT SIMULATION OF PA HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(K=1) ≈ $367 

  

 
 

 
TABLE XIX: DISCRETE EVENT SIMULATION OF PA HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(K=2) ≈ $325 
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TABLE XX: DISCRETE EVENT SIMULATION OF PA HOSPITALS’ COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(K=3) ≈ $359 

  

 

 

 
TABLE XXI. DISCRETE EVENT SIMULATION OF TX HOSPITALS COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(K=1) ≈ $407 
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TABLE XXII: DISCRETE EVENT SIMULATION OF TX HOSPITALS COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(K=2) ≈ $362 

 

 

 
TABLE XXIII: DISCRETE EVENT SIMULATION OF TX HOSPITALS COVID PATIENTS QUEUEING TO JUDGE EMERGENCY WARD TOTAL COST: TC(K=3) ≈ $395 

 

 

 

Regarding the economic analysis of waiting lines, a 

manager may identify the cost of operating the waiting line 

system and then base the decision regarding the system 

design on a minimum hourly or daily operating cost. Before 

an economic analysis of a waiting line can be conducted, a 

total cost model, with the cost of waiting and the cost of 

service, must be developed. To develop a total cost model for 

waiting line, one begins by defining the core notation to be 

used [2]: 
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L = The average number of units (patients) in the system, 

L=λw (referred to as Little’s Flow Equation #1) 

 

Cw = Waiting (Queuing) Cost per time period of each unit  

 

Lq = The average number of units in the queue, Lq = λwq 

(referred to as Little’s Flow Equation #2) 

Cs  = The service cost per time period for each channel 

(emergency–physician in this context) 

 

k   = The number of channels (#Emergency Physicians) 

 

TC = The total cost per time period for an hourly visit by an 

e.g. emergency patient = Cw  L + Cs  k by Eq. (13) 

 

Then, the total cost, TC, is the sum of waiting cost and the 

service cost; where L=λw with λ=arrival rate and w= the 

average time a unit spends in the system such that Lq= λwq 

denotes the average number of units in the waiting line (or 

queue). In the following for TC, Cw=$1000 insurance fee per 

patient/h lost, Cs=$40 hourly fee for the specialist (re: COVID 

care). In a hospital emergency ward, $40/h  8760h ≈ $350K 

allocated for an emergency physician shown by the industry’s 

compensation statistics. 

The healthcare industry is among the top highly federal- 

and state-regulated industries [17]. By providing insights to 

the States’ health planning agencies, this study alerts the 

potential hospital bed-needs as well as physician-hires 

through CLOURAM and MCQS as well as Hospital 

Scheduling algorithms within a framework of discrete event 

simulation models [18]. Currently, 35 states have CON State 

laws that require the approval of capital expenditures by 

States’ health planning agencies, which aims to prevent 

duplication of services. and meet the need of the local 

communities [19]. This study should be especially useful in 

relation to the certificate of need-based States’ laws, which 

governs the expansion of healthcare facilities and services, 

where Fig. 22 depicts a map of 35 States with CON Laws [20]. 

Overall, the CLOURAM and MCQS, and Hospital Scheduling 

provide insights into certain best practices for assessing, and 

proactively taking precautions to improve the undesirable and 

life-and-death risk of bed- and physician-inadequacy in 

hospitals—a task for health planning agencies by the States’ 

CON laws. See Appendix for CLOURAM and MCQS, and 

Hospital Scheduling. Fig. 23’s Chart Diagram mindfully 

shows the simple hospital management flow [21].  
 

 
Fig. 22. States with the CON (Certificate of Need) Program in Place [20]. 

 

 

 
Fig. 23. State Chart Diagram for Hospital Management [21]. 

 

 
Fig. 24. The general trend of Waiting Cost, Service Cost, and Total-Cost 

Curves in Waiting Line Models from Table XI, such as for AL: TC(k=1) ≈ 
$612 down to TC(k=2) ≈ $456 and up to TC(k=3) ≈ $491 yielding the best 

choice of k=2 doctors [2]. As for TX: TC(k=1) ≈ $407 down to TC(k=2) ≈ 

$362, then up to TC(k=3) ≈ $395 yielding the most lucrative for k=2 doctors. 
States using the same cost parameters of Cw=$1000 insurance fee and 

Cs=$40/h fee for the specialist, k=2 proved optimal. Equation (13) is used. 

 

For subsection II-B, Anderson et al. inspired by Agnithori 

and Taylor studied hospital staffing based on a multi-channel 

waiting line model [2, 22]. To further investigate the 

practicality of the two pivotal Tables VI and XI, based on the 

obvious fact that without adequate bed-count, the physicians 

are of no use. Thus, without the adequate supply of the 

emergency-physicians despite the abundance of beds, or vice 

versa, there is no added benefit. However, to synergize the 

independent Tables VI and XI, CPNP (Composite Patient 

Non-Denial Probability), e.g. for AL, is the cross product of 

probabilities of BA: bed-availability (Table VI, ROW 1, COL. 

12) where P(BA) = 100%-9.15%= 90.85%, and the physician-

availability (Table XI, ROW 1, COL.6) yielding the 

probability of the patients who are Not-Waiting: 

P(NW)=1−P(W)=1− (1702/4627) ≈ 100%−37%=63% for k=1, 

Next, the product of independent events, P(BA)  P(NW) = 

90.85%  0.63 = 57.24%. If P(NW)=1 is a perfect case, P(BA) 

remains as is, which never happens. This implies ~57 out of 

100 patients will not be denied or ~43 denied. Likely, ~86 out 

of every 100 patients for k=2 will not be denied, or only 14 

will be denied. Then P(BA)  P(NW) = (1-.0915)  [1-

(45/4627)] ≈ .85%  0.99≈90%, or 90 out of 100 for k=3 will 

not be denied, or 10 patients will be, due to physician- and 
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bed-shortages despite a higher hospital cost than k=2. States’ 

composite patient denials can be calculated for k = 1, 2 and 3. 

The proposed probabilistic index, CPNP, may invoke value-

added alarms for CON laws. The patients’ data allude to pre-

COVID. The research will continue once the post-COVID-19 

data is publicized to tell normal from the abnormal data. 

B. Comparisons and Contrasts with Other Works 

Several other works have been cited to predict hospital 

bed-and physician–capacity crises during or after the COVID-

19 pandemic, as follow in six itemized sources, i to vi:  

i) Deschepper et al. [23] used a Poisson distribution 

assumption for the number of newly admitted patients on 

each day with a multistate rather than 2-state, COVID-19 or 

non-COVID-19 (instead with possible transitions as Cohort, 

ICU Midcare, ICU Standard and ICU Ventilated) statistical 

model for the transitions to the different wards, discharge or 

death. These 203 piece of data used were from COVID-19 

patients from April 20th to April 27th in 2020 by Monte-Carlo 

simulation of the capacity of beds by ward type over the 

upcoming 10 days, along with the worst- and best-case 

bounds using R statistical software (version 3.6.1).   

ii) Römmele et al. [24] created a Monte Carlo simulation-

based prognostic tool that provides the management of the 

University Hospital of Augsburg to plan and guide the 

disaster response for the pandemic. Especially the number of 

beds needed on isolation wards and intensive care units (ICU) 

were the biggest concerns. Using this information, Römmele 

et al. started Monte Carlo simulation with 10,000 runs to 

predict the range of the number of hospital beds needed, and 

favorably compared it with the available resources. 306 

patients were treated with confirmed or suspected COVID-19, 

of which 84 needed treatment on the ICU. Using simulation-

based forecasts, the required ICU and normal bed capacity at 

Augsburg University Hospital and the ambulance service in 

the period from 3/28/2020 to 6/8/2020 could be predicted 

with high degree of reliability. Simulations before the impact 

of the restrictions in daily life showed that one would have 

run out of ICU bed capacity within approximately one month.  

iii) Rhodes et al. [25] hypothesized that in quantifying the 

numbers of critical care beds per country when corrected for 

population size were positively correlated with GDP (Gross 

Domestic Product) in Europe covering 7/2010 to 7/2011. 

Sources were identified in each country that could provide 

data on numbers of critical care beds. On average there were 

11.5 critical care beds per 100,000 head of population with 

marked differences between Germany’s 29 and Portugal’s 4.  

iv) Tippong et al. [26] considers healthcare coordination 

plans including the latest COVID-19 pandemic to have 

caused a shortage of healthcare resources and change in 

healthcare operations. This paper whereas provides a focused 

literature review of the OR (Operations Research) 

contributions in the coordination of healthcare systems during 

disasters on how to improve and manage the emergency 

medical response. 

v) Weissman et al. [27] with an objective to estimate the 

timing of surges in clinical demand and the best- and worst-

case scenarios of local COVID-19–induced strain on hospital 

capacity, designed a Monte Carlo simulation of a susceptible, 

infected model with a 1-day cycle. They concluded that this 

modeling tool can inform preparations for capacity strain 

during the early days of a pandemic. Current capacity across 

the 3 hospitals was defined as 1045 hospital beds, 253 ICU 

beds, and 183 ventilators, on the basis of internal estimates. 

Study was conducted in March 2020 within Philadelphia city. 

vi) Emanuel et al. [28] declared that among others in USA 

such as the scarcity of high-filtration N-95 masks and full-

featured ventilators, South Korea in Daegu faced a hospital 

bed-shortage with some patients dying at home. While in UK 

protective gear requirements for health workers have been 

downgraded, causing condemnation among providers. How 

can medical resources be allocated fairly during a COVID-19 

pandemic? They believe guidelines should be provided at a 

higher level of authority, both to alleviate physician burden 

and to ensure equal treatment without jeopardizing lives.  

When the right moment arrives on what this contributing 

article proposes versus readers’ plausible “So-What?” query, 

the two features are predominant: II.A) Risk assessment and 

management of bed-shortages, and II.B) Risk assessment and 

management of emergency (or e.g. pulmonary) physician- 

scarcities. Synthesizing instead of merely summarizing, the 

authors’ contributions deserve to be compared and contrasted 

with other works in the current literature. Similarities and 

differences, or pros and cons, which one could outline as such 

are itemized in 10 categories as follow: 1) This article 

proposes a macro-level design with a quasi-representative 

sample of five States (in USA) each with 44 to 51 networked-

hospitals ranging from ~7500 to ~9800 installed beds during 

years of 2010 to 2018 yielding a high percentage of the 

installed beds as bed-demands according to the past patient 

visits obtained from AHA [8], IHME [9] and AHD [12] and 

similar resources in USA. 2) Each State has an averaging 

(expected) effect of admission and discharge rates calculated. 

These rates are then utilized to evaluate the CLOURAM 

outcomes to design for bed-capacity and MCQS results to 

plan for physician-adequacy where each channel is a 

physician in residence. 3) This genre of approach is not 

available in the literature so far as these authors have screened 

although Emanuel et al. [28] touches upon physician-scarcity 

but not offering a difference-making solution proposal. 

Tippong et al.’s research [26] is rather a review paper of OR 

considerations at large, not a specific solution oriented 

approach. In terms of bed-shortages where there exists 

multiplicity of micro-design studies within a particular 

University (Ghent or Augsburg etc.) hospital [23, 24] or of a 

city enclave such as Philadelphia [27], or Europe at large 

correlated with the nations’ GDP [25], all which were 

beneficial during the hot-bed rampant pandemic. 4) 

Deschepper et al. [23] for short-term predictions similar to 

authors’ proposals used Poisson modeling with a multistate 

model whereas this article used a two-state model due to only 

COVID or non-COVID from the Johns Hopkins University 

data bank [29]. 5) CLOURAM software from a macro-level 

perspective of five contiguous States’ treats each state as in a 

Cloud-framework, interconnected and calculates the bed-

count deficiency after at least 100 years of annual 8760h-long 

discrete event simulations. Though, similarities exist, others 

employ Monte Carlo simulations but may often last only for 

a short period of time ahead. Whereas, CLOURAM and 

MCQS are discrete-event-simulated cover a dynamic 

stochastic process, not static, ~1,000 or 10,000 more years 

ahead [1, 10, 18]. 6) One other contrast between the two genre 
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of approaches is that CLOURAM software uses the States’ 

input data during the pre-COVID era before the advent of the 

pandemic at the outset of this research, whereas the other 

works used data at the scene of events at a limited scope. 7) 

Another difference is that both of this article’s approaches of 

risk management of bed- and physician-shortages follow a 

resource-optimization agenda in detail outlining the cost and 

benefit parameters in Tables VI and XI if additional beds or 

physicians are deemed necessary. 8) This research is index 

oriented, i.e. besides the LOLE and EUPU of section II.A 

where loss of beds is the primary concern; whereas in II.B 

cost-optimal k count of physicians is introduced. In III.A, a 

probabilistic CPNP is defined utilizing Tables VI and XI in 

synergy for all States to compute the probability of a hospital 

network for not denying the needy patients. 9) The CON laws 

for United States’ future investments are critical. 10) What 

does all this say at the terminal stage? This article differently 

yields a premeditated scientific message to design preventive 

and life-saving, remedial pandemic contingency plans for 

future on critical capacities, a process which was not feasible 

in 2020.  

APPENDIX  

HOW TO INSTALL CYBERRISKSOLVER TO RUN THE CLOUD 

ASSESSMENT DERATED AND MCQS/HOSPITAL SCHEDULING:  

1. Click www.areslimited.com. Type in the user name: mehmetsuna, 
password: Mehpareanne, click OK. 

2. Go to DOWNLOAD on www.areslimited.com for left hand side menu’s 

4th from the top. 
3. Click on the Cyber Risk Solver in red and download the application 

which a ZIP file. Unzip or extract the downloaded application into 

C:\myapp folder. See C:\myapp\dist. Open a  

Command Prompt and go to C:\myapp\dist folder and run the command: 

//For Cyber Risk Solver, java –jar twcSolver.jar. Use license code: 
EFE28SEP2020 for twcSolver.jar.   

4. Click Cloud Assessment Derated and/or MCQS and Hospital Scheduling 

apps both (checked). Click Open. Enter input from  Figs.  1-24 and Tables 
I-XXIII input and output data as deemed necessary. 
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