


Abstract—This paper designs a visual system and introduces

an asynchronous mechanism based on message subscription,

we can easily combine web services asynchronously or

synchronously and publish them quickly. Besides, we also

transform ordinary log content into event objects to simplify

log analysis, integrate Swagger framework to maximize the

ease of publishing composite services and deploy multiple

system instances with Docker to solve the performance

bottleneck problem in stand-alone deployment.

Index Terms—Web service, service composition,

visualization, asynchronously.

I. INTRODUCTION

Web service is an application that interacts with a well-

defined interface using standard application-layer web

protocols and is based on a standard functional description

language [1]. Web service technology is good at solving the

integration problem between different platform applications

well. From the perspective of service providers, the

functions provided by the single web service are relatively

simple, and often cannot meet the needs of developer

directly [2]. A complete service usually needs to contain

several basic web services. For example, a travel service

may be composed of several services such as airline booking,

hotel reservation, and car rental etc. [3]. Therefore, to meet

the various requirements of developers, it is crucial to

combine the scattered single web services to form a

combined web service which can meeting a specified

demand.

The service combination needs to integrate multiple

independent and well-defined services into a whole service

that satisfies the application requirements and functions with

a certain mechanism [4]. Usually, Choreography or

Orchestration aggregation strategy is adopted, and the CDL

language (Choreography Description Language) and the

BPEL language (Business Process Execution Language) are

used to describe the interaction, cooperation or

communication process between services [5], [6]. In fact,

the above two languages belong to the underlying syntax-

based description language [7]. As the number of interactive

services increases, the complexity of the combined service

will increase [7]. At the same time, the two languages

require a central execution engine, such as ESB (Enterprise

Service Bus), Etc. Hard to be used in a simple web service

architecture [8]. This paper provides a flexible and easy-to-

use GUI to support flexible combination based on existing

Manuscript received May 29, 2019; revised July 20, 2019.

Haihong E, Yimin Lin, Meina Song, Xiangyu Xu, and Chengcheng

Zhang are with the School of Computer Science, Beijing University of
Posts and Telecommunications, Beijing 100876, China (e-mail:

ehaihong@bupt.edu.cn, linyimin520812@gmail.com,

mnsong@bupt.edu.cn, xuxiangyu_bupt@foxmail.com sweetzcc@163.com).

web services, generating new combined web services. It’s a

fast and lightweight method of service combination in a web

services architecture.

The main contributions of this article are:

1. Provide a flexible GUI to combine web services

through drag-and-drop;

2. Introduce an asynchronous mechanism based on

message subscription to combine web services

asynchronously.

The organization of this paper is as follows:

In Section I, we introduce the framework of the overall

system. In Section II, we introduce the implementation of

drag-and-drop composite web service and data structure

design. In Section III, we introduce the design and

implementation of the execution engine and the

asynchronous combination mechanism based on message

subscription. In Section IV, we introduce the system test,

and In Section III, we the summary of this article is given.

II. THE FRAMEWORK OF VISUAL WEB SERVICE

COMPOSITION SYSTEM

By default, Consul is used as the service registry. All

atomic web services (relatively simple web services) are

retrieved from the service registry, and the combination of

atomic web services is completed in a drag-and-drop

manner. The framework of the system is as follows in Fig. 1.

Fig. 1. System framework.

The processing time sequence of the system is divided

into four parts: retrieving atomic Web service from service

registry, visual composite web service, combined service

debugging, registration and interpretation execution. The

function flow chart is illustrated in Fig. 2:

1. Retrieving Atomic Web Service Module: Retrieving all

atomic web services from the Consul Service Registry,

A Distributed Visualization Service Composition System

Haihong E, Yimin Lin, Meina Song, Xiangyu Xu, and Chengcheng Zhang

International Journal of Computer Theory and Engineering, Vol. 11, No. 4, August 2019

66DOI: 10.7763/IJCTE.2019.V11.1244

afterwards classifying them according to categories, and

finally providing the services through the API interface;

2. Visual Combination Module: Retrieving the specified

category of web service from the Atomic Web Service

module, dragging to the visual composition GUI, and then

clicking the web service button, selecting a specific atomic

web service, next fill in the specific execution information

of the atomic web service, and finally save the Atomic Web

Service Information; continue with the above steps and

combine them into a target composite web service process

tree---process tree based on JSON.

3. Registration Module: Fill in the relevant information of

the combined web service (combined service name,

corresponding parameters, response value, path, etc.), and

then save the relevant information to generate related

composite services. Next debug the combined service. If the

result of debugging is successful, invoke service registry

API to register the combined service to the registration

center. Otherwise, the relevant error information is returned

and report the message to the administrator.

4. Execution Module: Developers invoke the composite

web service, and then the parser parses the composite

service process tree to retrieve atomic web service

information and executes the atomic web service. If the

atomic web service is synchronous, it’s executed directly

and continues to parse the JSON process tree recursively.

Otherwise, subscribes related message events, and then

executes the asynchronous service once the related messages

events are published, and next continues to parse the process

tree based on JSON until the entire composition process is

completed.

Fig. 2. System function flow chart.

III. VISUALIZED WEB SERVICE COMPOSITION

A. Design of Visual Web Interface

We provide a visual web interface, and its functional

structure is illustrated in Fig. 3. We can combine web

services through dragging and dropping.

The specific functions are as follows:

1. Viewing: The web services category in the left-hand

menu bar read from the database dynamically and updates in

real-time. After dragging the web service category icon to

the combination area, click the icon to retrieve all atomic

web services of the category. Attributes include: web service

ID, description of returned value, name, type, event,

parameter, status of online or offline, etc.

2. Setting: Set the execution conditions of the atomic web

service (synchronous, asynchronous, and trigger conditions)

3. Debugging: When combination is completed, click

“debug” menu, the debugging information is displayed in

the console.

4. Generation: After successful debugging, click

“Register” to generate a tree process file in JSON format.

The process tree contains the execution flow of the

composite service.

5. Registration: The generated tree process file interacts

with the background, and the combined Web service is

registered to the service registry.

Fig. 3. Visual combination function.

B. Data Structure of Process Tree

In the process of composition, each atomic web service

corresponds to a node in the process tree. We form an

execution flow by specifying the parent-child relationship

and conditions of execution between the atomic web

services, and finally the execution flow stored as a process

tree based on JSON, for the execution module to parse and

execute.

International Journal of Computer Theory and Engineering, Vol. 11, No. 4, August 2019

67

Fig. 4. Node properties.

The main attributes of node are shown in Fig. 4. The

structure of the process tree based-on JSON is a recursive

data structure. For example, the data structure corresponding

to a combined service flow tree in Fig. 5 is as shown in

Table I.

Fig. 5. Example of combination service.

TABLE I: DATA STRUCTURE OF PROCESS TREE

{
 "id": "001",

 "name": "node1",

 "url": "http://www.test.com/node1",
 "condition": "status=200",

 "asyncType": "0",

 "childElems": [
 {

 "id": "002",

 "name": "node2",

 "url": "http://www.test.com/node2",

 "condition": "status=200",

 "asyncType": "0",
 "childElems": [

 {

 "id": "004",
 "name": "node4",

 "url": "http://www.test.com/node4",

 "condition": "status=200",
 "asyncType": "0",

 "childElems": []

 }
]

 },
 {

 "id": "003",

 "name": "node3",
 "url": "http://www.test.com/node3",

 "condition": "status=200",

 "asyncType": "0",
 "childElems": []

 }

]
}

IV. EXECUTION ENGINE

The combined web service execution engine supports two

execution mechanisms:

1. Synchronous interpretation and execution based on

response status codes and response values.

2. Asynchronous interpretation and execution based on

event and message publish/subscribe.

A. Synchronous Interpretation and Execution

The synchronous interpretation and execution based on

the response status code and response value are based on the

parent node execution result (response status code and value)

to decide which child node should be executed, and then

traverses in order until the node is a leaf node which means

completing the execution of the entire process. As shown in

Fig. 6, if condition 1 is triggered, Service 2 is executed. The

response of Service 2 is the condition required for Service 5

execution. Therefore, Service 5 is executed after Service 2

finished. And then the response of Service 5 is the required

condition for Service. 7 Executing, so then Service 7 will be

invoked, and finally the entire process ends.

Fig. 6. Synchronous interpretation and execution.

B. Asynchronous Interpretation and Execution

The asynchronous interpretation and execution based on

event publishing/subscription is divided into two processes:

publication of messages and subscription of messages.

Publication of messages is completed by a specified interface.

When a message needs to be published, the interface can be

invoked to complete the publication. The subscription of the

messages is completed by the interpretation executor. When

traversing the asynchronous node (when the asyncType is

equal to 1, a property of the node), the related message will

be subscribed. This paper uses RabbitMQ message

middleware to achieve message subscription and release as

shown in Fig. 7. RabbitMQ is a mature message queue

middleware which implements AMQP (Advanced Message

Queuing Protocol).

Fig. 7. Message publish and subscribe.

C. Implementation of the Execution Engine

The execution engine is a hierarchical traversal operation

on the JSON process tree actually. The difference from the

hierarchical traversal is that the recursive operation of the

executor is a conditional traversal, and the corresponding

operations are performed according to the relevant conditions.

The execution process is as follows:

1. Invoking the root node: access the atomic web service

corresponding to the root node, and obtain the response.

2. Traversing the child node of the node

International Journal of Computer Theory and Engineering, Vol. 11, No. 4, August 2019

68

a) judging whether the child node is a synchronous

node or an asynchronous node according to the

asyncType field

i. If it is synchronous, according to the response status

code and response of the parent node, compares

with the condition specified in the child node,

invokes the node which condition is satisfied.

ii. If it is asynchronous, subscribes to the message

specified in the child node

3. Repeat step 2 until the traversal of process tree is

completed.

4. Related systems publish message events

5. The node which subscribes to the relevant message is

invoked.

6. Repeat step 2 until the traversal of the process tree is

completed.

Fig. 8. Execution flow of execution engine.

The pseudo code of execution engine is shown in Table II.

TABLE II: PSEUDO CODE OF EXECUTION ENGINE

function run(node) {

 // Invoke API on the node

 call(currentUrl)
 // Traversing child nodes

 let children = node.children;

 // If child node exists
 if(children) {

 for(let i = 0; i < children.length; i++){

if(API is synchronous){
// Scribes message

subscribe(event);

 // Continue to traverse the child node
 run(children[i]);

 }else{

 if(response is in need){
 // Continue to traverse the child node

 run(children[i]);

 }
}

}

}

V. LOG, DOCUMENT AND DEPLOYMENT

A. Logs and Error Handling

When the combined service is online, it is necessary to

control and supervise the service and its related atomic

services to ensure the stable operation of the service.

The records accessed by the user are recorded in the log

files asynchronously, and retrieving data through the log

analysis framework, then perform statistical analysis and

visualization. Log analysis includes the overall access to the

composite service and all atomic services.

Traditionally, we are directly outputting the level of the

log and the content string of the log(Message). However, we

not only pay attention to when the composite service is called,

what the result is, but also the access details and context of

the related atomic services, as well as the associated log. As

shown in Fig. 9. If the call fails, it is determined according to

the response result whether the combined service needs to be

offline. Therefore, it is necessary to carry out transformation

on the traditional log structure. The method of transformation

is to extract the key fields of the log into an event object

directly [9]. The data structure of the object is as follows:

{
 "datetime":string,
 "level":string,
"type":string,
 "reqId": string,
 "reqUid": string,
 "data":{
 "url":string,
 "ip":string,
 "method":string,
 "userAgent": string,
 "headers": string

},
 "browser": string,
 "os":string,
 "server":string
}

Fig. 9. The Call chain of composite service.

Most of the time, the log will be output to the local disk,

and then directly use Linux commands to troubleshoot the

problem, but the combined system supports distributed

deployment, will have multiple machines. There are some

troubles to locate and troubleshoot problems directly, so it is

necessary to have a platform management log. The method

we use is to collect all logs into Kafka, and then import them

into Elasticsearch and HDFS respectively, and do real-time

search, analysis, offline statistics and data backup. The

following describes the use of log analysis to complete the

offline of invalid combination services. The flow is shown in

Fig. 10.

International Journal of Computer Theory and Engineering, Vol. 11, No. 4, August 2019

69

First, when the composite service invoked, will generate a

unique identification request ID, and generate a request log,

and then the relevant atomic services are invoked. If some

atomic services go offline or some errors occurs, the system

will look for the same service deployed on other servers and

call it again. If there is no alternative service, generate an

error log of the atomic service and the combined service,

then the combined service is offline and removed from the

registry, and finally the error message and offline message

are pushed to the administrator. If the invoke is successful,

the response log is logged.

Fig. 10. The flow of error handling.

B. Specification Swagger Document Framework

Swagger is a canonical and complete framework for

generating, describing, invoking, and visualizing RESTful

Web services [10].

This paper integrates Swagger framework into our

composite system with the goal of maximizing the ease of

publishing and use of composite services. When the

combined system is running, it will subscribe to registration,

logout and offline events. When registering or unregistering

services, it will release related events, and then trigger

system to modify the Swagger API specification document,

and finally Generate an APIs document based on JSON and

provide real-time preview. Developers can use the Swagger

framework to view and test the composite services. All of

this is done automatically, without any intervention from the

system user. As shown in Fig. 11, a real-time online preview

of the composite services using Swagger UI. And the logic

of real-time update of Swagger document is shown in Fig.

12.

At the same time, the paper also integrates a code

generator to generate software development kits (SDK) for

various languages (including Java, Objective-C, PHP,

Python, etc.) according to the Swagger specification

document. The generated SDK encapsulates the HTTP

invoke to the REST API service defined in the Swagger

specification document. So developers can use the language

they are familiar with to invoke the function or class method

to complete the service call without having to deal with the

detail of underlying HTTP transport.

Fig. 11. The swagger UI.

Fig. 12. The logic of real-time update of swagger document.

C. Distributed Deployment Base on Docker

Because of the performance bottleneck problem in stand-

alone deployment, this paper introduces Docker and Nginx

load balancing technology, encapsulates the entire combined

system into a Docker image, shields the environment

differences of different servers, and implements rapid

deployment of system multi-instance using Docker container

[11].

Docker uses Google's Go language for development and

implementation. Based on the Linux kernel's cgroup,

namespace and greatly simplifying the creation and

maintenance of containers. Docker technology is lighter and

faster than virtual machine technology.

The Docker file that encapsulates the system into a Docker

image is shown in Table:

FROM node:8.11.1

ADD . /root/api-gateway-combination/

WORKDIR /root/api-gateway-combination
RUN npm install -g ts-node typescript && npm install

EXPOSE 8001

CMD ["ts-node", "./src/app.ts"]

The first line uses node:8.11.1 as the base image, the

second and third lines add the source code to the image, the

fourth and fifth lines install the typescript environment, the

sixth line exposes the port, and the seventh line runs the main

program.

Multi-instance deployment may have the consistency

problem of memory data. This paper mainly uses the event

subscription/release mechanism to ensure data consistency.

As shown in Fig. 13, when a new instance is run, the

registration, logout, and other message events of the

composite service are subscribed. When there is a new

combined registration or a combined service is logged out,

all instances update the relevant memory data and all data is

consistency in all instances.

International Journal of Computer Theory and Engineering, Vol. 11, No. 4, August 2019

70

Fig. 13. Distributed deployment base on docker.

VI. SYSTEM TESTING

We have conducted a set of experiments that aim to

evaluate the performance of our architecture during the

execution of atomic web service and the combined service.

In these experiments, all web services were executed by our

architecture in centralized configurations on Alibaba Cloud

ECS. Fig. 14 displays a set of graphs that provide the service

execution time, total transaction rate and the number of

concurrency for each experiment. The performance analysis

verifies our research hypothesis, and shows that our

approach is highly efficient, and scales accordingly with the

increasing size of ECSs. And the visual web service

composition page is shown in Fig. 15.

Fig. 14. Experimental results.

Fig. 15. Visual web service composition.

VII. CONCLUSION

In this paper, we propose a system based on a novel

simplified web combination method. The system is based on

the B/S architecture mode, provides a flexible visual

interface, implements a drag-and-drop composite Web

service based on JSON tree data structure, and introduces an

asynchronous mechanism based on message subscription to

realize asynchronous combination of Web services.

We note that a shorter conference version of this paper

appeared in ICIM (2019). Our initial conference paper did

not address the problems of log analysis, document sync and

distributed deployment. This manuscript addresses these

issues and provides additional analysis on the error handling

using log analysis to improve the system stability.

ACKNOWLEDGMENT

This work is supported by the Ministry of Education-

China Mobile Science Research Foundation

(MCM20170210); Engineering Research Center of

Information Networks, Ministry of Education.

REFERENCES

[1] Y. Xin, J. Li, and Z. Li, “Research progress of microservices

composition methods,” Wireless Communication Technology, vol. 27,

no. 3, pp. 42-46, 2018.
[2] E. B. H. Yahia, L. Réveillère, Y. D. Bromberg et al., “Medley: An

event-driven lightweight platform for service composition,” in Proc.

International Conference on Web Engineering, 2016, pp. 3-20.

[4] J. Wang and Y. Zhang, Utilizing Marginal Net Utility for

Recommendation in E-commerce, 2011.

[5] J. G. Dai, “Many-server queues with customer abandonment: A
survey of diffusion and fluid approximations,” Journal of Systems

Science and Systems Engineering, no. 1, 2012.

[6] B. Li, D. Qiu, H. Leung, and D.Wang, “Automatic test case selection
for regression testing of composite service based on extensible BPEL

flow graph,” Journal of Systems & Software, no. 6, 2012.

[7] X. Xu, Z. Wang, D. Guo, Y. Wang, and Y. Kang, “Design and
implementation of a dynamic data service publishing engine,”

Computer Applications and Software, vol. 35, no. 7, pp. 126-130, 177,

2018.
[8] A. Brogi, S. Corfini, and R. Popescu, “Semantics-based composition-

oriented discovery of web services,” ACM Transactions on Internet

Technology, no. 4, 2008.
[9] Summary of node framework access ELK practice. [Online].

Available: https://zhuanlan.zhihu.com/p/57340438

[10] Model APIs with accuracy. [Online]. Available:
https://swagger.io/solutions/

[11] What is docker. [Online]. Available:

https://opensource.com/resources/what-docker

E Hai Hong was born in 1982 and received her Ph.D.
degree from Department of Computer Science,

Beijing University of Post and Telecommunication, in

2010.
She is now serves as an associate professor in

Department of Computer Science, Beijing University

of Post and Telecommunication, Beijing. Her
research interests include service computing and

service engineering, big data and AI.
Dr. E Publishes more than 60 SCI/EI academic papers, applied for 43

invention patents, wrote more than 20 national and industry standards.

Lin Yi Min is a master student in Beijing University of Post and

Telecommunication. His research interests include big data, data service,
distributed system and web development.

Song Mei-Na was born in 1974, Ph.D., professor. Her current research

interests include service computing and service engineering, big data and

AI.

Xu Xiangyu was born in 1995, Panjin, Liaoning Province. She was
admitted to Beijing University of Posts and Telecommunications in China

in 2013. Now she is doing her master degree in computer science and

technology at BUPT. Her research interest is the big data visualization.

Zhang ChengCheng was born in 1993, and now is a master student in
Beijing University of Post and Telecommunication. His research interests

include container management, micro-service architecture and system

architecture.

International Journal of Computer Theory and Engineering, Vol. 11, No. 4, August 2019

71

[3] Y. Zhang, T. Lei, H. Gao, and Y. Ding, “Instant service

recommendation research in exploratory service composition

environment,” Journal of Chinese Computer Systems, no. 5, 2017.

