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Abstract—Instance segmentation is a challenging task in 

computer vision because object locations in an image must be 

predicted and segmentation must be performed inside these 

locations. In the present paper, we propose a new pooling 

module to extract a small feature map from each Region of 

Interest for pixel-level prediction. Instead of using RoiAlign 

pooling, we use a small network module and ensemble the 

extracted multi-scale features in a feature map. The proposed 

method can output a better feature map and therefore better 

pixel-to-pixel alignment between input and output. The results 

of an experiment reveal that the proposed method outperforms 

cutting-edge instance segmentation methods. 

 

Index Terms—Deep learning, instance segmentation, RoI 

pooling module. 

 

I. INTRODUCTION 

Object detection is one of the most fundamental tasks in 

computer vision. The performance of object detection has 

been greatly improved in recent years by the use of 

convolutional neural networks (CNNs). Detecting the spatial 

location of an object in an image involves either object 

detection by a bounding box or object detection by 

pixel-level segmentation. Object detection by pixel-level 

segmentation (instance segmentation) is the more 

challenging task because the detector outputs not only the 

object location but also the per-pixel classification, which is 

usually represented as a segmentation mask. In the present 

paper, we intend to realize object detection by pixel-level 

segmentation using a newly designed model.  

In order to segment an object, some methods (e.g., FCN [1]) 

predict the segmentation masks and the class of an object 

simultaneously by generating the per-pixel multi-class 

categorization. However, with respect to the Mask R-CNN 

method [2], in the instance segmentation task, it is better to 

separate the class prediction and the segmentation mask 

prediction. Thus, we adopt the Mask R-CNN approach to add 

a mask branch to predict a binary segmentation mask for each 

class along with a box and a class prediction branch. The 

segmentation mask branch is an extension of the Faster 

R-CNN [3] method, which is jointly trained with other 

branches. 

Current state-of-the-art detection networks [2]-[4] use a 

two-stage design for networks. These methods use a 

pre-computation method (e.g., SelectiveSearch [5]) or deep 

network to extract the set of object region proposals. These 

proposal boxes are used to extract features within the boxes 
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(called Region of Interest (RoI) feature maps) by an RoI 

pooling layer and are then fed to the next stage (CNN). Fig. 1 

shows the concept of using an RoI pooling layer to output 

fixed-size feature maps. The choice of the RoI pooling layer 

depends on the detection task. For example, the RoiPool [4] 

layer is widely used in object detection (predicting the boxes 

and classes). RoIAlign [2] is an improved version of RoiPool 

and is used for the pixel-prediction task. The quality of 

detection depends on the quality of the pooled RoI feature 

maps. A natural question to ask is whether a subnetwork 

module, which replaces the RoI pooling layer, achieves a 

similar quality. Fig. 1b shows the concept of the present study, 

which is based on the Faster R-CNN [3] method and replaces 

the pre-computed RoI with a deep network, called the region 

proposal network (RPN). However, in the instance 

segmentation task, the subnetwork must ensure pixel-to-pixel 

alignment between the RoI and the extracted features. The 

proposed subnetwork can be considered as a trainable version 

of the RoI pooling layer. We describe the proposed 

subnetwork in detail in Subsection III.  

 

 
(a) RoiPool and RoIAlign  (b) Proposed RoI pooling module 

Fig. 1.  RoI features extraction. (a) Fixed-size RoI feature maps are extracted 
from RoI of arbitrary size though an RoI pooling layer (e.g., RoiPool, 

RoiAlign). (b) Proposed method using a subnetwork to replace the RoI 

pooling layer. 

 

The main contributions of the present paper are 

summarized as follows: 

1) We introduce a new multi-scale RoI feature extraction 

module, which replaces the RoI pooling layer in the deep 

network with the instance segmentation task. The new 

subnetwork design allows us to train a high-quality RoI 

feature extractor for pixel-level prediction. 

2) We perform experiments on a large-scale image dataset 

(COCO [6]) and show that the results are comparable to 

those of state-of-the-art instance segmentation methods, 

proving the effectiveness of the proposed approach.  

3) We also analyze the effect of the proposed subnetwork 

for different pre-trained feature extractors (the baseline) 

and discus use cases. 

The remainder of the present paper is organized as follows. 

In Section II, we review related methods that use a deep 

network for the segmentation task. Section III introduces the 

design of the proposed subnetwork and its implementation in 
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detail. The experimental results are reported in Section IV, 

and a discussion is presented in Section V. Finally, Section 

VI presents our conclusions. 

 

II. RELATED RESEARCH 

A. Faster R-CNN and Mask R-CNN 

Faster R-CNN [3] is a state-of-the-art object detection 

method. In the Faster R-CNN method, detection is performed 

in two stages: the RoI extraction stage and the proposal 

classification stage. In the first stage, a feature extractor is 

applied to the entire image in order to generate the feature 

maps, and an RPN is used to extract the set of class-agnostic 

box proposals. These proposals are fed to a detection network 

to output the class-specific and box offset for each proposal. 

Since the RPN shares the full-image feature maps with the 

detection network, Faster R-CNN is very efficient in RPN 

extraction, as compared to other methods that use a 

pre-computed RPN (e.g., R-CNN [7]). 

Although the Mask R-CNN [2] method is used for a 

different task (instance segmentation), this method has a 

strong connection with Faster R-CNN. Fig. 2 shows the 

differences between these two methods. The outputs of each 

model used to define the interested task are referred to as 

network heads. Mask R-CNN extends the Faster R-CNN by 

adding a mask branch for predicting an object mask in 

parallel with the existing bounding box prediction branch and 

the class prediction branch. The mask branch predicts a 

fixed-size mask (   ) for every class, resulting in an N 

binary mask, where N is the number of classes. Mask R-CNN 

is an effective framework for instance segmentation. The 

proposed method is based on the Mask R-CNN method, but 

the quality of segmentation is improved. 

 

 
Fig. 2. Faster R-CNN (left) and Mask R-CNN (right). The main difference 

between these two methods is the number of outputs. 

 

B. RoI Feature Extraction 

Proposal-based methods such as Faster R-CNN and Mask 

R-CNN are incorporated into a pooling method in order to 

pool the features within each RoI into fixed-size features. The 

first method is RoiPool [4], which converts a features size 

    into a small feature map size     (e.g.,    ). 

RoiPool operates by max-pooling a     grid of 

sub-windows of approximate size          . RoiPool is a 

special case of spatial pyramid pooling in SPPNet [8]. 

Although RoiPool works well in the object detection task, it 

appears to hurt pixel-level prediction performance because 

the RoI and the extracted features are misaligned. In order to 

address this problem, Mask R-CNN introduces the RoiAlign 

pooling layer to replace the RoiPool layer. RoiAlign is a 

quantization-free layer that preserves the spatial localizations 

by using a bilinear interpolation [9] to compute the input 

features at four regular sample locations at each continuous 

RoI bin followed by max pooling. The extracted features 

have better-preserved spatial correspondence than RoiPool.  

C. Multi-scale Feature Ensembling 

In the deep network, combining multi-scale features can 

improve the performance. For segmentation tasks (including 

semantic segmentation and instance segmentation), some 

methods use this strategy by computing the partial scores for 

each class over multiple scales, such as FCN [1] and 

Hypercolumns [10]. Numerous methods use a similar 

strategy for object detection tasks, such as the FPN [11] and 

HyperNet [12]. 

Unlike the above methods, the proposed method is based 

on the concept of incorporating multi-scale features and 

precisely maintaining the RoI alignment. We replace the 

RoIAlign layer in the Mask R-CNN method by a subnetwork 

that ensembles the features within each RoI at multi-scales. 

This approach enables us to train the RoI pooling module and 

achieve better RoI feature representation. 

 

III. PROPOSED METHOD 

The proposed model is based on the same concept as Mask 

R-CNN, The network consists of two components. The first 

stage RPN extracts the set of network proposals, and the 

second stage uses a Fast R-CNN [4] to perform object 

classification, bounding box regression, and mask prediction 

from features that are extracted from each candidate box 

through a subnetwork.  

A. Subnetwork Design 

Fig. 3 shows the proposed model for the mask prediction 

branch. The subnetwork contains three branches, and at each 

branch, the features in the proposed RoI are cropped into 

different scales. In order to preserve the alignment between 

the RoI and the extracted features in the corresponding RoI, 

we use the “crop_and_resize” function in TensorFlow [13] to 

crop and bilinearly resize the input images to a fixed size. We 

use a     convolution layer after each “crop_and_resize” 

operator to maintain the number of outputs to 256. Feature 

maps are then down-sampled to the smallest fixed-size output 

(e.g.      ) by the average-pooling layer and concatenated. 

Finally, we use a convolution layer to reduce number of 

outputs to 256, and use the convolution layer as a prediction 

mask, as in Mask R-CNN. 

We analyze two properties of the proposed subnetwork: (i) 

precise RoI and pooled RoI features alignment and (ii) 

multi-scale feature representation. First, the goal of the 

subnetwork is to extract small feature maps from each RoI to 

fixed-size feature, in the same manner as RoiPool and 

RoiAlign. Moreover, the “crop_and_resize” function and the 

pooling layer maintain the alignment between the RoI and the 

output features of each subnetwork branch. According to [2], 

this property is crucial for the instance segmentation task. 

Second, the proposed three-level sub-branch covers 

multi-scale RoI features. The ensembling features across 

multiple scales has proven beneficial in computer vision 

tasks [8].  
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Fig. 3. Proposed subnetwork for the mask prediction branch. 

 

B. End-to-end Training 

We adopt end-to-end joint training of the RPN and the 

network heads. During training, the multi-task loss function 

is a combination of three losses: the classification loss (    ), 

the box regression loss (    ), and the mask loss (     ). 

In order to predict the class and box regression, the class 

loss                    is the cross-entropy loss for true 

class  . The second loss              
   is defined over a 

tuple of true bounding-box regression targets   and a 

predicted tuple   , as in Fast R-CNN [4]. The final loss       

is defined over      -dimensional output for each RoI, 

where   is the number of classes. The mask branch output is 

a pixel-wise binary classifier, because it outputs one mask for 

each class, and there is no competition between classes.  

The overall training loss is defined as follows: 

        [   ]           

where [   ] is equal to 1 when    , and 0 otherwise. In 

the experiments, we set the balance loss weight λ to 1. 

C. Training Details 

We initialize the subnetwork convolution layers with 

MSRA [14] and constant initialization for biases. Through 

experiments, we found that normalizing the output of the 

convolutional layers by using a batch normalization [15] 

layer after convolution boosts the performance. The last 

convolutional layer after concatenation does not need a batch 

normalization layer. 

 We adjust the hyperparameters from Mask R-CNN [2] 

during training. The image is resized to a shorter edge of 800 

pixels, and each GPU has a batch size of one image. For data 

augmentation and to prevent overfitting, we apply random 

flipping to the training dataset. We train the dataset in a 

2-GPU system with a total of 720k iterations. The base 

learning rate is 0.0025 (the learning rate is reduced 10 times 

after 480k iterations and 640k iterations). The weight decay 

is     , and the momentum is 0.9. 

A RoI is considered to be positive if it has an Intersection 

over Union (IoU) with a ground-truth box of at least 0.5. We 

maintain the ratio of positive to negative proposal RoI’s as 

   . The resolutions of RoI features for ResNet-50 and 

ResNet-101 are       and      , respectively.  

 

IV. EXPERIMENTAL RESULTS 

A. Dataset and Evaluation Metrics 

We performed experiments on the COCO dataset [6], 

which is a large-scale object detection dataset that consists of 

80 object categories. The training dataset contains 

approximately 118k images, including all of the training 

image (coco_2014_train) and a subset of valuation images 

(coco_2014_minusminival). Each object in the image is 

annotated with a bounding box and a binary mask inside the 

bounding box. We used the COCO API [16] to evaluate our 

results, which are measured by average precision (AP) over 

IoU in various thresholds and object scales. We report the AP 

in the 5,000-image valuation set (the minival set). The IoU 

threshold and the object scales are shown in Table I. 
 

TABLE I: COCO EVALUATION SETTINGS 

Evaluation terms IoU (%) Object size: A 

   50-95 All 

     50 All 

     75 All 

    50-95         

    50-95               

    50-95         

 

B. Results 

We tested our proposed model with different network 

settings. In order to demonstrate the effect of the proposed 

subnetwork, we used a different baseline for feature 

extraction over an input image. The results of the Mask 

R-CNN method, which uses the RoiAlign pooling layer, and 

the proposed method, which uses the subnetwork for RoI 

feature extraction, are compared. In order to make a faithful 

comparison, we attempt to train the methods under the same 

conditions, including the baseline, weight initialization, 

number of iterations, and system configuration. We also 

explored the effect of the proposed multi-scale feature 

pooling under the feature pyramids baseline (e.g., the feature 

pyramid network (FPN) [11]).  

The first experiment is performed with ResNet-50 [17], 

which has a depth of 50 layers, and the features are extracted 

from the final convolutional layer of fourth stage. In this 

experimental setting, we do not use the feature pyramid 

extraction for baseline features. The results are shown in 

Table II. Overall, the proposed model APs are improved for 

all IoU threshold and object size settings. At a high value of 

IoU (75%), a gap in AP of 1.1% indicates that the proposed 

model is beneficial under good conditions.  

 
TABLE II: INSTANCE SEGMENTATION RESULTS FOR THE RESNET-50 

BASELINE 

Model AP                       

Mask R-CNN 31.4 52.8 33.0 12.1 34.5 49.6 

Proposed 

model 

31.8 53.5 34.1 12.7 34.8 50.8 
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The second experiment is performed with a higher quality 

feature extractor, i.e., ResNet-101 [17] with FPN design. The 

FPN is used to augment a feedforward network (e.g., 

ResNet-101) with a top-down pathway and lateral 

connections. The FPN extracts the feature pyramid from a 

single-resolution input image. The extracted RoI features 

from different pyramid levels can be used for box detection 

and mask prediction. The overall AP is better than that of the 

model using the ResNet-50 baseline, which shows the 

relationship between the instance segmentation performance 

and the classification performance of the baseline on 

ImageNet [18]. Table III shows the experimental results in 

detail. The obtained results are better than those of Mask 

R-CNN at various settings. For IoU’s ranging from 0.5 to 

0.95, we obtained a mean AP of 37.7%, which is little bit 

greater than that of the Mask R-CNN model by 0.2%. 

However, the gaps are smaller than those in the first 

experiment. We believe that since the feature extractor 

(ResNet-101-FPN) outputs pyramid features, the effect of the 

proposed multi-scale subnetwork is not strong, as in the first 

experiment, which used a non-pyramid feature extractor. 

 

 
Fig. 2. Average precision evolution during training of Mask R-CNN vs. the 

proposed model using the ResNet-101-FPN baseline. The results are 

evaluated in the COCO minival set. 

 

Fig. 4 shows the AP during training of Mask R-CNN and 

the proposed model. We trained both models under the same 

configuration and learning rate. The curve indicates the 

benefit of using the proposed subnetwork to replace the 

RoiAlign layer of the Mask R-CNN model. The proposed 

model increases the AP quicker than the Mask R-CNN, 

especially at beginning iterations, because the proposed 

model embeds the RoI features at multi-scale, and thus 

outputs more robust features for mask prediction.  

C. Running Time and Memory Usage 

We report the model running time of the proposed method 

in Table IV. Since the proposed subnetwork uses more 

parameters than the RoiAlign layer, the model running time 

is slower and uses more memory than Mask R-CNN. 

However, an increased time of less than approximately 20% 

and an increased memory usage of approximately 6% are 

reasonable.  

 
TABLE III: INSTANCE SEGMENTATION RESULTS FOR THE RESNET-101-FPN 

BASELINE 

Model AP                       

Mask R-CNN 37.5 60.6 39.9 17.7 41.0 55.4 

Proposed model 37.7 60.7 40.2 17.8 40.9 55.6 

 

TABLE IV: RUNNING TIME (S) AND MEMORY USAGE (GB) OF THE 

PROPOSED MODEL COMPARED WITH MASK R-CNN 

Model Baseline Test time Memory 

Mask R-CNN ResNet-50 0.163 8.5 

Proposed model ResNet-50 0.195 9.3 

Mask R-CNN ResNet-101-FPN 0.251 6.6 

Proposed Model ResNet-101-FPN 0.260 7.0 

 

D. Examples 

We visualized the outputs of the proposed model in Fig. 5. 

The output segmentation is good under difficult conditions, 

such as crowded or small objects. Comparing with 

Mask-RCNN, our proposed model can output better 

segmentation regions (Fig. 5) and more precise bounding 

boxes (Fig. 5e). 
 

 
(a)      (b)           (c)             (d)          (e) 

Fig. 3.  The example comparisons of Mask-RCNN (top row) and our proposed method (bottom row) on COCO dataset, each detection includes bounding box, 

label, confidence and segmentation region. 

 

V. DISCUSSION 

In the experimental results section, we performed the 

proposed network for two baselines (with and without 

pyramid feature extraction). Although the proposed model 

outperforms the Mask R-CNN using the same baseline, the 
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gaps in the first model (using ResNet-50 as a baseline) are 

larger than those in the second model (using 

ResNet-101-FPN as a baseline). This is because the 

ResNet-101-FPN already performs masks prediction in 

multi-level layers. The proposed multi-scale RoI pooling 

subnetwork effectively augments pooled feature maps at 

multiple feature resolutions. Thus, the proposed model shows 

a great improvement using a non-pyramid feature extractor as 

a baseline. 

Another problem with the proposed subnetwork is to 

decide hyperparameters, such as the number of sub-branches, 

the output size of cropped RoI features, and the number of 

outputs for each convolutional layer. Because of the limited 

GPU memory, we only perform three sub-branches at three 

sizes (     ,      , and       ). 

 

VI. CONCLUSION 

In the present paper, we introduce a simple but effective 

subnetwork, which replaces the RoI pooling layer used in the 

instance segmentation task. We crop the RoI features at 

multiple resolutions and concatenate the outputs to extract 

rich, multi-scale RoI feature maps. The experimental results 

reveal the advantage of using the proposed model design on 

mask prediction. In terms of the model complexity increment, 

the running time and memory usage is reasonable, as 

compared to the model that uses a RoIAlign pooling layer. 
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