



Abstract—This research paper presents an End-to-End

Software Architecture based on Deep Neural Networks for

Automatic Learning in Chess. Initially classifying and

regressive approaches are explored to evaluating game

configurations by employing deep belief networks. A third

research approach which combines these, is then developed by

quantizing the value range of the evaluation function. The

neural network learns to assess game positions accurately

during an unsupervised pre-training and supervised fine-tuning

phase, using a dataset solely consisting of binary vector

representations of the board and corresponding evaluations. An

alpha beta tree search is used to complement the chess engine for

finding optimal moves. The experiments show how artificial

neural networks can develop a deep understanding of the

application domain, despite having no prior knowledge of the

game rules or strategies.

Index Terms—Chess, chess engine, artificial intelligence, deep

learning, artificial neural 5networks, deep belief network, alpha

beta pruning, alpha beta tree search.

I. INTRODUCTION

Artificial Intelligence (AI) is this generation's mantra. In

particular, Deep Learning as part of Machine Learning, which

is one of the subdomains of AI, has produced phenomenal

results. In 2015, DeepMind's “AlphaGo” defeated one of the

world's leading Go players for the first time; according to the

estimates, this was not expected to happen until 2030 [1], but

was particularly enabled by the development of Artificial

Neural Networks [2], [3].

Chess is one of the most popular strategic board games in

the world. Its complexity makes it a popular target for the

development of Artificial Intelligence. In 1996, IBM was the

first to succeed in defeating the then reigning world chess

champion, Garry Kasparov, with the chess computer “Deep

Blue” [4]. This success was the result of more than ten years

of research and development by project leader Feng-hsiung

Hsu. Even today, chess computers are often optimized by

precise, year-long fine-tuning with chess experts, to provide

unsurpassed excellence. A great deal of specialist knowledge

is needed to master the many aspects and strategies of the

game.

This research work demonstrates how self-learning „deep

learning‟ algorithms are used to develop a chess computer

which independently learns strategic intelligent moves,

without any prior knowledge of the board game and its rules.

II. SOFTWARE ARCHITECTURE

To play chess successfully, one needs to gain the deepest

possible understanding of the effect of different moves [5].

Conventional chess engines use linear evaluation functions

to combine various features of the game board to calculate a

number which represents the quality of a position.

For example, the multitude and position of the pieces,

safety of the king, central position occupancy, etc. are taken

into account in order to arrive at a value by using a linear

combination of these properties. The human understanding of

any situation, however, goes far beyond that; each situation in

the game requires an individual estimation of the

configuration of the pieces and possible benefits. To mimic

this abstract process through machine learning, we use

artificial neural networks trained for the nonlinear evaluation

of game positions.

A consecutive tree search then allows all possible

consequences to be evaluated to determine the optimal move.

The basis of our software architecture is the development

of a Deep Belief Network (DBN). To ensure a flawless design,

it follows the SOLID-principles. Appendix A shows the UML

modeling of our finished software.

A. Application Layer

The application is divided into two processes: training and

prediction. The training phase is used for the highly accurate

adaptation of the weights and biases of the artificial neurons

and consists of two consecutive sub-processes. These are

subdivided into pre-training and fine-tuning. Pre-training is

used to optimize the training behavior and to avoid the

vanishing gradient problem. “[...] particular to deeper nets [...]

the gradients will either shrink towards zero or blow up as

they are back-propagated, making learning of the weights

before the last few layers nearly impossible” [6]. For this

reason, we perform an unsupervised pre-training.

B. Pre-training

Before the actual training of the model there will be an

unsupervised pre-training of every single hidden layer.

“During each phase of the greedy unsupervised training

strategy, layers are trained to represent the dominant factors

of variation extant in the data. This has the effect of

leveraging knowledge of X to form, at each layer, a

representation of X consisting of statistically reliable features

End-to-End Deep Neural Network for Automatic Learning

in Chess

Konstantin Herud and Carsten Mueller

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

146DOI: 10.7763/IJCTE.2018.V10.1216

Manuscript received September 5, 2018; revised October 8, 2018. This

work was supported in part by the Baden-Wuerttemberg Cooperative State

University.

K. Herud is with the Department of Applied Informatics,

Baden-Wuerttemberg Cooperative State University, Lohrtalweg 10, 74821

Mosbach, Germany (e-mail: kon.herud.15@lehre.mosbach.dhbw.de).

C. Mueller is with the Department of Applied Informatics, Faculty of

Informatics and Statistics of the University of Economics, W. Churchill Sq.

4, 130 67 Prague 3, Czech Republic (e-mail: research@ieoca.org).

of X that can then be used to predict the output [...]” [7]. In

each of the hidden layers, patterns are extracted from within

the data. At this point, the network is not yet aware of any

information about target data, such as class affiliation or

rating of the data record. In order to train each layer separately

in advance, so-called Restricted Boltzmann Machines (RBMs)

are used. An RBM is a non-directional model consisting of a

visible and a hidden layer with symmetrically connected units

[8]. This model is trained using the Contrastive Divergence

algorithm [9], [10].

Thus, the various hidden layers of the DBN are trained in

succession, starting with the input layer and the subsequent

hidden layer. Once a layer has completed the pre-training, the

network is used as a normal Feed-Forward Neural Network,

whereupon this layer takes over the task of being the visible

layer within the RBM [11].

C. Fine-tuning

The weights of the network have now been adapted to the

patterns within the training data. The network does not know

any characteristics of the data yet.

The fine-tuning has the following tasks:

 Add an output layer and perform supervised training.

 Final adjustments of the network parameters.

Since the hidden layers have already been trained, it is

sufficient in this phase to adapt the parameters of the output

layer. All the network parameters are readjusted using the

Stochastic Gradient Descent Algorithm [12], [13].

D. Prediction

After the training has been completed, the model can be

used to predict the characteristics of new datasets. This

process can be represented as a simple matrix multiplication.

Thus, on each artificial neuron j of a layer l, the incoming data

a is summed, after multiplying it with its weights wj. The

value that is obtained from adding a bias bj to the neuron and

performing an activation function σ over this sum, is then

propagated to the next layer, until the output layer eventually

provides a result.

1l l l

jk

l

jj k

k

a w a b  
 





 (1)

E. Persistence Layer

For the administration of the dataset, we fill an HSQL

database table with the dataset created in the form of a CSV

file in advance. The connection of this database to the DBN

avoids the need to parse the data records during the training

process and additional computational effort during runtime.

F. Presentation Layer

During the training phase the output visualizes key figures

on the current epoch, the accuracy and the error rate of the

network as well as the current training process.

The intuitive Forsyth-Edwards Notation for the chess

engine is used to represent positions in the game and the

detailed algebraic notation for playing moves.

III. TRAINING OF THE MODELS

The goal is to provide the models with as little prior

knowledge as possible to examine how well the models were

able to learn on their own.

A. Dataset and Model Approaches

For the dataset, one hundred thousand random game

positions from high quality games (ELO rating ≥ 2400) were

extracted from the “FICS Games Database

(www.ficsgames.org)” in PGN file format. To convert these

game positions into a DBN-compatible input format, the

respective game boards are transformed into binary vectors.

For each playing field, the presence or absence of one of

the twelve individual figures is represented by a zero or one,

resulting in a vector of length 12 × 64 = 768 for each game

position. In addition the four castling rights were passed on, as

these cannot be derived from the game position. Thus, each

data record is represented by a binary vector of length 772,

which represents the number of input neurons of the DBN.

In the first approach, the model should learn to determine

whether each individual position would result in a victory or a

defeat. The dependent variables for this approach are

therefore three exclusive classes: victory, draw and defeat.

For the regressive approach, the dependent variables are

determined in the form of a numerical value using the

evaluation function of Stockfish, the best open source chess

engine to date. These numbers, in the range [-300; 300], were

normalized.

In the third approach developed, these numerical values

are quantized into seven classes in order to again use the

superiority of classifying models over regressive models.

Equation 2 represents the function by which we subdivided

the value range of the dependent variable of the regressive

approach into different classes.

Too far behind for 10

Significantly behind for 2

Imperceptibly behind for 0

>

.5

() Equal opportunities for 0.5 0.5

Imperceptibly ahead for 0.5

Significantly ahead for 2

Too far ahe

<

<

<

 >

 >

 f

d

a or

x

x

x

f x x

x

x

x







   

 10













 (2)

B. Parameter Settings

In this research three models for each of the three

approaches are examined, each with the following parameter

settings. The selection is based on results from research work

[14], [15].

 Neurons per hidden layer:

- 1st
 model: [772, 100, 100, 100]

- 2nd
 model: [772, 400, 200, 100]

- 3rd
 model: [772, 600, 400, 200, 100]

 Learning rate: 0.005 × 0.98
Epoch

 Batchsize: 32

 Pre-training epochs per layer: 50

 Fine-tuning epochs: 200

 Hidden layer activation: rectified linear unit

 Output layer activation and loss function:

- Classification: Normalized exponential function and

categorical crossentropy

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

147

- Regression: Tangens hyperbolicus and huber loss

In order to ensure optimal generalization through the

models, a Dropout Regularization is used for each of the

hidden layers at a rate of 0.5 during fine-tuning. “By doing

this scaling, 2n networks with shared weights can be

combined into a single neural network to be used at test time.

Training a network with dropout and using this

approximate averaging method at test time leads to

significantly lower generalization error on a wide variety of

classification problems compared to training with other

regularization methods” [16], where n is the number of

artificial neurons in the network.

C. Model Evaluation

In order to objectively assess our models, a 10-fold cross

validation for each of them is performed. The classifying

approach achieves a very high maximum accuracy of 99.0%.

In contrast, the regressive approach, shows no improvement

in accuracy (<15%), with the attribute regarding the difficulty

of accurately predicting floating-point numbers. Since the

loss of the corresponding models nevertheless decreases, it is

assumed that the training process is successful. Both

approaches show a generalized learning process without

overfitting based on the Dropout Regularization. The

quantized classification approach achieves a maximum

accuracy of 85.24%.

In addition, a significant over-adaptation after a small

number of epochs is observed. Fig. 1 shows the monitored

supervised fine-tuning error rates for the three model

approaches. Since no significant improvement was apparent

between the different configurations and the number of

artificial neurons per hidden layer, the models were selected

with 772-100-100-100 neurons per hidden layer as favorites,

because of the lower computational effort needed.

Fig. 1. Plotted loss of our models.

IV. PROOF OF CONCEPT

To complement the capabilities of the DBN to evaluate

chess positions and implementing a powerful software

architecture for an end-to-end chess computer, and therefore

to examine its playing strength, an Alpha-Beta Tree Search is

adapted.

The aim of this search is to iteratively examine possible

follow-up positions of a game position to the highest possible

game depth, in order to be able to make the best choice in

advance.

A. Alpha-Beta-Search

The principle of the algorithm is to update the α and β

values for each node in the course of a depth-first search, in

order to remove those subtrees with root nodes above or

below the respective maximum or minimum for α or β [17].

α is the minimum result that player A will reach, and β, the

maximum value that player B will achieve. The effectiveness

of the algorithm depends heavily on the order in which the

best moves are investigated. In the optimal case, the algorithm

can reduce the exponential search complexity to O(b
d/2

),

where b is the number of average successor nodes of each

node (about 35 in chess) and d is the search depth. The worst

case complexity would be O(b
d
) [17].

By using a transposition table in the form of a hashmap we

achieve two additional advantages: On the one side, the

search depth are increased iteratively by keeping the results of

the search tree within the hashmap, on the other side, multiple

evaluation of nodes with the same game position is not needed,

which considerably reduces the computational effort. “Using

a transposition table can have a dramatic effect, sometimes as

much as doubling the reachable search depth in chess” [17].

B. Skill Level

In order to compare the strength of the three approaches in

the first step, the three models were compared in 100 games.

They all used the same search algorithm and had to

demonstrate how they use their learned evaluation function to

select the optimal sub-tree leading to the strongest move.

The quantized classifying model proved to be most

successful, with a slight lead over the regressive approach

while the simple classifying model was clearly inferior. Out of

a total of 300 games, the best scored 121 wins, the second 117

wins and the last, 62 wins. Hence, the quantized classifying

model is used for further research experiments.

In the next step, the learned skill level was qualitatively

examined. Thus various problems were identified for both

sides of the game, black and white, based on which the model

had to prove its degree of understanding of the game. Fig. 2

illustrates three of these problems. In this case, the moves of

the chess computer are marked orange, whereas

predetermined logical reactions of the other side are marked

in blue.

The research experiments showed that the Deep Belief

Network is not only able to learn simple concepts, such as the

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

148

roles and rules of the characters and checkmate independently,

but also to develop advanced techniques, such as sacrificing

pieces and foresighted positioning. Because of the high

configuration count of all possible chess games (after 40

moves between 10
115

 and 10
120

 [18]), it is assumed that the

DBN has not yet seen every play position. Hence it is evident

that a learning process has successfully taken place.

In the final step, two instances of the same chess computer

are placed side-by-side in a game against each other at a

search depth of 8, to examine its playing behavior. The

excerpt in Appendix B demonstrates how the DBN has

learned to tactically plan ahead and think positionally.

Fig. 2. Three different Test Challenges solved by our Application.

V. CONCLUSION

This research work demonstrates that the developed

software architecture based on DBN is able to successfully

learn paradigms and rules of chess independently. In contrast

to the linear combination of various game board features of

the evaluation function of conventional chess computers,

these functions are expressed as a powerful purely

mathematical matrix operation, thus laying the foundation for

a highly parallelizable chess engine.

The experiments demonstrate only a fraction of the

potential of the software by using only a single processor with

about 50 GFLOPs and a very limited number of data sets, for

example compared to Google's Alpha Zero chess computer

with 5000 TPUs (180 TFLOPS / TPU) used for training [19].

It was presented how machine-based learning develops a

human-like understanding of the field of application without a

priori knowledge. This research work is a fundamental basis

for the further development of chess computers in the future.

APPENDIX A

UML-MODEL OF OUR SOFTWARE ARCHITECTURE

DeepBeliefNetwork

-inputNeurons: int
-outputNeurons: int
-amountHiddenLayers: int
-hiddenLayers: HiddenLayer[]
-hiddenLayerSizes: int[]
-rbmLayers: RestrictedBoltzmannMachine[]
-outputLayer: OutputLayer

+pretrain(traindata: double[][][],
layer: int,
learningRate: double)

+finetune(traindataX: double[][][],
traindataY: double[][][],
learningRate: double)

+finetuneDropout(traindataX: double[][][],
 traindataY: double[][][],
 learningRate: double)

+predict(x: double[]): double[]
+serialize()
+deserialize(): DeepBeliefNetwork
-dropout(neurons: double[]): int[]

-activation: DoubleFunction<Double>
-activationDerived: DoubleFunction<Double>

+propagateForward(x: double[]): double[]
+propagateBackward(traindataX: double[][],

 traindataY: double[][],
 previousError: double[],
 previousWeights: double[][],
 learningRate: double): double[][]

+outputBinomial(x: int[]): int[]
-output(x: double[]): double[]

+contrastiveDivergence(traindata: int[][],
 learningRate: double)

-gibbsSampling(initialHiddenSample: int[],
 nextVisibleMeans: double[],
 nextVisibleSamples: int[],
 nextHiddenMeans: double[],
 nextHiddenSamples: int[])

-sampleVisible(initialVisibleSample: int[],
 sample: int[],
 mean: double[])

-sampleHidden(initialHiddenSample: int[],
 sample: int[],
 mean: double[])

-propagateUp(visibleUnits: int[],
 weights: double[],
 bias: double)

-propagateDown(hiddenUnits: int[],
 neuronIndex: int,
 bias: double)

LogisticLayer

#activate(preActivation:
double[]): double[]

RegressionLayer

#activate(preActivation:
double[]): double[]

n

1

1

n

1

1

<<Enumeration>>

TrainingRecorder

instance
-connection: Connection

+insert(statement: String)
<<Enumeration>>

DataProvider

instance
-connection: Connection

+count(): int
+getXSamples(minibatchSize: int,

 index: int): double[][]
+getYClassSamples(minibatchSize: int,

 index: int): double[][]
+getYScoreSamples(minibatchSize: int,

 index: int): double[][]
-loadCSV()

1

1

<<Enumeration>>

Configuration

instance

1

1

CSVParser

-file: String
-scanner: Scanner

+hasNext(): boolean
+getNext(): List<String>

ActivationFunction

+sigmoid(x: double): double
+dsigmoid(y: double): double
+tanh(x: double): double
+dtanh(y: double): double
+relu(x: double): double
+drelu(y: double): double)

RandomGenerator

+uniform(min: double,
 max: double): double
+binomial(max: int,

probability: double): int
+argmax(vector: double[]): int
+argmin(vectir: double[]): int

+predict(x: double[]): double[]
+train(layerInput: double[][],
 traindataY: double[][],
 learningRate: double)
-output(x: double[]): double[]
#activate(preActivation: double[]): double[][]

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

149

DeepBeliefNetwork

-inputNeurons: int
-outputNeurons: int
-amountHiddenLayers: int
-hiddenLayers: HiddenLayer[]
-hiddenLayerSizes: int[]
-rbmLayers: RestrictedBoltzmannMachine[]
-outputLayer: OutputLayer

+pretrain(traindata: double[][][],
layer: int,
learningRate: double)

+finetune(traindataX: double[][][],
traindataY: double[][][],
learningRate: double)

+finetuneDropout(traindataX: double[][][],
 traindataY: double[][][],
 learningRate: double)

+predict(x: double[]): double[]

HiddenLayer

-inputNeurons: int
-outputNeurons: int
-weights: double[][]
-biases: double[]
-activation: DoubleFunction<Double>
-activationDerived: DoubleFunction<Double>

+propagateForward(x: double[]): double[]
+propagateBackward(traindataX: double[][],

 traindataY: double[][],
 previousError: double[],
 previousWeights: double[][],
 learningRate: double): double[][]

+outputBinomial(x: int[]): int[]
-output(x: double[]): double[]

RestrictedBoltzmannMachine

-visibleNeurons: int
-hiddenNeurons:int
-weights: double[][]
-visibleBias: double[]
-hiddenBias: double[]

+contrastiveDivergence(traindata: int[][],
 learningRate: double)

-gibbsSampling(initialHiddenSample: int[],
 nextVisibleMeans: double[],
 nextVisibleSamples: int[],
 nextHiddenMeans: double[],
 nextHiddenSamples: int[])

-sampleVisible(initialVisibleSample: int[],
 sample: int[],
 mean: double[])

-sampleHidden(initialHiddenSample: int[],
 sample: int[],
 mean: double[])

-propagateUp(visibleUnits: int[],
 weights: double[],
 bias: double)

-propagateDown(hiddenUnits: int[],
 neuronIndex: int,
 bias: double)

LogisticLayer

#activate(preActivation:
double[]): double[]

RegressionLayer

#activate(preActivation:
double[]): double[]

1 1

<<Enumeration>>

TrainingRecorder

instance
-connection: Connection

+insert(statement: String)
<<Enumeration>>

DataProvider

instance
-connection: Connection

+count(): int
+getXSamples(minibatchSize: int,

 index: int): double[][]
+getYClassSamples(minibatchSize: int,

 index: int): double[][]
+getYScoreSamples(minibatchSize: int,

 index: int): double[][]
-loadCSV()

1

1

<<Enumeration>>

Configuration

instance

1

1

CSVParser

-file: String
-scanner: Scanner

+hasNext(): boolean
+getNext(): List<String>

ActivationFunction

+sigmoid(x: double): double
+dsigmoid(y: double): double
+tanh(x: double): double
+dtanh(y: double): double
+relu(x: double): double
+drelu(y: double): double)

RandomGenerator

+uniform(min: double,
 max: double): double
+binomial(max: int,

probability: double): int
+argmax(vector: double[]): int
+argmin(vectir: double[]): int

OutputLayer

-inputNeurons: int
-outputNeurons: int
-weights: double[][]
-biases: double[]

+predict(x: double[]): double[]
+train(layerInput: double[][],
 traindataY: double[][],
 learningRate: double)
-output(x: double[]): double[]
#activate(preActivation: double[]): double[][]

APPENDIX B

EXCERPT OF A GAME BETWEEN TWO INSTANCES OF OUR CHESS ENGINE

150

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

ACKNOWLEDGMENT

I respect and thank Dr. Carsten Mueller, for providing me

an opportunity to do this research project and giving me all

support, feedback and guidance.

Finally, I must express my very profound gratitude to my

family for providing me with unfailing support and

continuous encouragement throughout my years of study and

through the process of researching and working on this

project. Thank you.

REFERENCES

[1] W. Duch and J. Mandziuk, Challenges for Computational Intelligence,

Springer Berlin Heidelberg, 2007.

[2] D. Silver et al., “Mastering the game of go with deep neural networks

and tree search,” Nature, vol. 529, no. 7587, pp. 484-489, Jan. 2016.

[3] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, and A. Huang,

“Mastering the game of Go without human knowledge,” Nature, vol.

550, pp. 354-359, Oct. 2017.

[4] F. H. Hsu, “Ibm‟s deep blue chess grandmaster chips,” IEEE Micro,

vol. 19, no. 2, pp. 70-81, Mar. 1999.

[5] I. Bratko, D. Hristova, and M. Guid, “Search versus knowledge in

human problem solving: A case study in chess,” in Model-Based

Reasoning in Science and Technology, L. Magnani and C. Casadio,

Eds. Cham: Springer International Publishing, 2016, pp. 569-583.

[7] D. Erhan, Y. Bengio, A. Courville, P. A. Manzagol, P. Vincent, and S.

Bengio, “Why does unsupervised pre-training help deep learning?” J.

Mach. Learn. Res., vol. 11, pp. 625-660, Mar. 2010.

[8] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm

for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527-1554,

Jul. 2006.

[9] B. Marlin, K. Swersky, B. Chen, and N. Freitas, “Inductive principles

for restricted boltzmann machine learning,” in Proc. the Thirteenth

International Conference on Artificial Intelligence and Statistics, May

2010, pp. 509-516.

[10] G. E. Hinton, “A practical guide to training restricted Boltzmann

machines,” in Neural Networks: Tricks of the Trade (2nd ed.), Lecture

Notes in Computer Science, G. Montavon, G. B. Orr, and K.-R. Müller,

Eds. Springer, 2012, vol. 7700, pp. 599-619.

[11] Y. Sugomori, Java Deep Learning Essentials, Packt Publishing, 2016.

[12] L. Bottou, “Large-scale machine learning with stochastic gradient

descent,” in Proc. COMPSTAT’2010, 2010, pp. 177-186.

[13] M. Hardt, B. Recht, and Y. Singer. (2015). Train faster, generalize

better: Stability of stochastic gradient descent. CoRR. [Online].

Available: https://arxiv.org/abs/1509.01240

[14] O. E. David, N. S. Netanyahu, and L. Wolf, Deep Chess: End-to-End

Deep Neural Network for Automatic Learning in Chess. Springer

International Publishing, 2016, pp. 88-96.

[15] V. Nair and G. E. Hinton, “Rectified linear units improve restricted

boltzmann machines,” in Proc. the 27th International Conference on

Machine Learning (ICML-10), 2010, pp. 807-814.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.

Salakhutdinov, “Dropout: A simple way to prevent neural networks

from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958,

Jan. 2014.

[17] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[18] E. Bonsdorff, K. Fabel, and O. Riihimaa, Schach und Zahl:

Unterhaltsame Schachmathematik, Rau, 1966.

[19] D. Silver et al. (2017). Mastering chess and shogi by self-play with a

general reinforcement learning algorithm. CoRR. [Online]. Available:

https://arxiv.org/abs/1712.01815

Konstantin Herud was born in Germany on the

August 25, 1996. Herud graduated with his German

Abitur in 2015 at the Wirsberg-Gymnasium in

Würzburg. Currently, Herud is studying at the

DHBW Mosbach, Germany with his major field in

applied computer science, and is expected to

graduate with his bachelor of science in September,

2018. Since 2015 he simultaneously works for the

Flyeralarm Dienstleistungs GmbH in Würzburg as

software developer. In 2012, he did an internship in the Faculty of

Experimental Physics IV at the University of Würzburg, Germany. His

current research interests lie in the field of artificial intelligence and in

particular in machine learning.

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

151

[6] J. Martens, “Deep learning via hessian-free optimization,” in Proc. the

International Conference on Machine Learning, 2010, pp. 735-742.

