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State Complexity of Shuffle and Intersection
Combined with Complement

Kavitha Joseph, Member, CSI

Abstract - This paper investigates the state complexity of
combined operations on regular languages. In particular it
investigates the state complexity of shuffle of complement
and theintersection of complement of two regular languages
represented by alternating finite automata.

Index Terms— Alternating finite automata, regular
languages, shuffle, state complexity.

I. INTRODUCTION

Motivated by several applications and implementation of
finite automata in software engineering, programming
languages and other practical areasin computer science, the
state complexity of Deterministic Finite Automata (DFA)
and Nondeterministic Finite Automata (NDFA) have been
studied during the last decade.

The state complexity of regular languages is the minimal
number of states of the automaton representing the language.
The state complexity of an operation on regular languagesis
a function that associates the sizes of the automata
representing the operands of the operation to the minimal
number of states of the automata representing the resulting
language.

Some early results concerning the state complexity of
regular languages can befound in [3], [4] and [13]. Yu et a
[4] were the first to systematically study the complexity of
regul ar language operations. Motivated by the result of Yu et
al [4] several authors have investigated the state complexity
of finite languages operations and unary languages
operations [refer [5], [6], [14] and [15]]. State complexity
results concerning operations on unary regular languages
represented by DFAs are elaborated in the  survey
articles [7] and [11]. The nondeterministic state complexity
of regular languages operations was studied by Holzer and
Kutrib in [10] and [16].The state complexity of some of the
operations like concatenation, complement, star and reversal
on regular languages was investigated in [8], [9], [10], [19]
and [20]. However, almost all the operations which have
been studied are individual operations. Yu et al.[17] were
the first to systematically study the state complexity of
combined operations on regular languages. In [17], the
authors discussed the state complexity of concatenation and
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reversal combined with star operation for aDFA. After their
work, the state complexity of combined operations for
regular languages is studied in [18] and [21]. Motivated by
their work, in this paper | studied the state complexity of
combined operations for an Alternating Finite Automata
(AFA).

The notion of alternation is a natural generalization of
nondeterminism. It received its first formal treatment by
Chandra, Kozen and Stockmeyer in 1976 [1]. In this paper
they proved that the AFA areprecisely aspowerful asDFA as
far as language recognition is concerned. They have also
shown that there exists k-state AFA such that any equivalent

complete DFA has at least 2% gates. A more detailed
treatment of AFA and their operations can befoundin[2]. In
[4], it has been shown that a language L is accepted by an
n-state DFA if and only if the reversal of L, that is L?, is
accepted by alogn-state AFA. So the use of an AFA instead
of DFA guarantees a logarithmic reduction in the number of
states. In addition, operations such as union, intersection,
complement, difference and shuffle for an AFA are much
smpler and more efficient to implement than the
corresponding DFA operations.

In this paper, | investigate the state complexity of some
combined operations on regular languagues represented by
an AFA. In the following sections, the paper first reviews
the basic definitions and notations and then it~ proves the
results on shuffle of complement  and the intersection of
complement.

II. ALTERNATING FINITE AUTOMATA

Let B denote thetwodement Boolean algebraB =
{0,1},U,U, 7, 0,1). Let Qbeaset. Then B isthe set of
all mappingsof QintoB and u | B can be considered as a
vector of |Q| entries, indexed by elements of Q, with each
entry beingfromB.Foru | B? andgl Q, u,todenotethe
image of g under u.

An AFA A isaquintupleA=(Q, %, s, F, ),
where

Q isthefinite set of states,

¥ istheinput alphabet;

s| Qisthestarting state;

F | Qistheset of final states;

gisafunction of Q intothe set of all functions

of " BYintoB. For each stateq! Q, g(q) isa function
from =~ B into B, which is often denoted by gq in the
sequel. For each stateq | Qand al X, define gq(a) to be
theBoolean function B°® B  such that
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9q(@)(u) = ge(a, u)

Thus, for u | B<, the value of gq(@(u) (= gq(a, u), is
gither 1 or 0). Define the function go : =~ B°® BR by
putting together the|Q| functions g, : = B°® B,ql Q,
asfollows. For al Tandu, vl BY go(a u)= v iff gy(a,
u)=vyforeachgl Q.Forfl B? f,= 1liffql Fandfis
thecharacteristic vector of F. Extend g to a function of Q into
the set of all functionsy” =~ B°® B asfollows.

[u if w=|

gy (W,u) =
gq(a g(w,u) if w=aw'

Awordw | X isaccepted by A iff gw, f) =1
where f is the characteristic vector of F. The language
accepted by A isthe set R

L(A) ={wl =/ gyw,f)=1}

Example. Definean AFA A= (Q, %, s, F, g), where

Q = {QO, O, qZ}l
z ={a, b},
S={qo}
F={a:}

and g is given by

Sate a b
Go aUag 0
Q1 g2 aUaq
% | qUq, | qUq,

Let w = aba. Thenw is accepted by A asfollows:

g,@nf)

=g,68 1), )
=(g,a1)Ug, @)U, @) g, @)

=(@,0,N0g,0, 70,0, MU, 0, N0g0, N, 0,7
=(1, Uf, U, U, Ur,)

-0oun) ol

11l. OPERTIONS ON REGULAR LANGUAGES

The worst-case complexities of star of concatenation and
star of reversal are discussed in [17] and in that paper the
authors proved that the state complexity of the combined
operationsisvery different from the combination of the state
complexities of their individual operations. The worst-case
complexity of an AFA for an individual operations
concatenation, complement and shufflearediscussedin [12].
The coming next section gives the upper bound for the
combined shuffle of complement operation. The next section
discussesthe state complexity of intersection of complement.
A..SHUFFLE

This section first defines the shuffle operation then it
establishes a sharp upper bound for the shuffle of

complement of two regular languages represented by two
AFAs.
Given two strings x and y the shuffle of x and y, denoted x
|| yisthe set of strings obtained by taking the characters of x
and interleaving them with the characters of y so that the
relative order of the charactersin each string is maintained.
The shuffle of two languages L; and L,, denoted

L1|| Lois defined as
Ly||Lz = LJT”U
_|- 1

SHUFFLE OF COMPLEMENT
This section considersthe state compl exity of the shuffle of
complement operation. That isthe combination that includes
first the complement of two regular languages and then the
shuffle of the resulting languages. It gives the upper bound
for the shuffle of complement of two regular languages.

Let Ly = L(A) and A bean AFA of m states, i =1, 2,
then L || L, isaccepted by an AFA A with my + mp+ 1
states.

Let A;=(Qq, X4, S1, F1, 9') bean AFA accepting aregular
language L; with my states, A,=(Q,, X2, S, F2, ') be an AFA
accepting aregular language L, with m, states then an AFA
A accepts the shuffle of complement of these two regular
languagesis defined as foll ows:

A=(Q, X, s, F, g) bean AFA where

Q= QlU QzU{S}
r=nU %

HQ-PUQ-RUsUs) ir T FsTF
F_'{Q FUQ- FYU s} if SﬂFl
{Q FHAQ- F}U{S} it SIF
TQ-AuUQ-A it dhavis
and g is defined as
g (auus, if a=sald
:S Ug” (au if 9=s2l &
.!.g' a l.;) if ql Q.al &
9q(a,u)=_:_"q_’ f qi Qual &
'|'g (@) if qf Q.al a,
i if qf Qual &
1q

where g isthedual of g.

The construction of A is evident that it accepts the shuffle
of complement of two regular languages L; and L,using not
more than m; + m, + 1 states.

The computation of A begins by simulating both the
computationsof themachinesA;and A,. If s, | Fiands, |
F, then the set of accepting states F has been chosen to be
{Q:-F1} U{QxF.}. Using the transition rules of an AFA A,
the machine A accepts the shuffle of complement of two
regular languagesL;and L. It iseasy to verify that
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L :E I fz In order to obtain an upper bound for the

operation shuffle of complement, count the number of states
of A. The|Q| =m;, i =1, 2, according to the construction,
the cardinality of Qism; + my+ 1

Therefore we have the foll owing theorem.

Theorem
Let A; be an AFA with m; states i = 1,2 accepts the
language L(A;) and m; > 1 then there exists an AFA A with
m; + m, + 1 states which accepts the shuffle of
complement of two regular languages L (A)), i=1, 2.
Proof.
Let L; be aregular language recognized by an
AFA Aijof size m,i=12 and Lij=L (A)
i.e, A= (Qq X1, s, F1, g) bean AFA with
m, states accepting the language L; and
A, = (Qz, 2o, S, Fz‘ g") be an AFA with msy
states accepting the language L,. Assume that Q; and
Qzaredigoint.
Clam:L (A)= L || L,
Lewl LA),wl .Uz
Sincew | L (A), gs(w, u) =1
By the construction of machine A, itis clear that

gswu=g, @, ) UG, [0, ul,e) .
where a isthe collection of alphabets which

arein =, for thewordwand b isa collection of

alphabets which arein X, for theword w.
0 gs(w, u) =1

b g,@ ) U g, 0 U.) =1
p g'sl(a,ulQl_Fl) =land @', (b, u|Q2_F2) =1
b g, (@, u|Q1_F1) =0and ¢, (b, u|Q2_F2) =0
bal L(A).bl L(A).

Therefore, gg(w, U) =1 iff a | m ,

bl L(A,) and w=a|b iff

wl L(A)IL(A,).
wl L(A) iff wl L(A) IL(A,).

ie, LA)=L(A) IIL(A).

Therefore by the construction of the machineA, itisclear
that themachine A acceptsthe shuffle of complement of two
regular languages L (A;) and L(A) with m; + m, + 1 states

B. INTERSECTION OF COMPLEMENT

In this section, | introduce a new state ‘s’ to construct an
AFA, which accepts the intersection of complement of two
regular languages L(A;) and L(A,) .

Theorem

For any positive integers my, my let A be an my-state AFA
and A, be an mp-state AFA. Then my + m, + 1 states are
sufficient in the worst case for an AFA A to accept the

language L(A,)N L(A,) .

Proof.
Let A= (Qq, %, s1, F1, 0') be an AFA that accepts
the language L (A;) with m; states.
Let A,=(Qx X s, F,, 0") bean AFA that accepts the
language L (A,) with mystates and Q;NQ,= .
We construct an m; + mp + 1- state AFA
A=(Q, %, s F, g) such that
L(A) = L(A)N L(A,) asfollows.
Q= QlU QzU {s}
F=(QrF) U (QF).
and g is defined as follows.
19’ (auUg", (auw T g=sala
it af Qal &
if al Q.al

|
g, (aW=ig,(au

19" (@)

Qo

Clam L(A)=L(A) n L(A)

Firsweprove L(A) N L(A,) 1 L(A).

Consider awordw | L(A) N L(A))
Thenw! L(A

) andwl L(A).
Star with gs(w, u) =1 for the machine A.
Ifg=s

gs(W, U) = g'sl (W’ ulQl-Fl) U g"s,2 (W’ ulQZ'Fz) .

Sncew | L(A,), g (W, u, ) =1and
1

w I L (Az) ! g"s,2 (W’ ulQZ—FZ) =1

glsl (W, ulQl-Fl) U 9"32 (W, ulQZ-FZ) =1
By the construction of the machine A
gS(Wl U) = g's,1 (W’ ulQl-Fl) U g"s,2 (W’ ulQZ'FZ)

=1U1
=1
Therefore, w | L (A)
ie, L(A)N L(A,) I LA).

Conversdly, letw | L(A) P ggw, u) =1.
e, gy (W Ulpr) U g'gWul,.) =1
P g, W, u|Q1_F1) =1land gy (W, u|Q2_F2) =1

Therefore, wl L (A

) andwl m
Thatisw!l L(A) N L(A,).
LA L(A)n L(A).
ThusL (A)= L(A,) N L(A,).

2

V. ConcLusiON
In this paper, | studied the state complexity of combined
operations for an Alternating Finite Automata which were
inspired by the work of Sheng Yu and Salomaa
Implementing combined operations for an AFA are much
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easier and much efficient compareto the corresponding DFA
operations. Alternation adds perfect features to automata
expressiveness, paralldism and succinctness which have
practical applications in software system and has the
potential to answer several open problems in formal
languages and complexity.

It remains to investigate the other combined operations
for an AFA.
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