
International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

577

 Abstract - This paper investigates the state complexity of
combined operations on regular languages. In particular it
investigates the state complexity of shuffle of complement
and the intersection of complement of two regular languages
represented by alternating finite automata.

Index Terms— Alternating finite automata, regular
languages, shuffle, state complexity.

I. INTRODUCTION
Motivated by several applications and implementation of
finite automata in software engineering, programming
languages and other practical areas in computer science, the
state complexity of Deterministic Finite Automata (DFA)
and Nondeterministic Finite Automata (NDFA) have been
studied during the last decade.

The state complexity of regular languages is the minimal
number of states of the automaton representing the language.
The state complexity of an operation on regular languages is
a function that associates the sizes of the automata
representing the operands of the operation to the minimal
number of states of the automata representing the resulting
language.

Some early results concerning the state complexity of
regular languages can be found in [3], [4] and [13]. Yu et al
[4] were the first to systematically study the complexity of
regular language operations. Motivated by the result of Yu et
al [4] several authors have investigated the state complexity
of finite languages operations and unary languages
operations [refer [5], [6], [14] and [15]]. State complexity
results concerning operations on unary regular languages
represented by DFAs are elaborated in the survey
articles [7] and [11]. The nondeterministic state complexity
of regular languages operations was studied by Holzer and
Kutrib in [10] and [16].The state complexity of some of the
operations like concatenation, complement, star and reversal
on regular languages was investigated in [8], [9], [10], [19]
and [20]. However, almost all the operations which have
been studied are individual operations. Yu et al.[17] were
the first to systematically study the state complexity of
combined operations on regular languages. In [17], the
authors discussed the state complexity of concatenation and

Manuscript received on 4th June 2009.
Kavitha Joseph was with Anna University, Chennai, INDIA. She is now

with the Department of Mathematics,
CMR Institute of Technology, Bangalore, INDIA.
(Author e-mail: kavijoseph_cmrit@rediffmail.com).

reversal combined with star operation for a DFA. After their
work, the state complexity of combined operations for
regular languages is studied in [18] and [21]. Motivated by
their work, in this paper I studied the state complexity of
combined operations for an Alternating Finite Automata
(AFA).

The notion of alternation is a natural generalization of
nondeterminism. It received its first formal treatment by
Chandra, Kozen and Stockmeyer in 1976 [1]. In this paper
they proved that the AFA are precisely as powerful as DFA as
far as language recognition is concerned. They have also
shown that there exists k-state AFA such that any equivalent

complete DFA has at least 22
k

 states. A more detailed
treatment of AFA and their operations can be found in [2]. In
[4], it has been shown that a language L is accepted by an
n-state DFA if and only if the reversal of L, that is LR, is
accepted by a logn-state AFA. So the use of an AFA instead
of DFA guarantees a logarithmic reduction in the number of
states. In addition, operations such as union, intersection,
complement, difference and shuffle for an AFA are much
simpler and more efficient to implement than the
corresponding DFA operations.

In this paper, I investigate the state complexity of some
combined operations on regular languagues represented by
an AFA. In the following sections, the paper first reviews
the basic definitions and notations and then it proves the
results on shuffle of complement and the intersection of
complement.

II. ALTERNATING FINITE AUTOMATA

Let B denote the two element Boolean algebra B =
({0, 1}, ∧ , ∨ , ̄ , 0 , 1). Let Q be a set. Then BQ is the set of
all mappings of Q into B and u ∈ BQ can be considered as a
vector of |Q| entries, indexed by elements of Q, with each
entry being from B. For u ∈ BQ and q∈ Q, u q to denote the
image of q under u.

 An AFA A is a quintuple A=(Q, Σ, s, F, g),
where

 Q is the finite set of states;
 Σ is the input alphabet;
 s ∈Q is the starting state;
 F ⊆ Q is the set of final states;

 g is a function of Q into the set of all functions
of Σ ×BQ into B. For each state q ∈ Q, g(q) is a function
from Σ × BQ into B, which is often denoted by gq in the
sequel. For each state q ∈ Q and a ∈ Σ, define gq(a) to be
the Boolean function BQ → B such that

Kavitha Joseph, Member, CSI

State Complexity of Shuffle and Intersection
Combined with Complement

mailto:kavijoseph_cmrit@rediffmail.com

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 578

 gq(a)(u) = gq(a, u)
 Thus, for u ∈ BQ, the value of gq(a)(u) (= gq(a, u), is

either 1 or 0). Define the function gQ : Σ × BQ → BQ by
putting together the |Q| functions gq : Σ × BQ → B, q ∈ Q,
as follows. For a ∈ Σ and u, v ∈ BQ, gQ(a, u)= v iff gq(a,
u)=vq for each q∈Q. For f ∈ BQ,, fq = 1 iff q ∈ F and f is
the characteristic vector of F. Extend g to a function of Q into
the set of all functions Σ* × BQ → B as follows.

 (,)
(, (',))

q
q

q

u
g w u

g a g w u
=

if
if

w
w

=
=

'aw

λ

 A word w ∈ Σ* is accepted by A iff gs(w, f) = 1
where f is the characteristic vector of F. The language
accepted by A is the set

() {L A w= ∈ Σ* / gs(w,f)= 1}
 Example. Define an AFA A= (Q, Σ, s, F, g), where

 Q = {q0, q1, q2},
 Σ = {a, b},

 S = {q0}
 F = {q2}

 and g is given by

 Let w = aba. Then w is accepted by A as follows:

0

1 2

1 2 1 2

2 1 2 2 1 2

2 1 2 2 1 2

(,)
(,) (,)

((,) (,)) ((,) (,))
((,) (,)) (,))) ((,) (,) (,))
(()) (())
(1 (0 1)) (1 0 1))
1.

q

q q

q q q q

q q q q q q

q q q q q q

g aba f
g ba f g ba f

g a f g a f g a f g a f
g f g f g f g f g f g f
f f f f f f

λ λ λ λ λ λ

= ∧

= ∧ ∧ ∨

= ∧ ∧ ∧ ∨ ∧

= ∧ ∧ ∧ ∨ ∧
= ∧ ∧ ∧ ∨ ∧
=

III. OPERTIONS ON REGULAR LANGUAGES

The worst-case complexities of star of concatenation and
star of reversal are discussed in [17] and in that paper the
authors proved that the state complexity of the combined
operations is very different from the combination of the state
complexities of their individual operations. The worst-case
complexity of an AFA for an individual operations
concatenation, complement and shuffle are discussed in [12].
The coming next section gives the upper bound for the
combined shuffle of complement operation. The next section
discusses the state complexity of intersection of complement.
A..SHUFFLE

This section first defines the shuffle operation then it
establishes a sharp upper bound for the shuffle of

complement of two regular languages represented by two
AFAs.

Given two strings x and y the shuffle of x and y, denoted x
|| y is the set of strings obtained by taking the characters of x
and interleaving them with the characters of y so that the
relative order of the characters in each string is maintained.

The shuffle of two languages L1 and L2, denoted
 L1 || L2 is defined as

SHUFFLE OF COMPLEMENT
This section considers the state complexity of the shuffle of

complement operation. That is the combination that includes
first the complement of two regular languages and then the
shuffle of the resulting languages. It gives the upper bound
for the shuffle of complement of two regular languages.
 Let Li = L(Ai) and Ai be an AFA of mi states, i = 1, 2 ,

then 1 2|| L L is accepted by an AFA A with m1 + m2 + 1
states.

 Let A1=(Q1, Σ1, s1, F1, g') be an AFA accepting a regular
language L1 with m1 states, A2=(Q2, Σ2, s2, F2, g'') be an AFA
accepting a regular language L2 with m2 states then an AFA
A accepts the shuffle of complement of these two regular
languages is defined as follows:

 A= (Q, Σ, s, F, g) be an AFA where
 Q = Q1 Q2 {s}
 Σ = Σ1 Σ2

{
1 1 2 2 1 2

1 1 2 2 1

1 1 2 2 2

1 1 2 2

} { } { }
{ } { } { }
{ } { } { }
{ } { }

Q F Q F s s
Q F Q F sF Q F Q F s
Q F Q F

− −
− −

=
− −
− −

if
if
if
if

1 1 2 2

1 1

2 2

,

.

s F s F
s F
s F
otherwise

∈ ∈
∈
∈

and g is defined as

1

2

2

1

(,)

' (,)

'' ,)

' (,)

'' (,)

(

q

s

s

q

q

g a u

g a u s

s g a u

g a u

g a u

q

q

=

∧

∧

if
if
if
if
if
if

1

2

1

2

1

2

,

,

',

'',

',

'',

q s a

q s a

q Q a

q Q a

q Q a

q Q a

= ∈ ∑

= ∈ ∑

∈ ∈ ∑

∈ ∈ ∑

∈ ∈ ∑

∈ ∈ ∑

 where g is the dual of g.

The construction of A is evident that it accepts the shuffle
of complement of two regular languages L1 and L2 using not
more than m1 + m2 + 1 states.

The computation of A begins by simulating both the
computations of the machines A1 and A2. If s1 ∉ F1 and s2 ∉
F2 then the set of accepting states F has been chosen to be
{Q1-F1} {Q2-F2}. Using the transition rules of an AFA A,
the machine A accepts the shuffle of complement of two
regular languages L1 and L2. It is easy to verify that

State a b
q0 q1 ∧ q2 0
q1 q2 q1 ∧ q2
q2

1 2q q∧ 1 2q q∨

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

579

L = 1 2|| L L . In order to obtain an upper bound for the
operation shuffle of complement, count the number of states
of A. The |Qi| = mi, i = 1, 2, according to the construction,
the cardinality of Q is m1 + m2 + 1

Therefore we have the following theorem.

 Theorem
Let Ai be an AFA with mi states i = 1,2 accepts the

language L(Ai) and mi > 1 then there exists an AFA A with
m1 + m2 + 1 states which accepts the shuffle of
complement of two regular languages L(Ai), i=1, 2.
 Proof.

 Let Li be a regular language recognized by an
 AFA Ai of size mi, i = 1, 2 and Li = L (Ai)

 i.e., A1 = (Q1, Σ 1, s1, F1, g') be an AFA with
 m1 states accepting the language L1 and
 A2 = (Q2, Σ 2, s2, F2, g'') be an AFA with m2
 states accepting the language L2. Assume that Q1 and
 Q2 are disjoint.
 Claim: L (A) = 1 2|| L L

 Let w ∈ L (A), w ∈ (Σ 1 Σ 2)*

 Since w ∈ L (A), gs(w, u) =1
 By the construction of machine A, it is clear that
 g s(w,u)=

1 1 1s Q -Fg' (, u|) α ∧
2 2 2s Q -Fg'' (, u|) β ,

 where α is the collection of alphabets which
 are in Σ 1 for the word w and β is a collection of

alphabets which are in Σ 2 for the word w.
 gs(w, u) =1

 ⇒
1 1 1s Q -Fg' (, u|) α ∧

2 2 2s Q -Fg'' (, u|) β = 1

 ⇒
1 1 1s Q -Fg' (, u|) α =1 and

2 2 2s Q -Fg'' (, u|) β = 1

 ⇒
1 1 1s Q -Fg' (, u|) α =0 and

2 2 2s Q -Fg' (, u|) β =0

 ⇒ α ∈ ()1L A , β ∈ ()2L A .

 Therefore, gs(w, u) =1 iff α ∈ ()1L A ,

 β ∈ ()2L A and w = α || β iff

 w∈ ()1L A || ()2L A .

 w∈ L(A) iff w∈ ()1L A || ()2L A .

 ie., L(A) = ()1L A || ()2L A .
Therefore by the construction of the machine A, it is clear

that the machine A accepts the shuffle of complement of two
regular languages L(A1) and L(A2) with m1 + m2 + 1 states
B. INTERSECTION OF COMPLEMENT

In this section, I introduce a new state ‘s’ to construct an
AFA, which accepts the intersection of complement of two
regular languages L(A1) and L(A2) .
 Theorem

For any positive integers m1, m2 let A be an m1-state AFA
and A2 be an m2-state AFA. Then m1 + m2 + 1 states are
sufficient in the worst case for an AFA A to accept the

language
1L(A) ∩

2L(A) .

 Proof.

 Let A1= (Q1, Σ, s1, F1, g') be an AFA that accepts
the language L (A1) with m1 states.

 Let A2 = (Q2, Σ, s2, F2, g'') be an AFA that accepts the
language L (A2) with m2 states and Q1∩Q2 = Φ.

 We construct an m1 + m2 + 1- state AFA
A = (Q, Σ, s, F, g) such that
L (A) =

1L(A) ∩ 2L(A) as follows.

Q = Q1 Q2 {s}
 F = (Q1-F1) (Q2-F2).
 and g is defined as follows.

1 2

' (,) '' (,)

(,) ' (,)

'' (,)

s s

q q

q

g a u g a u

g a u g a u

g a u

∧

=

if
if
if

,

',

'',

q s a

q Q a

q Q a

= ∈∑

∈ ∈∑

∈ ∈∑

Claim: L(A) = ()1L A ()2L A

 First we prove ()1L A ()2L A ⊆ L(A).

 Consider a word w ∈ ()1L A ()2L A

 Then w ∈ ()1L A and w ∈ ()2L A .
 Star with gs(w, u) =1 for the machine A.
 If q = s,
 gs(w, u) =

1 1 1s Q -Fg' (, u|) w ∧
2 2 2s Q -Fg'' (, u|) w .

 Since w ∈ ()1L A ,
1 1 1s Q -Fg' (, u|) w = 1 and

 w ∈ ()2L A ,
2 2 2s Q -Fg'' (, u|) w = 1.

1 1 1s Q -Fg' (, u|) w ∧

2 2 2s Q -Fg'' (, u|) w =1.

By the construction of the machine A
 gs(w, u) =

1 1 1s Q -Fg' (, u|) w ∧
2 2 2s Q -Fg'' (, u|) w

 = 1 ∧ 1
 = 1.
 Therefore, w ∈L (A)
 ie., ()1L A ()2L A ⊆ L(A).

 Conversely, let w ∈L(A) ⇒ gs(w, u) =1.

 ie.,
1 1 1s Q -Fg' (, u|) w ∧

2 2 2s Q -Fg'' (, u|) w .= 1.

 ⇒
1 1 1s Q -Fg' (, u|) w = 1 and

2 2 2s Q -Fg'' (, u|) w = 1.

 Therefore, w ∈ ()1L A and w ∈ ()2L A ,

 That is w ∈ ()1L A ()2L A .

 L (A) ⊆ ()1L A ()2L A .

 Thus L (A) = ()1L A ()2L A .

IV. CONCLUSION
In this paper, I studied the state complexity of combined

operations for an Alternating Finite Automata which were
inspired by the work of Sheng Yu and Salomaa.
Implementing combined operations for an AFA are much

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 580

easier and much efficient compare to the corresponding DFA
operations. Alternation adds perfect features to automata
expressiveness, parallelism and succinctness which have
practical applications in software system and has the
potential to answer several open problems in formal
languages and complexity.

It remains to investigate the other combined operations
for an AFA.

REFERENCES
[1] A.K.Chandra, D.C.Kozen, L.J.Stockmeyer, Alternation, JACM 28 1981,

pp. 114 - 133.
[2] A.Fellah, H.Jurgensen, S.Yu, Constructions for alternating finite

automata, International journal of computer mathematics 35, 1990,
pp.117 - 132.

[3] K.Salomaa, S.Yu, Q.Zhuang , The state complexity of some basic
operations on regular languages, Theoretical computer science 125, 1994,
pp. 315 - 328.

[4] S.Yu, Regular languages, in: G.Rozenberg, A.Salomaa(Eds), Handbook
of Formal Languages Vol.1, Springer, Berlin, New york, 2,1997, pp. 41 -
110.

[5] C. Campeanu, K.CulikII, K.Salomaa, S.Yu, State complexity of basic
operations on finite languages, in: O. Boldt, H. Jurgensen(Eds.), Proc.
Fourth Internat.Workshop on implementing Automata (WIA'99), Lecture
Notes in Computer Science, Springer, Heidelberg, 2214, 2001, pp. 60 -
70.

[6] G.Pighizzini , Unary language concatenation and its states complexity,
in:S.Yu, A. Paun(Eds.), Implementation and Application of Automata:
Fifth Internat. Conference, CIAA 2000, Lecture Notes in Computer
Science, Springer, Heidelberg, 2088, 2001, pp. 252 - 262.

[7] S.Yu , State complexity of regular languages, Journal of automata
languages and combinatorics 6, 2001, pp.221 - 234:

[8] J.Hromkovic, Descriptional complexity of finite automata: concepts and
open problems. J.Automat.Lang.Comb. 7, 2002, pp. 519 – 531.

[9] Galina Jiraskova , State complexity of some operations on binary regular
languages , Theoretical computer science 330, 2005, pp. 287 - 298:

[10] Markus Holzer, Martin Kutrib, On the descriptional complexity of
finite automata with modified acceptance condition, Theoretical
computer science, 330, 2005, pp. 267 - 285.

[11] S.Yu, State complexity of finite and infinite regular languages
Bull.EATCS, 76, 2002, pp. 142 -152.

[12] J.Kavitha, L. Jeganathan, G. Sethuraman, Descriptional complexity of
Alternating finite automata, DCFS 2006, pp.188 -198.

[13] J. C. Birget, Intersection and union of regular languages and state
complexity, Inform. Process. Lett. 43, 1992, pp. 185 -190.

[14] C. Campeanu, K. Salomaa, S. Yu, Tight lower bound for the state
complexity of shuffle of regular languages, Journal of Automata
languages and Combinatorics , 7, 2002, pp. 303 - 310.

[15] M. Holzer, M. Kutrib, Unary language operations and their
nondeterministic state complexity, Lecture Notes in computer Science
2450, 2003, pp. 162 - 172.

[16] M. Holzer, M. Kutrib, State complexity of basic operations on
nondeterministic automata, Lecture Notes in computer Science 2608,
2002, pp. 148 - 157.

[17] Y. Gao, K. Salomaa, S. Yu, State complexity of catenation and reversal
combined with star, DCFS 2006, pp. 153 -164.

[18] Arto Salomaa, Kai salomaa, sheng Yu, State complexity of combined
operations, Theoretical computer science 383, 2007,pp. 140 - 152.

[19] Yo-Sub Han and Kai Salomaa, State complexity of basic operations on
suffix-free languages, Lecture Notes in computer Science 4708, 2007, pp.
501 - 512.

[20] Kai Salomaa, Descriptional complexity of nondeterministic finite
automata, Lecture Notes in computer Science 4588, 2007, pp. 31 - 35.

[21] G. Liu, C, Martin-vide, A. Salomaa, S.Yu, State complexity of basic
language operations combined with reversal, information and
computation 206, 2008, pp.1178 - 1186.

Kavitha Joseph is an Assistant Professor in the Department of
Mathematics at CMR Institute of Technology, Bangalore, INDIA. She
received her Ph. D in Mathematics from Anna University, Chennai. Before
joining CMR Institute of Technology, she was a teaching research
associate in Madras Institute of Technology, Anna University. She has 10
years teaching experience and 8 years research experience in the field of
DNA computing. theoretical computer science. Her research interests

include automata theory, DNA computing, parallel computing and graph
theory. She is a member of computer society of India

