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      Abstract - This paper investigates the state complexity of 
combined operations on regular languages. In particular it 
investigates the state complexity of shuffle of complement 
and the intersection of complement of two regular languages 
represented by alternating finite automata. 
 

Index Terms— Alternating finite automata, regular   
languages, shuffle, state complexity. 
 

I. INTRODUCTION 
Motivated by several applications and implementation of 
finite automata in software engineering, programming 
languages and other practical areas in computer science, the 
state complexity of Deterministic Finite Automata (DFA) 
and Nondeterministic Finite Automata (NDFA) have been 
studied during the last decade. 

The state complexity of regular languages is the minimal 
number of states of the automaton representing the language. 
The state complexity of an operation on regular languages is 
a function that associates the sizes of the automata 
representing the operands of the operation to the minimal 
number of states of the automata representing the resulting 
language. 

Some early results concerning the state complexity of 
regular languages can be found in [3], [4] and [13]. Yu et al 
[4] were the first to systematically study the complexity of 
regular language operations. Motivated by the result of Yu et 
al [4] several authors have investigated the state complexity 
of finite languages operations and unary languages 
operations [refer [5], [6], [14] and [15]]. State complexity 
results concerning operations on unary regular languages 
represented   by    DFAs   are    elaborated     in     the       survey 
articles [7] and [11]. The nondeterministic state complexity 
of regular languages operations was studied by Holzer and 
Kutrib in [10] and [16].The state complexity of some of the 
operations like concatenation, complement, star and reversal 
on regular languages was investigated in [8], [9], [10], [19] 
and [20]. However, almost all the operations which have 
been  studied are individual operations. Yu  et al.[17] were 
the first to systematically study the state     complexity of 
combined operations on regular languages. In [17], the 
authors discussed the state complexity of concatenation and 

 
Manuscript received on 4th June 2009. 
Kavitha Joseph was with Anna University, Chennai, INDIA.  She is now 

with the Department of Mathematics,  
CMR Institute of   Technology, Bangalore, INDIA. 
(Author e-mail: kavijoseph_cmrit@rediffmail.com). 

reversal combined with star operation for a DFA. After their 
work, the state complexity of combined operations for 
regular languages is studied in [18] and [21]. Motivated by 
their work, in this paper I studied the state complexity of 
combined operations for an Alternating Finite Automata 
(AFA). 

The notion of alternation is a natural generalization of 
nondeterminism. It received its first formal treatment by 
Chandra, Kozen and Stockmeyer in 1976 [1]. In this paper 
they proved that the AFA are precisely as powerful as DFA as 
far as language recognition is concerned. They have also 
shown that there exists k-state AFA such that any equivalent 

complete DFA has at least 22
k

 states. A more detailed 
treatment of AFA and their operations can be found in [2]. In 
[4], it has been shown that a language L is accepted by an 
n-state DFA if and only if the reversal of L, that is LR, is 
accepted by a logn-state AFA. So the use of an AFA instead 
of DFA guarantees a logarithmic reduction in the number of 
states. In addition, operations such as union, intersection, 
complement, difference and shuffle for an AFA are much 
simpler and more efficient to implement than the 
corresponding DFA operations. 

In this paper, I investigate the state complexity of some 
combined operations on regular languagues represented by 
an AFA. In   the following sections, the paper first reviews 
the basic definitions and notations and then it    proves the 
results on shuffle of complement    and the intersection of     
complement. 

II. ALTERNATING FINITE AUTOMATA 

Let   B   denote   the two element   Boolean algebra B = 
({0, 1}, ∧ , ∨ , ̄  ,  0 , 1). Let Q be a set. Then BQ is the set of 
all mappings of Q into B and u ∈ BQ can be considered as a 
vector of |Q| entries, indexed by elements of Q, with each 
entry being from B. For u ∈  BQ   and q∈  Q, u q to denote the 
image of q under u. 

              An AFA A  is a quintuple A=(Q, Σ, s, F, g),      
where                            

         Q is the finite set of states; 
         Σ is the input alphabet; 
          s ∈Q is the starting state; 
         F ⊆ Q is the set of final states; 

      g is a function of Q into the set of all functions 
of Σ ×BQ into B. For   each state q ∈  Q, g(q) is a function 
from Σ × BQ into B, which is often denoted by gq in the 
sequel. For each state q ∈  Q and a ∈  Σ, define gq(a) to be 
the Boolean   function    BQ →  B        such      that      
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                      gq(a)(u)  =  gq(a, u) 
     Thus, for u ∈  BQ, the value of  gq(a)(u) (= gq(a, u), is 

either 1 or 0).  Define the function gQ : Σ × BQ → BQ by 
putting   together the |Q| functions gq : Σ ×  BQ → B, q ∈  Q, 
as follows. For a ∈  Σ and u, v ∈  BQ, gQ(a, u)= v iff gq(a, 
u)=vq for each q∈Q. For f ∈ BQ,, fq =   1 iff q ∈ F and f is 
the characteristic vector of F. Extend g to a function of Q into 
the set of all functions Σ* ×  BQ → B as follows. 
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          A word w ∈ Σ*  is accepted by A iff gs(w,  f) = 1 
where f is the characteristic vector of F. The language 
accepted by A is the set 

( ) {L A w= ∈  Σ* / gs(w,f)= 1} 
             Example.  Define an AFA A= (Q, Σ, s, F, g), where 

             Q = {q0,  q1,  q2}, 
             Σ = {a, b}, 

         S = {q0} 
                     F = {q2} 

            and g is given by  
 

 
 
 
    
 

 
 

    Let w = aba. Then w is accepted by A as follows:  
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III. OPERTIONS ON REGULAR LANGUAGES 

The worst-case complexities of star of concatenation and 
star of reversal are discussed in [17] and in that paper the 
authors proved that the state complexity of the combined 
operations is very different from the combination of the state 
complexities of their individual operations. The worst-case 
complexity of an AFA for an individual operations 
concatenation, complement and shuffle are discussed in [12]. 
The coming next section gives the upper bound for the 
combined shuffle of complement operation. The next section 
discusses the state complexity of intersection of complement. 
A..SHUFFLE 

This section first defines the shuffle operation then it 
establishes a sharp upper bound for the shuffle of 

complement of two regular languages represented by two 
AFAs.  

Given two strings x and y the shuffle of x and y, denoted x 
|| y is the set of strings obtained by taking the characters of x 
and interleaving them with the characters of y so that the 
relative order of the characters in each string is maintained.  

The shuffle of two languages L1 and L2, denoted 
 L1 || L2 is defined as 

 
 

SHUFFLE OF COMPLEMENT 
This section considers the state complexity of the shuffle of 

complement operation. That is the combination that includes 
first the complement of two regular languages and then the 
shuffle of the resulting languages. It gives the upper bound 
for the shuffle of complement of two regular languages. 
       Let  Li  =  L(Ai) and Ai be an AFA of mi states,  i = 1, 2 , 

then 1 2||  L L  is accepted by an AFA A with m1 + m2 + 1 
states.  

        Let A1=(Q1, Σ1, s1, F1, g') be an AFA accepting a regular 
language L1 with m1 states, A2=(Q2, Σ2, s2, F2, g'') be an AFA 
accepting a regular language L2 with m2 states then an AFA 
A accepts the shuffle of complement of these two regular 
languages is defined as follows:  

                        A= (Q, Σ, s, F, g) be an AFA where 
                        Q = Q1 Q2 {s} 
                         Σ = Σ1    Σ2 
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 where g  is the dual of g. 

The construction of A is evident that it accepts the shuffle 
of complement of two regular languages L1 and L2 using not 
more than m1 + m2 + 1 states. 

The computation of A begins by simulating both the 
computations of the machines A1 and A2. If s1 ∉  F1 and s2 ∉  
F2 then the set of accepting states F has been chosen to be       
{Q1-F1} {Q2-F2}. Using the transition rules of an AFA A, 
the machine A accepts the shuffle of complement of two 
regular   languages L1 and L2. It is easy to verify that  

State a b 
q0 q1 ∧ q2 0 
q1 q2 q1 ∧ q2 
q2 

1 2q q∧  1 2q q∨  
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L = 1 2||  L L . In order to obtain an upper bound for the 
operation shuffle of complement, count the number of states 
of A. The |Qi|   = mi, i = 1, 2, according to the construction, 
the cardinality of Q is m1 + m2 + 1 

Therefore we have the following theorem. 
 

        Theorem 
Let Ai be an AFA with mi states i = 1,2 accepts the 

language L(Ai) and mi > 1 then there exists an AFA A with 
m1 + m2 + 1 states which accepts the shuffle of 
complement of two regular languages L(Ai), i=1, 2. 
 Proof. 

                    Let Li be a regular language recognized by an 
         AFA    Ai of    size    mi, i = 1, 2    and    Li = L (Ai)  

 i.e., A1 = (Q1, Σ 1,  s1, F1, g') be an AFA with 
 m1 states    accepting        the       language       L1       and  
 A2 = (Q2, Σ 2, s2, F2, g'') be an AFA with m2  
 states accepting the language L2. Assume that Q1 and 
 Q2 are disjoint. 
        Claim: L (A) = 1 2||  L L   

                Let w ∈  L (A), w ∈  (Σ 1    Σ 2)* 

 Since w ∈  L (A), gs(w, u) =1 
 By the construction of machine A, it is clear that 
 g s(w,u)=

1 1 1s Q -Fg' ( , u| ) α ∧
2 2 2s Q -Fg'' ( , u| ) β , 

 where α  is the collection of alphabets which  
  are in Σ 1 for  the word w and β is a  collection of 

alphabets   which are in Σ 2  for the word w. 
            gs(w, u) =1  

              ⇒
1 1 1s Q -Fg' ( , u| ) α ∧   

2 2 2s Q -Fg'' ( , u| ) β  = 1 

          ⇒
1 1 1s Q -Fg' ( , u| ) α =1 and  

2 2 2s Q -Fg'' ( , u| ) β  = 1 

          ⇒
1 1 1s Q -Fg' ( , u| ) α =0 and 

2 2 2s Q -Fg' ( , u| ) β =0 

           ⇒ α ∈ ( )1L A  , β ∈ ( )2L A . 

   Therefore, gs(w, u) =1 iff α ∈ ( )1L A  , 

  β ∈ ( )2L A    and   w = α || β  iff   

    w∈ ( )1L A  || ( )2L A . 

    w∈ L(A)  iff  w∈ ( )1L A  || ( )2L A . 

        ie., L(A) = ( )1L A  || ( )2L A . 
Therefore by the construction of the    machine A, it is clear 

that the machine A   accepts the shuffle of complement of two 
regular languages L(A1) and L(A2) with m1 + m2 + 1 states 
B. INTERSECTION OF COMPLEMENT 

In this section, I introduce a new state ‘s’ to construct an 
AFA, which accepts the intersection of complement of two 
regular languages L(A1) and L(A2) . 
  Theorem  

For any positive integers m1, m2 let A be an m1-state AFA 
and A2 be an m2-state AFA. Then m1 + m2 + 1 states are 
sufficient in the worst case for an AFA A to accept the 

language 
1L(A ) ∩ 

2L(A )  . 
   

 
 Proof. 

              Let A1= (Q1, Σ, s1, F1, g') be an AFA that accepts 
the language L (A1) with m1 states. 

                    Let A2 = (Q2, Σ, s2, F2, g'') be an AFA that accepts the 
language L (A2) with m2 states and Q1∩Q2 = Φ. 

       We construct an m1 + m2 + 1- state AFA  
A = (Q, Σ, s, F, g) such that  
L (A) = 

1L(A ) ∩ 2L(A )  as follows. 

Q = Q1 Q2 {s} 
        F = (Q1-F1)  (Q2-F2). 
    and g is defined as follows. 
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Claim: L(A) = ( )1L A    ( )2L A  

    First we prove ( )1L A   ( )2L A ⊆  L(A). 

    Consider a word w ∈  ( )1L A   ( )2L A  

    Then w ∈  ( )1L A  and w ∈  ( )2L A . 
    Star with gs(w, u) =1 for the machine A. 
    If q = s, 
    gs(w, u) = 

1 1 1s Q -Fg' ( , u| ) w  ∧   
2 2 2s Q -Fg'' ( , u| ) w . 

    Since w ∈ ( )1L A , 
1 1 1s Q -Fg' ( , u| ) w  = 1 and 

     w ∈ ( )2L A , 
2 2 2s Q -Fg'' ( , u| ) w  = 1. 

    
1 1 1s Q -Fg' ( , u| ) w  ∧   

2 2 2s Q -Fg'' ( , u| ) w  =1.  

By the construction of the machine A 
 gs(w, u) = 

1 1 1s Q -Fg' ( , u| ) w  ∧   
2 2 2s Q -Fg'' ( , u| ) w  

               = 1 ∧  1 
               = 1. 
    Therefore, w ∈L (A) 
     ie.,  ( )1L A   ( )2L A  ⊆  L(A). 

        Conversely, let w ∈L(A)  ⇒  gs(w, u) =1. 

   ie., 
1 1 1s Q -Fg' ( , u| ) w  ∧   

2 2 2s Q -Fg'' ( , u| ) w .= 1. 

  ⇒
1 1 1s Q -Fg' ( , u| ) w = 1 and 

2 2 2s Q -Fg'' ( , u| ) w = 1. 

  Therefore, w ∈ ( )1L A  and w ∈ ( )2L A , 

  That is w ∈ ( )1L A   ( )2L A . 

   L (A) ⊆ ( )1L A   ( )2L A . 

  Thus L (A) = ( )1L A   ( )2L A . 

 
 

IV.   CONCLUSION 
In this paper, I studied the state complexity of combined 

operations for an Alternating Finite Automata which were 
inspired by the work of Sheng Yu and Salomaa. 
Implementing combined operations for an AFA are much 
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easier and much efficient compare to the corresponding DFA 
operations. Alternation adds perfect features to automata 
expressiveness, parallelism and succinctness which have 
practical applications in software system and has the 
potential to answer several open problems in formal 
languages and complexity.  

It remains to investigate the other combined   operations 
for an AFA. 
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