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

Abstract—Future multi-media technologies are expected to 

support efficient on-line processing of huge amounts of 

high-dimensional data without any special pre-processing. In 

this paper, we will introduce a new model of the so-called 

Growing Hierarchical Neural Networks (GHNN) applicable to 

image classification without requiring advanced 

domain-specific feature extraction techniques. It can be, 

moreover, supposed that the involved dynamic data-dependent 

adjustment of both the number and position of the neurons 

improves generalization. Experimental results obtained so far 

for two case studies on face and hand-written digit recognition 

show that local features detected automatically by 

GHNN-networks impact a transparent and compact 

representation of the extracted knowledge.

Index Terms—Convolutional neural networks, image 

classification, face recognition, self-organization. 

I. INTRODUCTION

Traditional pattern recognition systems consist of two 

main modules – a feature detector and a classifier. The 

feature detector should extract from the data 

low-dimensional vectors invariant to transformations and 

distortions. The classifier is usually general-purpose and 

trainable, yet oriented towards low-dimensional data with 

easily separable classes. With regard to the vast variety of 

images to be handled automatically within the framework of 

future multi-media technologies, an urgent need for robust 

pre-processing techniques is obvious. Recently, e.g. 

Facebook provides a new automatic routine to detect faces in 

photos [1].

Promising alternatives to traditional pattern recognition 

systems are based on a hierarchical combination of simple 

locally detected features, their position and orientation to 

achieve invariant image categorization [2]-[4]. In particular, 

the massively parallel kind of low-level feature extraction 

impacts a superior performance of Convolutional Neural 

Networks (CNNs) [5]. Anyway, the training process of 

CNNs is often quite time-consuming due to a relatively high 

complexity of the entire model. With the aim to speed-up 

their training and enhance detection of relevant image 

features, we will introduce a new type of hierarchical 

self-organizing networks - the so-called Growing 

Hierarchical Neural Networks (GHNN).
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GHNNs are inspired by CNNs but benefit from their 

ability to adjust dynamically the number of local image 

features to be used later on by the network. The following 

section analyzes therefore neural network paradigms related 

to dynamic feature extraction. The next two sections 

introduce the new models of hybrid self-organizing networks 

and GHNN networks applicable to efficient image 

processing. Afterwards, the results of supporting 

experiments (involving two large image data sets) will be 

discussed. The concluding section summarizes the achieved 

results.

II. RELATED WORKS

CNN-networks [5] are known to outperform all other 

neural network paradigms when used for 2D-image 

recognition with minimum or no advanced pre-processing. 

The principles of weight sharing and local receptive fields 

keep down the number of trainable parameters in CNNs. 

With local receptive fields, perceptron-like neurons can 

extract elementary visual features such as oriented edges or 

corners. Local receptive fields may or may not overlap. The 

extracted features are then combined by the subsequent 

layers in order to detect more complex higher-order features.

In each layer, the neurons are organized in the so-called 

feature maps. All neurons in a feature map are constrained to 

perform the same operation, however, on different parts of 

the image and share thus the same set of weights. While 

training the network, the respective weight adjustments are 

summed up and applied to the entire shared weight vector. If 

the input image is shifted, the feature map output will be 

shifted by the same amount, but will be left unchanged 

otherwise. Different feature maps usually have different 

weight vectors so that multiple features can be extracted at 

each location.

Once a feature is detected by the feature-extracting layer, a 

layer of sub-sampling neurons performs a kind of local 

averaging to blur the exact position of the feature. This makes 

the network less sensitive to the exact position and form of 

the processed patterns. Successive convolutional and sub-

sampling layers are typically alternated: at each layer, the 

number of feature maps is increased as the spatial resolution 

is decreased. Each neuron from higher layers may have input 

connections from several feature maps in the preceding 

sub-sampling layer. Attached to the entire feature detector, 

CNNs also contain two layers of perceptron-like neurons 

representing a classifier of lower layer outputs. 

Perceptron-like neurons compute the dot product of their 

inputs and their weights, add a bias and apply the transfer 

function to the evaluated potential.
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A. The LeNet-5 Model 

LeNet-5 is a CNN-network consisting of 7 layers (we do 

not count the input) that can be trained e.g. by means of 

back-propagation [6]. Its structure together with the number 

and size of feature maps used in the respective layers, is 

shown in Fig. 1. The first layer of the network consists in this 

example of six convolutional feature maps. Their perception 

windows are 5 pixels high and 5 pixels wide. Since 

neighboring perception windows overlap and the size of the 

input is set to 32 by 32, each feature map in the first layer 

consists of a grid of 28 by 28 neurons. All the neurons in the 

respective feature map share thus the same set of 25 weights 

and the same bias detecting the same feature at all possible 

locations in the input.  

In the following layers, the size of the non-overlapping 

perception windows is 2×2. In the sub-sampling layers, the 

four input values of each neuron are summed together, 

multiplied by an adjustable coefficient, added to an 

adjustable bias and passed through a sigmoidal activation 

function. In the fifth layer, the perception windows are of the 

size 5×5. The sixth layer contains 84 fully connected 

perceptron-like neurons. The output layer consists of 

RBF-like neurons [7]. 

  

B. Self-Organization and Adaptive Topology 

Hybrid Convolutional Neural Networks (HCNNs) [8] use 

weight sharing and alternating feature extracting and 

sub-sampling layers, too. For feature detection, they apply, 

however, RBF-neurons computing the output y as: 
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where x is the input vector, the weight vector w corresponds 

to the center of the Gaussian and σ controls its shape. 

RBF-neurons fire stronger if the presented input is closer to 

their weight vectors. Otherwise, HCNN-networks have the 

same architecture and process the input data in a way very 

similar to original CNNs. HCNN-networks can be trained by 

a slightly modified back-propagation algorithm but 

alternatively, the SOM-learning rules [9] can be used. In 

particular, the winner-takes-all (WTA) principle impacts fast 

training and robust networks [8]. On the other hand, the 

number of feature maps is fixed and has to be set in advance. 

In general, it is, however, extremely difficult to estimate an 

adequate number of significant features in advance. 

Therefore, we will prefer to adjust it dynamically during 

training. From the literature, there are known two basic 

self-organizing architectures with an adaptive topology and 

Kohonen-like learning [9] – namely the Growing Neural Gas 

Networks (GNG) and Evolving Trees (ET). GNG-networks 

[10] are initialized with two neurons. During training, for 

each presented input pattern x, the closest neuron is found 

and the squared distance between its weight vector w and x is 

added to the error counter of this neuron. At regular intervals, 

a new neuron is added to the network at the location with the 

maximum accumulated error counter. 

In order to find quickly the winning neurons, the 

ET-model [11] organizes the neurons into a hierarchical tree 

structure. ETs are initialized with a single neuron. During 

training, for each presented input pattern, the winning neuron 

is determined as a leaf of the current ET. The distance from 

the winning neuron to its neighbors is determined as the 

number of connections on the path between the considered 

neurons (in the tree structure) minus one. Whenever the error 

counter of the winning neuron reaches a splitting threshold, 

the neuron is labeled as an inner neuron and one or more new 

neurons are added to the network as its descendants. Inner 

neurons of ETs are static and therefore, ETs may 

occasionally determine a wrong winning neuron for the 

presented pattern. 

III. THE NEW HYBRID SOM-MODEL (HEG-NETWORKS) 

The above-discussed network structures provide several 

characteristics important for efficient yet robust image 

processing. Convolutional architectures support hierarchical 

coupling of locally detected pattern features all over the 

presented image. The actual number of (low-level) features 

to be searched for can be found automatically with the 

principles of GNGs. At the same time, fast processing within 

the layers can be achieved by applying the tree-like search 

principles of ETs to search for the winning neurons. 

Moreover, GNG-like inter-connections between the leaf 

neurons prevent most of the inaccuracies caused by the 

tree-like search due to the simultaneous adjustment of both 

the winning neuron and its neighbors. A new hybrid 

Fig. 1. The structure of the LeNet-5 convolutional neural network 
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self-organizing neural network (HEG) combining the 

advantages of ETs and GNGs could thus enhance the power 

of feature detecting layers of GHNNs discussed later on in 

more detail. An example for this kind of architecture is 

shown in Fig. 2. Fig. 3. sketches the main principle of 

growing in HEG-networks and Algorithm 1 formalizes their 

training in mode detail.  

 
Fig. 2. Network structure formed by the HEG model (c) combines the 

benefits of an efficient tree search by ETs (a) and locally inter-connected 

GNGs (b). 

 

 
Fig. 3. The process of neuron splitting in HEG-networks (from the left to the 

right): after the neuron lc has been selected for splitting, two new neurons n1 

and n2 are added to the network as children of lc. Finally, the entire tree is 

balanced by positioning the weight vector of lc between the weight vectors of 

n1 and n2. 

 

A good criterion to add a neuron (feature map) could be 

obviously based on the accumulated squared distance 

between the respective neurons and all the image samples 

they represent. New neurons should be added whenever any 

of the neuron error counters reaches a pre-defined threshold 

(e.g. 2 dim, where dim denotes the dimension of the input 

space). Unfortunately, problems might occur then for small 

densely populated areas with too many patterns leading to 

high values of the error counters, too. In such a case, a 

stopping criterion based on Gaussian-like error counters 

yields better results:  
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where w is the weight vector of the neuron closest to the 

presented sample x and σ is the variance of the Gaussian. 

Lower values of the variance parameter naturally imply a 

higher number of the detected pattern clusters. 

 

IV. GROWING HIERARCHICAL NEURAL NETWORKS 

In comparison to original CNNs, GHNNs are enhanced by 

unsupervised training and the capability to adjust 

dynamically the number of feature maps in feature-extracting 

layers. The type of features detected in feature-extracting 

layers depends on the size and contents of the perception 

windows. In GHNNs, the perception windows are fully 

overlapping. The resulting network thus has a pyramidal 

architecture with a successively reduced size of feature maps 

in higher layers – see Fig. 4. Usually, the number of feature 

maps increases in higher layers. The output of a neuron in the 

respective feature map represents its reaction to all the feature 

maps from the preceding (sub-sampling) layer. 

 
Algorithm 1:  The training algorithm for the HEG-model         

/ used to adjust feature extracting layers in GHNN-networks / 

 

1) Initialize the network with a root neuron and two child 

neurons connected by an edge.  

2) For each presented input pattern x:  

a) Find the first and second closest neurons i1 and i2, 

respectively, among the leaves of the current tree 

structure. Add the squared distance between the 

weight vector wi1 and x to the error counter of the 

neuron i1 (alternatively, (3) can be used to adjust the 

error counter).  

b) Set the age parameter of the edge between the 

neurons i1 and i2 to zero (create this edge if it does 

not yet exist).  

c) Adjust the weights of the winning neuron i1 

according to (2), with the learning rates α set e.g. to 

0.05.  No other neurons are adapted. 
 

)(=
111

new

i

old

i

new

i wxww   (2) 

 

3) Decrease the error counters of all neurons (by a pre-set 

factor, e.g. 0.999) and increment the age parameter of 

all edges of the neuron i1.  

4) At regular intervals:  

a) Add two new leaf neurons to the network, if the 

conditions for splitting a leaf neuron are met:  

b) The leaf neuron lc with the largest error counter 

value is found. If this value is greater than a chosen 

threshold (e.g.  2 dim, where dim denotes the 

dimension of the input space), lc is labeled as an 

inner neuron and stripped of all edges to other 

leaves.  

c) Two new leaf neurons n1 and n2 are added to the tree 

as child neurons of lc - neuron n put at the position of 

lc will be connected to all neighbors of lc, and n2 

placed halfway between n1 and its neighbor ld with 

the next maximum error counter value, splitting thus 

the original edge connecting ld and n1 into two new 

edges (see Fig. 3).  

i. All neuron error counters are set to zero.  

d) Remove edges with the age parameter exceeding a 

pre-set threshold value maxAge from the network 

along with any isolated neurons.  

e) Balance the entire tree, such that the weights of 

every inner neuron correspond to average weights of 

its child neurons.  

5) Stop training if the pre-set number (e.g. 10) of 

consequent checks for neuron splitting did not result 

into the addition of new neurons. 

Smaller values used for σ during training enforce a tighter 

representation of the extracted knowledge while its larger 

values used during recall allow capturing minor differences 

of the presented test samples, too. Together with the dynamic 

selection of relevant image features, a smoother network 
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function supports higher robustness and improved 

generalization.

Fig. 4. In every feature-extracting layer of a multi-layered feature detector, 

neuron output values are determined according to a perception window of a 

pre-set size sliding over the lower (subsampling) layer. Perception windows 

both in the original image and in the following layers are depicted by dashed 

squares, the corresponding values of the feature maps are labeled by black 

squares.

Fig. 5. Size-normalized samples from the MNIST database.

V. SUPPORTING EXPERIMENTS

The performance of GHNN-networks has been tested on 

two image classification tasks. For face recognition, we 

considered a subset of the CBCL Face Database provided by 

the MIT Center for Biological and Computational Learning 

[12]. The 19×19 images were histogram equalized and 

normalized. The training data consisted of 2000 face images 

and 2000 non-face images. The test set comprised 472 face 

images and 5000 non-face images. In handwritten digit 

classification, we used a subset of the MNIST database [13]

containing 1000 training and 500 test samples from ten 

roughly balanced classes – for a few examples see Fig. 5. The 

samples are 28 by 28 pixels in size with the digits aligned in 

the center of the sample. The performed experiments 

involved the following 3 architectures: 

1) GHNNs with a dynamically HEG-adjusted number of 

feature maps. Their actual number can be found in the 

third column of Table II. 

2) HCNNs – both with the RBF-like neurons and with the 

WTA-functionality – having the same number of 

feature maps like the corresponding GHNNs. 

3) HCNNs with the same number of feature maps like the 

commercially used LeNet-5 model [5]. Results obtained 

for 5-layer networks are stated in the brackets – see 

Table I and Table II. 

All the networks had feature maps of the same size that is 

given by both the dimension of the input data and the size of 

the applied perception windows (all the perception windows 

were of size 2×2): 

 CBCL data: 18×18, 9×9, 8×8, 4×4 and 3×3, 

 MNIST data: 27×27, 13×13, 12×12, 6×6 and 5×5. 

The variance of the Gaussians used in feature-extracting 

layers during training has been set experimentally to 0.4, 0.5 

and 0.6, respectively. During recall, it has been chosen as 1.6, 

2.0 and 2.4 for the CBCL images and 2.8, 3.5 and 4.2 for the 

MNIST data. The attached classifier always contained 30 

neurons in one hidden layer. The number of its output 

neurons reflected the number of data classes. All the tests 

were performed 10-times. The results shown in Table I and 

Table II correspond to the measured values averaged over the 

10 runs of the respective network model. In the experiments, 

we were in particular interested in answering the following 

questions: 

1) How fast is training of GHNN-networks when compared 

to HCNN-like networks?  

2) What is the accuracy of GHNN-networks?  

What is the character of the internal knowledge 

representation extracted by the networks and how many 

features does the network actually use?

A. The First Set of Experiments

The dynamically adjusted number of feature maps and 

their mutual coupling are expected to speed-up training. On 

the other hand, the HEG-like adjustment procedure might 

slightly slow it down in comparison with almost optimal 

network architectures. Experimental results from Table I

confirm these expectations. GHNNs perform comparably for 

both types of HCNN-like networks initialized with the same 

number of feature maps as found by the respective GHNN. 

But in comparison with HCNN-like networks of the same 

architecture like the original LeNet-5, GHNNs were roughly 

two times faster.

B. The Second Set of Experiments

Due to the dynamically found number and coupling of 

feature maps, we would expect a higher testing accuracy for 

GHNNs when compared to other HCNN-like networks. As 

the CBCL test data classes are extremely unbalanced, we 

decided to consider also the information about precision and 

recall. Precision corresponds to the number of correctly 

classified positive examples divided by the total number of 

samples classified as positive. Recall stands for the number 

of correctly classified positive samples divided by the total 

number of actually positive samples.

Fig. 6. Size-normalized samples from the CBCL Face database (from top to 

bottom): faces classified as faces, faces classified as non-faces, non-faces 

classified as non-faces and non-faces classified as faces.



  

 
Fig. 7. Advanced features detected at higher levels of GHNN-networks are 

composed of simple local features detected already at its lower layer: left, 

this graphics shows the representative images for nine neurons (maps) of the 

third feature extracting layer (middle). On the right, two face images are 

shown that belong to two different face clusters. The upper face can be 

characterized e.g. by a dark eye area and a significant cheek (feature 1). The 

lower one depicts on the other hand a wider nose and mouth region (feature 8 

and 9). 

 

The results reported in Table I support our hypothesis for 

the CBCL data. Moreover, several of the misclassified 

images are really difficult to classify automatically, e.g. 

blurred faces or faces with glasses, non-face images with 

face-like components (mostly reminding us of eyes and noses) 

– for examples, see Fig. 6. Anyway, for the MNIST data and 

an optimized architecture, HCNN-networks with the 

WTA-functionality outperform our model, probably due to 

the aggressively reduced number of features considered by 

sub-sampling layers. 

C.

 

The Third Set of Experiments 

We compared the number of (detected/pre-set) features 

with the number of features active in average for each 

presented image. The features were considered active if the 

output of the corresponding neuron exceeded the value of 0.7. 

Moreover, by calibrating the feature (maps) with image parts 

closest to them, we can easily interpret the function of the 

network – see Fig. 7. From Table II, we can conclude that 

GHNNs are capable of finding an adequate structure for the 

given task. Especially when considering higher-level features, 

GHNNs provide a more compact representation of the 

processed data than HCNNs with the RBF-like neurons. On 

the other hand, GHNNs do not eliminate too much 

information by the sub-sampling layers like HCNNs with the 

WTA-functionality which seems to be advantageous for very 

complex problems like face recognition. 

 
TABLE

 

I:

 

THE PERFORMANCE OF THE TESTED MODELS ON THE CBCL

 

FACE DATA AND MNIST HANDWRITTEN DIGIT DATA.

 

IN THE BRACKETS ARE STATED 

THE RESULTS OBTAINED FOR 5-LAYER MODELS USING THE SAME NUMBER OF FEATURE MAPS LIKE THE COMMERCIALLY USED LENET-5

 

MODEL [6]. 

  
GHNN

 
HCNN-WTA

 
HCNN-RBF

 

 
detector training (sec)

 
0.7

 
0.4

 
0.7

 

 
classif. training (sec)

 
9.1

 
9.0

 
9.1

 

 
CBCL

 
training accuracy (%)

 
96.8

 
96.5

 
93.2

 

 
(4 layers)

 
testing

 
accuracy (%)

 
92.7

 
91.9

 
91.5

 

 
precision (%)

 
58.4

 
52.4

 
50.8

 

 
recall (%)

 
53.8

 
61.7

 
57.8

 

  
detector training (sec)

 
2.1

 
1.5

  
(6.0)

 
2.1 

 
(6.9)

 

 
classif. training (sec)

 
20.4

 
20.5 

 
(45.0)

 
20.6 

 
(45.3)

 

 
CBCL

 
training accuracy (%)

 
97.7

 
94.6 

 
(97.3)

 
86.8 

 
(82.6)

 

 
(5 layers)

 
testing accuracy (%)

 
92.1

 
82.4 

 
(82.7)

 
73.9 

 
(65.4)

 

 
precision (%)

 
55.3

 
28.7 

 
(26.8)

 
22.0 

 
(17.6)

 

 
recall (%)

 
45.3

 
62.5 

 
(57.6)

 
79.2

  
(82.0)

 

  
detector training (sec)

 
5.5

 
3.0

 
4.9

 

 
MNIST

 
classif. training (sec)

 
29.6

 
29.5

 
29.6

 

 
(4 layers)

 
training accuracy (%)

 
93.6

 
96.8

 
82.7

 

 
testing accuracy (%)

 
90.4

 
92.8

 
81.2

 

  
detector training (sec)

 
14.4

 
17.6 

 
(32.2)

 
14.4

  
(16.5)

 

 
MNIST

 
classif. training (sec)

 
64.2

 
64.2 

 
(122.7)

 
64.1

  
(123.7)

 

 
(5 layers)

 
training accuracy (%)

 
96.8

 
96.8

  
(97.2)

 
70.4

  
(44.2)

 

 
testing accuracy (%)

 
91.8

 
86.3 

 
(85.5)

 
68.7 

 
(43.4)

 

 

 

 TABLE

 

II:

 

THE NUMBER OF FEATURES DETECTED AND USED IN AVERAGE FOR THE PROCESSED PATTERNS FROM THE CBCL

 

AND MNIST

 

DATA.

 

IN

 

THE 

BRACKETS ARE STATED THE RESULTS OBTAINED FOR 5-LAYER MODELS USING THE SAME NUMBER OF FEATURE MAPS LIKE THE COMMERCIALLY USED 

LENET-5

 

MODEL [6]. 

   GHNN HCNN-WTA HCNN-RBF 

  detected features used features used features used features 

  layer 1 3.0 3.0 3.0 3.0 

 CBCL layer 2 3.0 3.0 3.0 3.0 

 (4 layers) layer 3 9.1 9.1 8.9 9.1 

 layer 4 9.1 7.4 2.3 9.0 
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 layer 1 2.8  (6) 2.8 2.8  (6.0) 2.8  (6.0) 

 CBCL layer 2 2.8  (6) 2.8 2.8  (5.6) 2.8  (6.0) 

 (5 layers) layer 3  8.7  (16) 8.7  8.4  (14.7)  8.7  (16.0) 

 layer 4  8.7  (16) 7.3  2.3  (1.44)  8.7  (16.0) 

 layer 5  48.0  (120) 6.9 7.6  (8.4)  40.2  (101.0) 

 layer 1 6.7 6.9 6.9 6.9 

 MNIST layer 2  6.7  6.9  3.3  6.9 

 (4 layers) layer 3 17.5 16.9 15.8 17.5 

 layer 4 17.5  7.0  1.3 16.7 

  layer 1 7.1  (6)  7.1 7.1  (6.0) 7.1  (6.0) 

 MNIST layer 2 7.1  (6)  7.1 3.1  (3.6) 7.1  (6.0) 

 (5 layers) layer 3 17.6  (16) 16.8 16.0  (14.9) 17.6  (16.0) 

 layer 4 17.6  (16)  6.8 1.3  (1.3) 16.8  (15.3) 

 layer 5  58.6  (120) 15.6 18.7  (20.1)   57.01 (116.7) 

 

VI. SUMMARY 

The introduced GHNN-networks represent a powerful 

multi-layered self-organizing architecture capable of 

constructing automatically an appropriate feature detector 

from the processed data. In accordance with other approaches 

(e.g. [14], [15]), an adequate network structure avoiding 

redundant processing has shown to yield improved 

generalization. The main benefits of the proposed 

GHNN-model with the HEG-networks used for feature 

extraction consist in:  

1) an automatic adjustment of the network topology to the 

dimensionality and inner structure of the processed data. 

In comparison with fixed-size networks like e.g. 

Kohonen maps, this results in rapid training and 

improved generalization (due to a reduced number of 

used neurons),  

2) an efficient processing of the image data, in particular, 

when dealing with large high-dimensional datasets (due 

to the tree-like structure of the HEG-networks and 

substantially reduced pre-processing),  

3) a transparent hierarchical representation of the extracted 

knowledge. More complex features extracted in higher 

layers of the detector are composed of simpler features 

found in its lower layers. 
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