

Image Classification with Growing Neural Networks

Iveta Mrazova and Marek Kukacka

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

422



Abstract—Future multi-media technologies are expected to

support efficient on-line processing of huge amounts of

high-dimensional data without any special pre-processing. In

this paper, we will introduce a new model of the so-called

Growing Hierarchical Neural Networks (GHNN) applicable to

image classification without requiring advanced

domain-specific feature extraction techniques. It can be,

moreover, supposed that the involved dynamic data-dependent

adjustment of both the number and position of the neurons

improves generalization. Experimental results obtained so far

for two case studies on face and hand-written digit recognition

show that local features detected automatically by

GHNN-networks impact a transparent and compact

representation of the extracted knowledge.

Index Terms—Convolutional neural networks, image

classification, face recognition, self-organization.

I. INTRODUCTION

Traditional pattern recognition systems consist of two

main modules – a feature detector and a classifier. The

feature detector should extract from the data

low-dimensional vectors invariant to transformations and

distortions. The classifier is usually general-purpose and

trainable, yet oriented towards low-dimensional data with

easily separable classes. With regard to the vast variety of

images to be handled automatically within the framework of

future multi-media technologies, an urgent need for robust

pre-processing techniques is obvious. Recently, e.g.

Facebook provides a new automatic routine to detect faces in

photos [1].

Promising alternatives to traditional pattern recognition

systems are based on a hierarchical combination of simple

locally detected features, their position and orientation to

achieve invariant image categorization [2]-[4]. In particular,

the massively parallel kind of low-level feature extraction

impacts a superior performance of Convolutional Neural

Networks (CNNs) [5]. Anyway, the training process of

CNNs is often quite time-consuming due to a relatively high

complexity of the entire model. With the aim to speed-up

their training and enhance detection of relevant image

features, we will introduce a new type of hierarchical

self-organizing networks - the so-called Growing

Hierarchical Neural Networks (GHNN).

Manuscript received September 20, 2012; revised December 7, 2012.

This research was partially supported by the Czech Science Foundation

under Grant No. P103/10/0783, P202/10/1333, Grant No. 136109 of GAUK,

and by Grant No. 201/09/H057 of GA ČR.

The authors are with the Department of Theoretical Computer Science

and Mathematical Logic, Faculty of Mathematics and Physics, Charles

University, Malostranske nam. 25, 118 00 Praha, Czech Republic (e-mail:

iveta.mrazova@mff.cuni.cz, mkukacka@gmail.com).

GHNNs are inspired by CNNs but benefit from their

ability to adjust dynamically the number of local image

features to be used later on by the network. The following

section analyzes therefore neural network paradigms related

to dynamic feature extraction. The next two sections

introduce the new models of hybrid self-organizing networks

and GHNN networks applicable to efficient image

processing. Afterwards, the results of supporting

experiments (involving two large image data sets) will be

discussed. The concluding section summarizes the achieved

results.

II. RELATED WORKS

CNN-networks [5] are known to outperform all other

neural network paradigms when used for 2D-image

recognition with minimum or no advanced pre-processing.

The principles of weight sharing and local receptive fields

keep down the number of trainable parameters in CNNs.

With local receptive fields, perceptron-like neurons can

extract elementary visual features such as oriented edges or

corners. Local receptive fields may or may not overlap. The

extracted features are then combined by the subsequent

layers in order to detect more complex higher-order features.

In each layer, the neurons are organized in the so-called

feature maps. All neurons in a feature map are constrained to

perform the same operation, however, on different parts of

the image and share thus the same set of weights. While

training the network, the respective weight adjustments are

summed up and applied to the entire shared weight vector. If

the input image is shifted, the feature map output will be

shifted by the same amount, but will be left unchanged

otherwise. Different feature maps usually have different

weight vectors so that multiple features can be extracted at

each location.

Once a feature is detected by the feature-extracting layer, a

layer of sub-sampling neurons performs a kind of local

averaging to blur the exact position of the feature. This makes

the network less sensitive to the exact position and form of

the processed patterns. Successive convolutional and sub-

sampling layers are typically alternated: at each layer, the

number of feature maps is increased as the spatial resolution

is decreased. Each neuron from higher layers may have input

connections from several feature maps in the preceding

sub-sampling layer. Attached to the entire feature detector,

CNNs also contain two layers of perceptron-like neurons

representing a classifier of lower layer outputs.

Perceptron-like neurons compute the dot product of their

inputs and their weights, add a bias and apply the transfer

function to the evaluated potential.

DOI: 10.7763/IJCTE.2013.V5.722

A. The LeNet-5 Model

LeNet-5 is a CNN-network consisting of 7 layers (we do

not count the input) that can be trained e.g. by means of

back-propagation [6]. Its structure together with the number

and size of feature maps used in the respective layers, is

shown in Fig. 1. The first layer of the network consists in this

example of six convolutional feature maps. Their perception

windows are 5 pixels high and 5 pixels wide. Since

neighboring perception windows overlap and the size of the

input is set to 32 by 32, each feature map in the first layer

consists of a grid of 28 by 28 neurons. All the neurons in the

respective feature map share thus the same set of 25 weights

and the same bias detecting the same feature at all possible

locations in the input.

In the following layers, the size of the non-overlapping

perception windows is 2×2. In the sub-sampling layers, the

four input values of each neuron are summed together,

multiplied by an adjustable coefficient, added to an

adjustable bias and passed through a sigmoidal activation

function. In the fifth layer, the perception windows are of the

size 5×5. The sixth layer contains 84 fully connected

perceptron-like neurons. The output layer consists of

RBF-like neurons [7].

B. Self-Organization and Adaptive Topology

Hybrid Convolutional Neural Networks (HCNNs) [8] use

weight sharing and alternating feature extracting and

sub-sampling layers, too. For feature detection, they apply,

however, RBF-neurons computing the output y as:













 


22
exp



wx
y (1)

where x is the input vector, the weight vector w corresponds

to the center of the Gaussian and σ controls its shape.

RBF-neurons fire stronger if the presented input is closer to

their weight vectors. Otherwise, HCNN-networks have the

same architecture and process the input data in a way very

similar to original CNNs. HCNN-networks can be trained by

a slightly modified back-propagation algorithm but

alternatively, the SOM-learning rules [9] can be used. In

particular, the winner-takes-all (WTA) principle impacts fast

training and robust networks [8]. On the other hand, the

number of feature maps is fixed and has to be set in advance.

In general, it is, however, extremely difficult to estimate an

adequate number of significant features in advance.

Therefore, we will prefer to adjust it dynamically during

training. From the literature, there are known two basic

self-organizing architectures with an adaptive topology and

Kohonen-like learning [9] – namely the Growing Neural Gas

Networks (GNG) and Evolving Trees (ET). GNG-networks

[10] are initialized with two neurons. During training, for

each presented input pattern x, the closest neuron is found

and the squared distance between its weight vector w and x is

added to the error counter of this neuron. At regular intervals,

a new neuron is added to the network at the location with the

maximum accumulated error counter.

In order to find quickly the winning neurons, the

ET-model [11] organizes the neurons into a hierarchical tree

structure. ETs are initialized with a single neuron. During

training, for each presented input pattern, the winning neuron

is determined as a leaf of the current ET. The distance from

the winning neuron to its neighbors is determined as the

number of connections on the path between the considered

neurons (in the tree structure) minus one. Whenever the error

counter of the winning neuron reaches a splitting threshold,

the neuron is labeled as an inner neuron and one or more new

neurons are added to the network as its descendants. Inner

neurons of ETs are static and therefore, ETs may

occasionally determine a wrong winning neuron for the

presented pattern.

III. THE NEW HYBRID SOM-MODEL (HEG-NETWORKS)

The above-discussed network structures provide several

characteristics important for efficient yet robust image

processing. Convolutional architectures support hierarchical

coupling of locally detected pattern features all over the

presented image. The actual number of (low-level) features

to be searched for can be found automatically with the

principles of GNGs. At the same time, fast processing within

the layers can be achieved by applying the tree-like search

principles of ETs to search for the winning neurons.

Moreover, GNG-like inter-connections between the leaf

neurons prevent most of the inaccuracies caused by the

tree-like search due to the simultaneous adjustment of both

the winning neuron and its neighbors. A new hybrid

Fig. 1. The structure of the LeNet-5 convolutional neural network

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

423

self-organizing neural network (HEG) combining the

advantages of ETs and GNGs could thus enhance the power

of feature detecting layers of GHNNs discussed later on in

more detail. An example for this kind of architecture is

shown in Fig. 2. Fig. 3. sketches the main principle of

growing in HEG-networks and Algorithm 1 formalizes their

training in mode detail.

Fig. 2. Network structure formed by the HEG model (c) combines the

benefits of an efficient tree search by ETs (a) and locally inter-connected

GNGs (b).

Fig. 3. The process of neuron splitting in HEG-networks (from the left to the

right): after the neuron lc has been selected for splitting, two new neurons n1

and n2 are added to the network as children of lc. Finally, the entire tree is

balanced by positioning the weight vector of lc between the weight vectors of

n1 and n2.

A good criterion to add a neuron (feature map) could be

obviously based on the accumulated squared distance

between the respective neurons and all the image samples

they represent. New neurons should be added whenever any

of the neuron error counters reaches a pre-defined threshold

(e.g. 2 dim, where dim denotes the dimension of the input

space). Unfortunately, problems might occur then for small

densely populated areas with too many patterns leading to

high values of the error counters, too. In such a case, a

stopping criterion based on Gaussian-like error counters

yields better results:






















 


2

2

2

||||1
0;max=),(error



xw
xw exp

e
 (3)

where w is the weight vector of the neuron closest to the

presented sample x and σ is the variance of the Gaussian.

Lower values of the variance parameter naturally imply a

higher number of the detected pattern clusters.

IV. GROWING HIERARCHICAL NEURAL NETWORKS

In comparison to original CNNs, GHNNs are enhanced by

unsupervised training and the capability to adjust

dynamically the number of feature maps in feature-extracting

layers. The type of features detected in feature-extracting

layers depends on the size and contents of the perception

windows. In GHNNs, the perception windows are fully

overlapping. The resulting network thus has a pyramidal

architecture with a successively reduced size of feature maps

in higher layers – see Fig. 4. Usually, the number of feature

maps increases in higher layers. The output of a neuron in the

respective feature map represents its reaction to all the feature

maps from the preceding (sub-sampling) layer.

Algorithm 1: The training algorithm for the HEG-model

/ used to adjust feature extracting layers in GHNN-networks /

1) Initialize the network with a root neuron and two child

neurons connected by an edge.

2) For each presented input pattern x:

a) Find the first and second closest neurons i1 and i2,

respectively, among the leaves of the current tree

structure. Add the squared distance between the

weight vector wi1 and x to the error counter of the

neuron i1 (alternatively, (3) can be used to adjust the

error counter).

b) Set the age parameter of the edge between the

neurons i1 and i2 to zero (create this edge if it does

not yet exist).

c) Adjust the weights of the winning neuron i1

according to (2), with the learning rates α set e.g. to

0.05. No other neurons are adapted.

)(=
111

new

i

old

i

new

i wxww  (2)

3) Decrease the error counters of all neurons (by a pre-set

factor, e.g. 0.999) and increment the age parameter of

all edges of the neuron i1.

4) At regular intervals:

a) Add two new leaf neurons to the network, if the

conditions for splitting a leaf neuron are met:

b) The leaf neuron lc with the largest error counter

value is found. If this value is greater than a chosen

threshold (e.g. 2 dim, where dim denotes the

dimension of the input space), lc is labeled as an

inner neuron and stripped of all edges to other

leaves.

c) Two new leaf neurons n1 and n2 are added to the tree

as child neurons of lc - neuron n put at the position of

lc will be connected to all neighbors of lc, and n2

placed halfway between n1 and its neighbor ld with

the next maximum error counter value, splitting thus

the original edge connecting ld and n1 into two new

edges (see Fig. 3).

i. All neuron error counters are set to zero.

d) Remove edges with the age parameter exceeding a

pre-set threshold value maxAge from the network

along with any isolated neurons.

e) Balance the entire tree, such that the weights of

every inner neuron correspond to average weights of

its child neurons.

5) Stop training if the pre-set number (e.g. 10) of

consequent checks for neuron splitting did not result

into the addition of new neurons.

Smaller values used for σ during training enforce a tighter

representation of the extracted knowledge while its larger

values used during recall allow capturing minor differences

of the presented test samples, too. Together with the dynamic

selection of relevant image features, a smoother network

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

424

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

425

function supports higher robustness and improved

generalization.

Fig. 4. In every feature-extracting layer of a multi-layered feature detector,

neuron output values are determined according to a perception window of a

pre-set size sliding over the lower (subsampling) layer. Perception windows

both in the original image and in the following layers are depicted by dashed

squares, the corresponding values of the feature maps are labeled by black

squares.

Fig. 5. Size-normalized samples from the MNIST database.

V. SUPPORTING EXPERIMENTS

The performance of GHNN-networks has been tested on

two image classification tasks. For face recognition, we

considered a subset of the CBCL Face Database provided by

the MIT Center for Biological and Computational Learning

[12]. The 19×19 images were histogram equalized and

normalized. The training data consisted of 2000 face images

and 2000 non-face images. The test set comprised 472 face

images and 5000 non-face images. In handwritten digit

classification, we used a subset of the MNIST database [13]

containing 1000 training and 500 test samples from ten

roughly balanced classes – for a few examples see Fig. 5. The

samples are 28 by 28 pixels in size with the digits aligned in

the center of the sample. The performed experiments

involved the following 3 architectures:

1) GHNNs with a dynamically HEG-adjusted number of

feature maps. Their actual number can be found in the

third column of Table II.

2) HCNNs – both with the RBF-like neurons and with the

WTA-functionality – having the same number of

feature maps like the corresponding GHNNs.

3) HCNNs with the same number of feature maps like the

commercially used LeNet-5 model [5]. Results obtained

for 5-layer networks are stated in the brackets – see

Table I and Table II.

All the networks had feature maps of the same size that is

given by both the dimension of the input data and the size of

the applied perception windows (all the perception windows

were of size 2×2):

 CBCL data: 18×18, 9×9, 8×8, 4×4 and 3×3,

 MNIST data: 27×27, 13×13, 12×12, 6×6 and 5×5.

The variance of the Gaussians used in feature-extracting

layers during training has been set experimentally to 0.4, 0.5

and 0.6, respectively. During recall, it has been chosen as 1.6,

2.0 and 2.4 for the CBCL images and 2.8, 3.5 and 4.2 for the

MNIST data. The attached classifier always contained 30

neurons in one hidden layer. The number of its output

neurons reflected the number of data classes. All the tests

were performed 10-times. The results shown in Table I and

Table II correspond to the measured values averaged over the

10 runs of the respective network model. In the experiments,

we were in particular interested in answering the following

questions:

1) How fast is training of GHNN-networks when compared

to HCNN-like networks?

2) What is the accuracy of GHNN-networks?

What is the character of the internal knowledge

representation extracted by the networks and how many

features does the network actually use?

A. The First Set of Experiments

The dynamically adjusted number of feature maps and

their mutual coupling are expected to speed-up training. On

the other hand, the HEG-like adjustment procedure might

slightly slow it down in comparison with almost optimal

network architectures. Experimental results from Table I

confirm these expectations. GHNNs perform comparably for

both types of HCNN-like networks initialized with the same

number of feature maps as found by the respective GHNN.

But in comparison with HCNN-like networks of the same

architecture like the original LeNet-5, GHNNs were roughly

two times faster.

B. The Second Set of Experiments

Due to the dynamically found number and coupling of

feature maps, we would expect a higher testing accuracy for

GHNNs when compared to other HCNN-like networks. As

the CBCL test data classes are extremely unbalanced, we

decided to consider also the information about precision and

recall. Precision corresponds to the number of correctly

classified positive examples divided by the total number of

samples classified as positive. Recall stands for the number

of correctly classified positive samples divided by the total

number of actually positive samples.

Fig. 6. Size-normalized samples from the CBCL Face database (from top to

bottom): faces classified as faces, faces classified as non-faces, non-faces

classified as non-faces and non-faces classified as faces.

Fig. 7. Advanced features detected at higher levels of GHNN-networks are

composed of simple local features detected already at its lower layer: left,

this graphics shows the representative images for nine neurons (maps) of the

third feature extracting layer (middle). On the right, two face images are

shown that belong to two different face clusters. The upper face can be

characterized e.g. by a dark eye area and a significant cheek (feature 1). The

lower one depicts on the other hand a wider nose and mouth region (feature 8

and 9).

The results reported in Table I support our hypothesis for

the CBCL data. Moreover, several of the misclassified

images are really difficult to classify automatically, e.g.

blurred faces or faces with glasses, non-face images with

face-like components (mostly reminding us of eyes and noses)

– for examples, see Fig. 6. Anyway, for the MNIST data and

an optimized architecture, HCNN-networks with the

WTA-functionality outperform our model, probably due to

the aggressively reduced number of features considered by

sub-sampling layers.

C.

The Third Set of Experiments

We compared the number of (detected/pre-set) features

with the number of features active in average for each

presented image. The features were considered active if the

output of the corresponding neuron exceeded the value of 0.7.

Moreover, by calibrating the feature (maps) with image parts

closest to them, we can easily interpret the function of the

network – see Fig. 7. From Table II, we can conclude that

GHNNs are capable of finding an adequate structure for the

given task. Especially when considering higher-level features,

GHNNs provide a more compact representation of the

processed data than HCNNs with the RBF-like neurons. On

the other hand, GHNNs do not eliminate too much

information by the sub-sampling layers like HCNNs with the

WTA-functionality which seems to be advantageous for very

complex problems like face recognition.

TABLE

I:

THE PERFORMANCE OF THE TESTED MODELS ON THE CBCL

FACE DATA AND MNIST HANDWRITTEN DIGIT DATA.

IN THE BRACKETS ARE STATED

THE RESULTS OBTAINED FOR 5-LAYER MODELS USING THE SAME NUMBER OF FEATURE MAPS LIKE THE COMMERCIALLY USED LENET-5

MODEL [6].

GHNN

HCNN-WTA

HCNN-RBF

detector training (sec)

0.7

0.4

0.7

classif. training (sec)

9.1

9.0

9.1

CBCL

training accuracy (%)

96.8

96.5

93.2

(4 layers)

testing

accuracy (%)

92.7

91.9

91.5

precision (%)

58.4

52.4

50.8

recall (%)

53.8

61.7

57.8

detector training (sec)

2.1

1.5

(6.0)

2.1

(6.9)

classif. training (sec)

20.4

20.5

(45.0)

20.6

(45.3)

CBCL

training accuracy (%)

97.7

94.6

(97.3)

86.8

(82.6)

(5 layers)

testing accuracy (%)

92.1

82.4

(82.7)

73.9

(65.4)

precision (%)

55.3

28.7

(26.8)

22.0

(17.6)

recall (%)

45.3

62.5

(57.6)

79.2

(82.0)

detector training (sec)

5.5

3.0

4.9

MNIST

classif. training (sec)

29.6

29.5

29.6

(4 layers)

training accuracy (%)

93.6

96.8

82.7

testing accuracy (%)

90.4

92.8

81.2

detector training (sec)

14.4

17.6

(32.2)

14.4

(16.5)

MNIST

classif. training (sec)

64.2

64.2

(122.7)

64.1

(123.7)

(5 layers)

training accuracy (%)

96.8

96.8

(97.2)

70.4

(44.2)

testing accuracy (%)

91.8

86.3

(85.5)

68.7

(43.4)

 TABLE

II:

THE NUMBER OF FEATURES DETECTED AND USED IN AVERAGE FOR THE PROCESSED PATTERNS FROM THE CBCL

AND MNIST

DATA.

IN

THE

BRACKETS ARE STATED THE RESULTS OBTAINED FOR 5-LAYER MODELS USING THE SAME NUMBER OF FEATURE MAPS LIKE THE COMMERCIALLY USED

LENET-5

MODEL [6].

 GHNN HCNN-WTA HCNN-RBF

 detected features used features used features used features

 layer 1 3.0 3.0 3.0 3.0

 CBCL layer 2 3.0 3.0 3.0 3.0

 (4 layers) layer 3 9.1 9.1 8.9 9.1

 layer 4 9.1 7.4 2.3 9.0

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

426

 layer 1 2.8 (6) 2.8 2.8 (6.0) 2.8 (6.0)

 CBCL layer 2 2.8 (6) 2.8 2.8 (5.6) 2.8 (6.0)

 (5 layers) layer 3 8.7 (16) 8.7 8.4 (14.7) 8.7 (16.0)

 layer 4 8.7 (16) 7.3 2.3 (1.44) 8.7 (16.0)

 layer 5 48.0 (120) 6.9 7.6 (8.4) 40.2 (101.0)

 layer 1 6.7 6.9 6.9 6.9

 MNIST layer 2 6.7 6.9 3.3 6.9

 (4 layers) layer 3 17.5 16.9 15.8 17.5

 layer 4 17.5 7.0 1.3 16.7

 layer 1 7.1 (6) 7.1 7.1 (6.0) 7.1 (6.0)

 MNIST layer 2 7.1 (6) 7.1 3.1 (3.6) 7.1 (6.0)

 (5 layers) layer 3 17.6 (16) 16.8 16.0 (14.9) 17.6 (16.0)

 layer 4 17.6 (16) 6.8 1.3 (1.3) 16.8 (15.3)

 layer 5 58.6 (120) 15.6 18.7 (20.1) 57.01 (116.7)

VI. SUMMARY

The introduced GHNN-networks represent a powerful

multi-layered self-organizing architecture capable of

constructing automatically an appropriate feature detector

from the processed data. In accordance with other approaches

(e.g. [14], [15]), an adequate network structure avoiding

redundant processing has shown to yield improved

generalization. The main benefits of the proposed

GHNN-model with the HEG-networks used for feature

extraction consist in:

1) an automatic adjustment of the network topology to the

dimensionality and inner structure of the processed data.

In comparison with fixed-size networks like e.g.

Kohonen maps, this results in rapid training and

improved generalization (due to a reduced number of

used neurons),

2) an efficient processing of the image data, in particular,

when dealing with large high-dimensional datasets (due

to the tree-like structure of the HEG-networks and

substantially reduced pre-processing),

3) a transparent hierarchical representation of the extracted

knowledge. More complex features extracted in higher

layers of the detector are composed of simpler features

found in its lower layers.

REFERENCES

[1] Social Media. (July 2010). [Online]. Available:

http://www.edition.cnn.com/2010/TECH/ social.

media/07/02/facebook.recognition.index.html

[2] S. Fidler, G. Berginc, and A. Leonardis, “Hierarchical statistical

learning of generic parts of object structure,” in Proc. 2006 CVPR

Conf., Washington, 2006, pp. 182-189.

[3] K. Horio, A. Aikawa, and T. Yamakawa, “Pattern recognition based on

relative position of local features using self-organizing map,” in Proc.

2006 ICICIC Conf., 2006, pp. 293-296.

[4] D. Zhong and I. Defee, “Face retrieval based on robust local features

and statistical-structural learning approach,” EURASIP J. on Advances

in Signal Processing, vol. 2008, pp. 12, April 2008.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” in Proc. of the IEEE, vol.

11, no. 86, pp. 2278-2324, November 1998.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning

representations by back-propagating errors,” Nature, vol. 323, no. 6088,

pp. 533-536, October 1986.

[7] J. Moody and C. Darken, “Learning with localized receptive fields,” in

Proc. of the 1988 Connectionist Models Summer School, 1988, pp.

133-143.

[8] I. Mrazova and M. Kukacka, “Hybrid convolutional neural networks,”

in Proc. 2008 INDIN Conf., 2008, pp. 469-474.

[9] T. Kohonen, Self-Organizing Maps, Berlin: Springer-Verlag, 2001.

[10] B. Fritzke, “Growing neural gas learns topologies,” Advances in

Neural Information Processing Systems, vol. 7, pp. 625-632, August

1995.

[11] E. Oja, J. Pakkanen, and J. Iivarinen, “The evolving tree – a novel

self-organizing network for data analysis,” Neural Processing Letters,

vol. 20, no. 3, pp. 199-211, November 2004.

[12] Center for Biological and Computational learning at MIT. (November

2012). Face data. [Online]. Available:

http://www.cbcl.mit.edu/cbcl/software-datasets/FaceData2.html

[13] Y. LeCun and C. Cortes. (November 2012). The MNIST database of

handwritten digits. [Online]. Available:

http://www.yann.lecun.com/exdb/mnist/

[14] I. Mrazova and D. Wang, “Improved generalization of neural

classifiers with enforced internal representation,” Neurocomputing, vol.

16-18, no. 70, pp. 2940-2952, October 2007.

[15] V. N. Vapnik, Statistical Learning Theory, New York: Wiley, 1998.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

427

