



Abstract—Multi-core processor technologies have become

pervasive and mainstream. Several types of multi-core CPUs,

including symmetric and asymmetric models, are emerging. A

multi-core processor architecture may be defined as: on-chip

clusters of heterogeneous functionality modules (processors),

cooperating in the implementation of multiple concurrent

applications. On these platforms, developing applications that

truly take advantage of the power of multi-core capabilities is

still a complex, error-prone, and challenging endeavor.

Application code must be tuned to optimally fit the available

resources. Operating System procedures must cover issues at

lower abstraction layers, close to firmware, in order to enable

features like optimal task/thread level scheduling depending

upon the application requirements on the appropriate

processor as per its characteristic. For Efficient scheduling of

task or thread on multi core system the operating system

scheduler must be aware about the underlying heterogeneity

present in the system, also it must be aware about the

characteristics of application (at static and at run time).

Because as per the characteristic of the executing application

the scheduler can take decision to schedule the task on available

core so that optimal performance and good throughput can be

achieved.

Index Terms—Multicore scheduling, fine grained threads,

cooperating thread, load balancing.

I. INTRODUCTION

In Unix operating system the scheduler is known as Round

Robin with multilevel feedback, meaning is that the kernel

allocates the CPU to a process for a time quantum, preempts a

process that exceeds its time quantum, and feeds it back into

one of several priority queues. Priority is not fixed it is

dynamically changed, with initially there is some priority

assigned to a process by the user later on the priority is

calculated as per Equation 1.

Priority = („recent CPU usage‟/constant) + Base priority +
Nice value. (1)

Here, the constant is the value calculated by scheduler. The

value is assumed to be 2 as per [1] to maintain the priority

value into the specified limits.

In Unix SVR4, some changes are made in the scheduling

algorithms used earlier UNIX systems. The new algorithm is

designed to give highest preference to Real Time processes,

next – highest preference to kernel mode process, and lowest

preference to other user-mode process, referred to as time

Manuscript received September 15, 2012; revised November 30, 2012.

Sonia Mittal is with the MCA, Computer Science & Engineering Dept.,

Nirma University, Ahmedabad, India (e-mail: sonia.mittal@nirmauni.ac.in).
 Priyanka Sharma is with the Computer Science and Engineering

Department, Institute of Technology, Nirma University.

–shared process as shown in Table I.

In Unix SVR4 system, Pre-emptable static priority

scheduler is implemented with insertion of preemption points.

Because the basic kernel is not preemptive, now in between

the processing steps safe places known as preemption points

have been identified where kernel can safely interrupt

processing and schedule a new process [1].

TABLE I: SVR4 PRIORITY CLASS

Priority class Global value Scheduling

Real time 159 to 100 Highest

Kernel 99 to 60 Medium

Time shared 59 to 0 Low

In Multiuser system above scheduling technique does not

differentiate between classes of users [1]. The Fair share

scheduler (FSS) is implemented on a number of UNIX

systems [1]. It includes the user group. FSS considers the

execution history of a related group of process, along with the

individual execution history of each process in making

scheduling decision. The system divides the user community

into a set of fair – share groups and allocates a fraction of the

processor resource to each group.

David Choffnes et al. [2] had implemented Linux kernel

scheduler called the Practical Fair-Share Scheduler (PFS).

PFS is a fair-share process scheduler designed to support

real-time workloads with soft (i.e., elastic) timeliness

requirements. A novel aspect of PFS is its treatment of

placement and migration in SMP or multi-core settings. PFS

uses a strategy that maintains utilization without un-fairly

penalizing processes.

Windows Operating system makes use of a priority –

driven preemptive scheduler, threads with real-time priorities

have precedence over other threads [3]. In Windows, priority

of real time threads are fixed but priority of other threads are

changed dynamically. Windows executive raise or lower the

priority of I/O bound threads and processor bound threads

respectively [3]. In multiprocessor system with N processors,

the (N-1) highest priority threads are always active, running

exclusively on the (N-1) extra processors. The remaining,

lower priority threads share the single remaining processor.

This strategy is affected by the processor affinity attribute

of a thread [4]. If a thread is ready to execute but the only

available processors are not in its processor affinity set, then

thread is forced to wait, and the executive schedules the next

available thread.

Multithreaded applications are becoming pervasive due to

the emergence of multi core processors. Previously,

multithreading has been used primarily to extract

concurrency between I/O and computation, but it can also be

used to enable concurrent computation on multiprocessor

systems. One of the main problems with threads, however, is

Sonia Mittal and Priyanka Sharma

An Optimized and Efficient Multi Parametric Scheduling

Approach for Multi-Core Systems

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

391DOI: 10.7763/IJCTE.2013.V5.716

that their memory access behavior is completely invisible,

which makes it challenging to schedule threads for optimal

cache utilization and performance [5].

There are basically two ways of multithreading:

coarse-grain and fine-grain. For applications with coarse

grain multithreading, cache locality is not a very big problem.

In contrast, fine-grain multithreading involves an

abundance of threads with frequent communication and short

execution times, typically only 100 to 10,000 cycles [6].

Applications with fine grain multithreading have many

frequently executed, independent regions of code that can be

extracted for parallel execution.

Fine grained parallelism exhibit good performance due to

their short execution time. At the same time, it is only

suitable when the overheads of scheduling and

communication are small, as is the case with multi core

systems. Multithreading has the central drawback that is

generally not showing cache reusability; threads have a

relatively short duration and are context switched frequently

without opportunity to leverage the data already in the cache

[7]. Hence, the processor must frequently stall to re-populate

thread context, and the wait is often substantial. In proposed

scheduler it is considered.

In this paper a new approach is proposed in which on the

basis of the characteristics of applications certain decisions

regarding scheduling can be done. The characteristics of

application can be defined by following parameters.

1) The application is compute intensive or I/O intensive.

2) The pattern of application is irregular that manipulate

pointer-based data structures like trees and graphs or

regular that deal with arrays and dense matrices.

3) The nature of application in terms of data requirement is

static or dynamic.

4) Resource requirement and resource sharing.

Identification of I/O intensive task and compute intensive

task is done by proposed scheduler is as:

The process working set is analyzed in order to find out the

frequency of read() and write() operations. RTOC and

WTOC are use to evaluate whether a task is compute

Intensive or I/O intensive. The expression for the same as

equation 2 and 3 respectively.

RTOC = No. of read () / no. of compute () (2)

WTOC = No. of write ()/ no. of compute () (3)

If RTOC or WTOC value is low from a certain threshold

value then task is considered as compute intensive and if

RTOC or WTOC value is high from a threshold value then

task is considered I/O intensive. This approach is based on

prediction.

 Further the application which is a mix of small tasks is

analyzed to find whether it is computed in parallel or not.

Also, it needs to be identified whether application be divided

into small and big tasks. i.e. threads. The threads will be

scheduled to run concurrently.

II. PROPOSED APPROACH

Optimal performance can be exploited by making the

process scheduler aware of the Multicore topologies & the

task characteristics [8]. In this paper a new approach is

proposed to control scheduling decisions based on

characteristics of applications. If application is a mix of only

small tasks then it can be divided into various coarse grain

tasks and then as second level, further it can be divided into

fine grained threads. This can further be scheduled on

available core as per the characteristic of the thread and core

matches to certain degree.

In some applications there is a mix of tasks in which some

tasks cannot be executed parallel i.e. serial code so these

tasks can be scheduled on faster core and the parallel portion

of application can be run on slow cores.

In asymmetric multicore systems cores in the same

processor can have different performance [9]. We consider

asymmetric multicore systems because they exhibit good

performance as compare to homogeneous multicore systems

[10]. Some degree of performance asymmetry is beneficial.

This is because all applications, whether multi-threaded or

single-threaded, have serial portions, and providing a

high-performance core helps speed these serial portions.

Here we assumed that hardware performance monitors will

provide the hardware characteristics to the run-time system.

A. Scheduling

On the basis of application type, at primary level mapping

will be done as given in pseudo codes – Fig. 1, Fig. 2 and Fig.

3:

Schedular_Compute_Intensive_Task()

 {

 If Task is pure Compute intensive and cannot be

executed parallel

 then schedule the task on relatively faster cores.

 Perform Enqueue operation on Ready_queue() of

Faster Core

 Else

 If task can be executed parallel

 then convert it into coarse grain thread and many fine

grain threads and schedule coarse grain thread on

faster core and fine grain threads on slow cores.

 Perform Enqueue operation on Ready_queue() of

Faster Core

 Perform Enqueue operation on Ready_queue() of

slow core

 }

Fig. 1. Pseudo code for scheduling compute intensive tasks.

Schedular_I/O_Intensive_Task()

 {

 If Task is I/O intensive and its working set is big (data

base oriented)

 Then

 If only faster core is free

 Then divide task into coarse grain threads and select

highest priority tasks among them and schedule it

on faster cores and others task will be maintained in

Global pool of tasks.

 (To achieve good efficiency the required data for

this task is to be included into working set.)

 Perform enqueue operation on ready_queue() of

faster core.

 Else Divided the task into small tasks i.e. fine grain

threads and schedule them on relatively slow cores.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

392

 Perform enqueue operation on ready_queue() of

small cores.

 }

Fig. 2. Pseudo code for scheduling I/O intensive tasks.

Schedular_mixed_task()

 {

 If the task is a mix of Compute intensive

 and I/O intensive

 then

 Call schedular_Compute_Intensive_Task() for

compute intensive workload

 and Call Schedular_I/O_Intensive_Task() for I/O

intensive workload

 }

Fig. 3. Pseudo code for scheduling mixed tasks.

B. Thread To Core Affinity and Cooperating Thread

Scheduling

Round robin preemptive scheduling technique is used in

proposed approach. If a high priority task is come into the

system then low priority task will be preempted if it is

running. When a thread is required to context switched i.e. a

new thread is bring into the running state and previously

running thread has to put in either ready queue or block queue,

the new thread is scheduled such that maximum shared

resource utilization is done. Here we consider cache memory.

In many systems the local cache level 2 (L2) is shared among

Core in the same package and level 1 (L1) is made private to

Core. Generally multicore is coming with minimum 2 level

of caches. The threads of a process share global data, and

global data is kept in L2 cache, so the threads of same process

can share common data. Threads are scheduled onto the cores

of same package which share L2 cache [11].

Here in this approach thread affinity to processor core is

considered. When a thread is required to migrate from a

package i..e. the thread is pulled out from a processor and this

thread is assigned to the core which has highest affinity point

and core is idle. Otherwise another core is assigned first time

with a base affinity point.

The generalized approach is followed to calculate the

affinity point. Whenever Thread is executed on a core the

affinity is increased by one unit. So as a result when a Thread

is repeatedly executed on same core affinity becomes highest

for that core as compared to other core. Thread is migrated to

the core that is having second highest affinity point. A Thread

to core, affinity matrix is maintained by the scheduler as

shown in Table II. In this manner the maximum cache data is

utilized among the cooperating threads. As results inter

thread communication is decreased. And overall performance

would be improved.

TABLE II: THREAD TO CORE AFFINITY MATRIX.

 Core

Thread

Core1 Core 2 Core 3

T1 2 0 0

T2 2 0 1

T3 2 0 1

T4 1 1 0

T5 1 1 0

For example here T1, T2 ……T5 are threads. T1 and T2

belong to process P1. T3, T4 belong to process P2 and T5

belongs to process P3. Package1 contain Core 1 and Core 2.

Package 2 contains Core 3.

When a core is migrated from the current package to other

package then T2CA value would be decreased by certain

factor because now it is not as much affiliated to this core as

up to the previous schedule was done on this core. The

reducing factor (RDF) is based on cache hit ratio to cache

miss ratio of new threads which are scheduled to execute on

this core. And it is given as below.

If RDF value is < 1 and T2CA > zero

Then

T2CA = T2CA – RDF

Else
No changes in T2CA value

Algorithm: Here in the proposed algorithm (figure : 4), the

T2CA i.e. Thread to core affinity value for a thread is checked

before scheduling to the core, if thread waiting time does not

exceeds to threshold_wait_parent i.e. the waiting time for its

parent core where its T2CA is maximum and its maximum

cache hit ratio is guaranteed. So the thread will wait till

threshold_wait_parent time so that it can take maximum

benefit of the local cache L1 data which is private to this. But

if thread waiting time is increased than

threshold_wait_parent then it will check for second

parameter i.e. second level cache L2 within the same package.

So now the thread will wait till threshold_wait_pakage time

so that it can take maximum benefit of the shared cache L2

data which is shared to this. But if waiting time exceeds then

it will migrate from this package. Otherwise threads

throughput will be poor if it excessively waiting on its turn to

share resource, but here at this point by migrating the thread

will balance the throughput. This strategy will give best result

with least recently used (LRU) cache replacement policy.

When a thread has to migrate from a package it will check

the T2CA value of cooperating thread. If T2CA value is less

than zero then cooperating thread can be moved along with

this thread to other nearest located package to improve inter

thread communication.

Step 1: A Thread T with highest waiting time in ready_queue

is searched.

 Let us assume Thread T is found

Step 2: For Thread T, Thread to core affinity, T2CA values

within a package for all core are searched.

Step 3: If highest T2CA value core is found free then

schedule thread on this core.

Step 4: Otherwise If waiting time of a thread i.e.

waiting_time < threshold_wait_parent

 Then thread is put back into ready_queue

 And next thread is searched.

 Go to Step :1

Step 5: Else If waiting time of a thread i.e., waiting_time <

threashold_wait_package

 Then thread is put back into ready_queue and next

thread is searched.

 Go to Step: 1

Step 6: Else Migrate thread into other package which is

nearest located to current package.

Fig. 4. Thread to core scheduling pseudo code.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

393

C. Nearest Neighbor Affinity

 The above approach explained in II B is suitable for SMP

like systems but if the system is Non Uniform memory

Access (NUMA) the main memory is distributed among

cores, then one more information is required to know is

Nearest Neighbor affinity [4]. If thread is bringing into other

core which is having its own private memory, it is not sharing

the memory with previous core where the thread was

previously schedule to run. Then the underlying

communication network is required to consider the core

which is nearest to previous core is desirable core to schedule

first. Because now this thread has its data in previous core‟s

main memory so it is required to access from there. To

minimize memory access time it is necessary to allocate the

core which is topologically near to this core.

III. RELATED WORK

In Reinventing Scheduling [12] for Multicore Systems

multicore processors pose unique scheduling problems that

require an approach that utilizes the large, but distributed

on-chip memory well. So the approach is based on

scheduling objects and operations to caches and cores, rather

than a traditional scheduler that optimizes for CPU cycle

utilization. Predictive Thread-to-Core Assignment on a

Heterogeneous Multi-core Processor [13] has a technique

which statically determines the approximate phase behavior

in a program. This phase behavior and the exhibited

execution characteristics of a small set of representative

phases are then exploited at runtime to determine likely

profitable thread-to-core assignments for later phases of the

program.

Several studies (e.g. [14], [15]) suggest that operating

system schedulers insufficiently deal with threads that

allocate large parts of the shared level 2 cache and thus

slow-up threads running on the other core that uses the same

cache. The situation is unsatisfactory due to several reasons:

First, it can lead to unpredictable execution times and

throughput and second, scheduling priorities may loose their

effectiveness because of threads running on cores with

aggressive “co-runners” (i.e. threads running on another core

in the same package). In the scheduling algorithm [14], the

threads on a system are grouped into a best effort class and a

cache-fair class. Best effort threads are penalized for the sake

of performance stability of cache-fair threads, if necessary,

but not vide-versa. However, it is taken care, that this does

not result in inadequate discrimination of best effort threads.

Fairness is enforced by allocating longer time shares to

cache-fair threads that suffer from cache-intensive co-runners

at the expense of these co-runners, if they are best effort

threads.

Two scheduling algorithms proposed for asymmetric

single-ISA multicore processors by Becchi et al. [5] and

Kumar et al. [16]. Both of them assume a system with two

core types (“fast” and “slow”) and rely on continuous

performance monitoring to determine optimal thread-to-core

assignment. Becchi‟s IPCdriven algorithm periodically

samples threads‟ instructions per cycle (IPC) on cores of both

types to determine the relative benefit for each thread from

running on the faster core. Those threads that have a higher

fast-to-slow IPC ratio have a priority in running on the fast

core, because they are able to achieve a relatively greater

speedup there. Kumar‟s method uses a similar technique,

except that the sampling method is made more robust by

using more than one sample per core type per thread.

In addition, Kumar et al. [16] proposed an algorithm that

tries to determine a globally optimal assignment by sampling

performance of thread groups rather than making local

thread-swapping decisions. Both these approaches promise

significantly better performance than naïve

heterogeneous-agnostic policies with any kind of

heterogeneous workload, but they are both difficult to scale

to many cores. According to Hass: A scheduler for

Heterogeneous Multicore System [17] thread signature is

constructed on the basis of micro architectural parameters of

thread execution and this information is utilized in thread

scheduling by the runtime system. A similar approach has

been given in Using OS Observations to improve

performance in Multicore Systems [7]. According to this

article operating system can use data obtained from dynamic

runtime observation of task behavior to ameliorate

performance variability and more effectively exploit

multicore processor resources.

History-aware resource-based dynamic scheduling for

heterogeneous multi-core processors [18] introduces a

history-aware, resource-based dynamic scheduler (HARD)

for heterogeneous chip multi-processors (CMPs). HARD

relies on recording application resource utilization and

throughput to adaptively change cores for applications during

runtime.

 According to Bias Scheduling in Heterogeneous

Multi-core Architectures [19], with cores that have different

micro architectures and performance the key metrics are

identifies that characterizes an application bias, namely the

core type that best suits its resource needs. By dynamically

monitoring application bias, the operating system is able to

match threads to the core type that can maximize system

throughput. KAPPI [20] implementation of runtime thread

scheduling allows to group together tasks for a sequential

execution in order to reduce scheduling overhead.

IV. CONCLUSION AND FUTURE WORK

In this approach the scheduler efficiently utilizes the

asymmetry of underlying processor. Performance

Asymmetry-aware load balancing ensures that the load on

each core is proportional to its computing power. Also

depending up on the nature of the task compute intensive or

I/O intensive the thread to core assignment is done. The

scheduler uses intelligent locality-aware scheduling of

fine-grain threads. i.e., thread to core affinity, by utilizing

private cache L1 and shared on board cache L2. Hence inter

thread communication is also minimized. To maintain the

throughput and load balancing the thread is migrated to

nearest neighbor. So that memory operation time i.e. latency

can be minimized if underlying system is NUMA or

Distributed memory system. In this paper mainly the cache

memory and processor performance asymmetry is addressed

through the proposed approach, the application data

characteristics like irregular or regular and another parameter

related to data requirement is static or dynamic will be

considered in future work and implementation of the

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

394

approach will be included.

REFERENCES

Sonia Mittal received her Master of Computer

Applications degree from MBM Engineering College,

JNV University in 1994 and Bachelor in Science from
JNV University in 1990. Currently; she is associated

as Assistant Professor in MCA, Computer Science &

Engineering Dept., Nirma University, Ahmedabad,
India. She has teaching experience around 14 years.

Her Research interest area includes Parallel Processing

and Multicore Computing.

Priyanka Sharma received her Masters in Computer
Science and Engineering from Nirma University in

2007 and Bachelors Degree in Computer Engineering

from Gujarat University in 1999. She has over 13 years
of working experience including Industrial and

Academia. She is pursuing her PhD in the area of QoS

based routing of Multimedia Traffic over IP based
networks. She has published around fourteen research

papers in International Journal and Conferences. She is
currently working as an Associate Professor with Computer Science and

Engineering Department, Institute of Technology, Nirma University. She

has guided more than 11 MTech Thesis so far. Her research area includes
applications of Machine Learning in Wireless Communication and High

Speed networks.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

395

[1] M. J. Bach, The Design of the UNIX Operating System, Prentice-Hall,

1986, pp. 248-252

[2] D. Choffnes, M. Astley, and M. J. Ward, “Migration policies for

multi-core fair-share scheduling,” Newsletter ACM SIGOPS

Operating Systems Review, vol. 42, no. 1, pp. 92-93, January 2008.

[3] W. Stallings, Operating systems Internals and design Principles, 6th ed.
Pearson 2009, pp. 487- 490.

[4] F. N. Sibai, “Nearest neighbor affinity scheduling in heterogeneous

multi-core architectures,” Journal of Computer Science and

Technology, vol. 8, no. 3, Oct. 2008.

[5] M. Becchi and P. Crowley, “Dynamic thread assignment on

heterogeneous multiprocessor architectures,” in Proc. 3rd Conf.

Computing Frontier, pp. 29-40, 2006.

[6] M. D. Kruijf and G. Stockman, “ Footprint-based scheduling,” CS736

Course Project, Fall 2007 Department of Computer Sciences,

University of Wisconsin–Madison, CS736 Course Project, Fall 2007.

[7] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using OS

Observations to improve performance in Multicore systems,” IEEE

MICRO, vol. 28, no. 3, pp. 56-66, May-June 2008.

[8] S. Siddha, V. Pallipadi, and A. Mallick, “Process scheduling

challenges in the era of multi-core processors,” Intel Technology

Journal, vol. 11, no. 4, 2007.

[9] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient

operating system scheduling for performance-asymmetric multi-core

architectures,” in Proc. of the 2007 ACM/IEEE Conference on

Supercomputing Article no. 53.

[10] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The impact of

performance asymmetry in emerging multicore architectures,”

International Symposium on Computer Architecture, 2005.

[11] A. Fedorova, D. Vengerov, and D. Doucette, “Operating system

scheduling on heterogeneous multi core systems,” Workshop on

Operating System Support for Heterogeneous Multicore Architecture,

PACT’ 2007

[12] B.-W. Silas, R. Morris, and M. F. Kaashoek, “Reinventing scheduling

for multicore systems,” in Proc. 12th conf. Hot Topics in Operating

Systems, pp. 21, 2009.

[13] T. Sondag, V. Krishnamurthy, and H. Rajan, “Predictive thread-to-core

assignment on a heterogeneous multi-core processor,” in Proc. 4th

Workshop Programming Languages and Operating Systems, no.7,

2007.

[14] A. Fedorova, M. Seltzer, and M. D. Smith, “Cache-fair thread

scheduling for multicore processors,” Technical Report TR-17-06,

Harvard University, Oct. 2006

[15] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and

partitioning in a chip multiprocessor architecture,” in Proc.

,

.

International Conference Parallel Architectures and Compilation

Techniques, 2004.

[16] R. Kumar, et al., “Single-ISA heterogeneous multi-core architectures

for multithreaded workload performance,” in Proc. 31st Annual

International Symposium on Computer Architecture - München,

Germany, ISCA ‘04. IEEE Computer Society, Washington, DC, USA,

vol. 64, June 19-23, 2004.

[17] D. Shelepov, A. Fedorova, S. Blagodurov, J. C. S. Alcaide, N. Perez, V.

Kumar, and S. J. Z. F. Huang, “HASS: A scheduler for heterogeneous

multicore systems,” Newsletter ACM SIGOPS Operating Systems

Review, vol. 4, Issue 2, pp. 66-75, April 2009.

[18] A. Z. Jooya, A. Baniasadi, and M. Analoui, “History-aware,

resource-based dynamic scheduling for heterogeneous multi-core

processors,” Computer and Digital Techniques, IET, vol. 5, no. 4, July

2011, pp. 254-262.

[19] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous

multi-core architectures,” in Proc. 5th European Conf. Computer

Systems, pp. 125-138, April 13-16, 2010.

[20] T. Gautier, X. Besseron, and L. Pigeon, “KAAPI: A thread scheduling

runtime system for data flow computations on cluster of

multi-processors,” in Proc. International Conference Parallel

Symbolic Computation 2007, pp. 15-23.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Baniasadi,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Analoui,%20M..QT.&newsearch=partialPref

