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Abstract—Multi-core processor technologies have become 

pervasive and mainstream. Several types of multi-core CPUs, 

including symmetric and asymmetric models, are emerging.  A 

multi-core processor architecture may be defined as: on-chip 

clusters of heterogeneous functionality modules (processors), 

cooperating in the implementation of multiple concurrent 

applications. On these platforms, developing applications that 

truly take advantage of the power of multi-core capabilities is 

still a complex, error-prone, and challenging endeavor. 

Application code must be tuned to optimally fit the available 

resources. Operating System procedures must cover issues at 

lower abstraction layers, close to firmware, in order to enable 

features like optimal task/thread level scheduling depending 

upon the application requirements on the appropriate 

processor as per its characteristic. For Efficient scheduling of 

task or thread on multi core system the operating system 

scheduler must be aware about the underlying heterogeneity 

present in the system, also it must be aware about the 

characteristics of application (at static   and at run time). 

Because as per the characteristic of the executing application 

the scheduler can take decision to schedule the task on available 

core so that optimal performance and good throughput can be 

achieved. 

 
Index Terms—Multicore scheduling, fine grained threads, 

cooperating thread, load balancing.  

 

I. INTRODUCTION 

In Unix operating system the scheduler is known as Round 

Robin with multilevel feedback, meaning is that the kernel 

allocates the CPU to a process for a time quantum, preempts a 

process that exceeds its time quantum, and feeds it back into 

one of several priority queues. Priority is not fixed it is 

dynamically changed, with initially there is some priority 

assigned to a process by the user later on the priority is 

calculated as per Equation 1. 

 

Priority = („recent CPU usage‟/constant) + Base priority + 
Nice value.                                              (1)      

  
Here, the constant is the value calculated by scheduler. The 

value is assumed to be 2 as per [1] to maintain the priority 

value into the specified limits. 

In Unix SVR4, some changes are made in the scheduling 

algorithms used earlier UNIX systems. The new algorithm is 

designed to give highest preference to Real Time processes, 

next – highest preference to kernel mode process, and lowest 

preference to other user-mode process, referred to as time 
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–shared process as shown in Table I. 

In Unix SVR4 system, Pre-emptable static priority 

scheduler is implemented with insertion of preemption points. 

Because the basic kernel is not preemptive,     now in between 

the processing steps safe places known as preemption   points   

have been identified where kernel can safely interrupt 

processing and schedule a new process [1]. 

TABLE I: SVR4 PRIORITY CLASS 

Priority class Global value Scheduling 

Real time 159 to 100 Highest 

Kernel  99 to 60 Medium 

Time shared 59 to 0 Low 

In Multiuser system above scheduling technique does not 

differentiate between classes of users [1]. The Fair share 

scheduler (FSS) is implemented on a number of UNIX 

systems [1]. It includes the user group. FSS considers the 

execution history of a related group of process, along with the 

individual execution history of each process in making 

scheduling decision. The system divides the user community 

into a set of fair – share groups and allocates a fraction of the 

processor resource to each group.  

David Choffnes et al. [2] had implemented Linux kernel 

scheduler called the Practical Fair-Share Scheduler (PFS). 

PFS is a fair-share process scheduler designed to support 

real-time workloads with soft (i.e., elastic) timeliness 

requirements.  A novel aspect of PFS is its treatment of 

placement and migration in SMP or multi-core settings. PFS 

uses a strategy that maintains utilization without un-fairly 

penalizing processes. 

Windows Operating system makes use of a priority – 

driven preemptive scheduler, threads with real-time priorities 

have precedence over other threads [3]. In Windows, priority 

of real time threads are fixed but priority of other threads are 

changed dynamically. Windows executive raise or lower the 

priority of I/O bound threads and processor bound threads 

respectively [3]. In multiprocessor system with N processors, 

the (N-1) highest priority threads are always active, running 

exclusively on the (N-1) extra processors. The remaining, 

lower priority threads share the single remaining processor. 

This strategy is affected by the processor affinity attribute 

of a thread [4]. If a thread is ready to execute but the only 

available processors are not in its processor affinity set, then 

thread is forced to wait, and the executive schedules the next 

available thread. 

Multithreaded applications are becoming pervasive due to 

the emergence of multi core processors. Previously, 

multithreading has been used primarily to extract 

concurrency between I/O and computation, but it can also be 

used to enable concurrent computation on multiprocessor 

systems. One of the main problems with threads, however, is 
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that their memory access behavior is completely invisible, 

which makes it challenging to schedule threads for optimal 

cache utilization and performance [5].  

There are basically two ways of multithreading: 

coarse-grain and fine-grain. For applications with coarse 

grain multithreading, cache locality is not a very big problem.  

In contrast, fine-grain multithreading involves an 

abundance of threads with frequent communication and short 

execution times, typically only 100 to 10,000 cycles [6]. 

Applications with fine grain multithreading have many 

frequently executed, independent regions of code that can be 

extracted for parallel execution.  

Fine grained parallelism exhibit good performance due to 

their short execution time. At the same time, it is only 

suitable when the overheads of scheduling and 

communication are small, as is the case with multi core 

systems. Multithreading has the central drawback that is 

generally not showing cache reusability; threads have a 

relatively short duration and are context switched frequently 

without opportunity to leverage the data already in the cache 

[7]. Hence, the processor must frequently stall to re-populate 

thread context, and the wait is often substantial. In proposed 

scheduler it is considered. 

In this paper a new approach is proposed in which on the 

basis of the characteristics of applications certain decisions 

regarding scheduling can be done. The characteristics of 

application can be defined by following parameters. 

1) The application is compute intensive or I/O intensive.  

2) The pattern of application is irregular that manipulate 

pointer-based data structures like trees and graphs or 

regular that deal with arrays and dense matrices.  

3) The nature of application in terms of data requirement is 

static or dynamic. 

4) Resource requirement and resource sharing. 

Identification of I/O intensive task and compute intensive 

task is done by proposed scheduler is as: 

The process working set is analyzed in order to find out the 

frequency of read( ) and write( ) operations. RTOC and 

WTOC are use to evaluate whether a task is compute 

Intensive or I/O intensive. The expression for the same as 

equation 2 and 3 respectively. 

  
RTOC = No. of read ( ) / no. of compute ( )           (2) 

 
WTOC = No. of write ( )/ no. of compute ( )          (3) 

 
If RTOC or WTOC value is low from a certain threshold 

value then task is considered as compute intensive and if 

RTOC or WTOC value is high from a threshold value then 

task is considered I/O intensive. This approach is based on 

prediction. 

 Further the application which is a mix of small tasks is 

analyzed to find whether it is computed in parallel or not. 

Also, it needs to be identified whether application be divided 

into small and big tasks. i.e. threads. The threads will be 

scheduled to run concurrently. 

 

II.  PROPOSED APPROACH 

Optimal performance can be exploited by making the 

process scheduler aware of the Multicore topologies & the 

task characteristics [8]. In this paper a new approach is 

proposed to control scheduling decisions based on 

characteristics of applications. If application is a mix of only 

small tasks then it can be divided into various coarse grain 

tasks and then as second level, further it can be divided into 

fine grained threads. This can further be scheduled on 

available core as per the characteristic of the thread and core 

matches to certain degree. 

In some applications there is a mix of tasks in which some 

tasks cannot be executed parallel i.e. serial code so these 

tasks can be scheduled on faster core and the parallel portion 

of application can be run on slow cores. 

In asymmetric multicore systems cores in the same 

processor can have different performance [9]. We consider 

asymmetric multicore systems because they exhibit good 

performance as compare to homogeneous multicore systems 

[10]. Some degree of performance asymmetry is beneficial. 

This is because all applications, whether multi-threaded or 

single-threaded, have serial portions, and providing a 

high-performance core helps speed these serial portions.   

Here we assumed that hardware performance monitors will 

provide the hardware characteristics to the run-time system. 

A. Scheduling  

On the basis of application type, at primary level mapping 

will be done as given in pseudo codes – Fig. 1, Fig. 2 and Fig. 

3: 

 

Schedular_Compute_Intensive_Task( ) 

      {  

          If Task is pure Compute intensive and cannot be 

executed parallel  

          then schedule the task on relatively faster cores.           

           Perform Enqueue operation on Ready_queue( ) of 

Faster Core 

        Else  

         If task can be executed parallel  

         then convert it into coarse grain thread  and many fine 

grain threads and schedule  coarse grain thread on 

faster core and fine grain threads on slow cores. 

           Perform Enqueue operation on Ready_queue( ) of 

Faster Core 

           Perform Enqueue operation on Ready_queue( ) of 

slow core 

       } 

Fig. 1. Pseudo code for scheduling compute intensive tasks. 

Schedular_I/O_Intensive_Task( ) 

    { 

        If Task is I/O intensive and its working set is big   (data 

base oriented)   

     Then   

             If only faster core is free 

              Then divide task into coarse grain threads and select 

highest priority tasks among  them and schedule it 

on faster cores and   others task will be maintained in 

Global pool of tasks.  

              (To achieve good efficiency the required data for 

this task is to be included into working set.) 

               Perform enqueue operation on ready_queue( ) of 

faster core. 

           Else Divided the task into small tasks i.e. fine grain 

threads and schedule them on relatively slow cores.  
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               Perform enqueue operation on  ready_queue( ) of 

small cores. 

    } 

Fig. 2. Pseudo code for scheduling I/O intensive tasks. 

Schedular_mixed_task() 

   { 

            If  the task is a mix of Compute intensive 

             and I/O intensive  

             then  

            Call schedular_Compute_Intensive_Task() for       

compute intensive workload  

             and Call Schedular_I/O_Intensive_Task() for I/O 

intensive workload 

   } 

Fig. 3. Pseudo code for scheduling mixed tasks. 

B. Thread To Core Affinity and Cooperating Thread 

Scheduling 

Round robin preemptive scheduling technique is used in 

proposed approach. If a high priority task is come into the 

system then low priority task will be preempted if it is 

running. When a thread is required to context switched i.e. a 

new thread is bring into the running state and previously 

running thread has to put in either ready queue or block queue, 

the new thread is scheduled such that maximum shared 

resource utilization is done. Here we consider cache memory. 

In many systems the local cache level 2 (L2) is shared among 

Core in the same package and level 1 (L1) is made private to 

Core. Generally multicore is coming with minimum 2 level 

of caches. The threads of a process share global data, and 

global data is kept in L2 cache, so the threads of same process 

can share common data. Threads are scheduled onto the cores 

of same package which share L2 cache [11]. 

Here in this approach thread affinity to processor core is 

considered. When a thread is required to migrate from a 

package i..e. the thread is pulled out from a processor and this 

thread is assigned to the core which has highest affinity point 

and core is idle. Otherwise another core is assigned first time 

with a base affinity point.  

The generalized approach is followed to calculate the 

affinity point. Whenever Thread is executed on a core the 

affinity is increased by one unit. So as a result when a Thread 

is repeatedly executed on same core affinity becomes highest 

for that core as compared to other core. Thread is migrated to 

the core that is having second highest affinity point. A Thread 

to core, affinity matrix is maintained by the scheduler as 

shown in Table II. In this manner the maximum cache data is 

utilized among the cooperating threads. As results inter 

thread communication is decreased. And overall performance 

would be improved. 

TABLE  II: THREAD  TO CORE AFFINITY MATRIX. 

          Core 
 

Thread     

Core1 Core 2 Core 3 

T1 2 0 0 

T2 2 0 1 

T3 2 0 1 

T4 1 1 0 

T5 1 1 0 

For example here T1, T2 ……T5 are threads. T1 and T2 

belong to process P1. T3, T4 belong to process P2 and T5 

belongs to process P3. Package1 contain Core 1 and Core 2. 

Package 2 contains Core 3. 

When a core is migrated from the current package to other 

package then T2CA value would be decreased by certain 

factor because now it is not as much affiliated to this core as 

up to the previous schedule was done on this core. The 

reducing factor (RDF) is based on cache hit ratio to cache 

miss ratio of new threads which are scheduled to execute on 

this core.  And it is given as below. 

If   RDF value is < 1 and T2CA > zero 

Then 

T2CA = T2CA – RDF 

Else 
No changes in T2CA value 

Algorithm: Here in the proposed algorithm (figure : 4),  the 

T2CA i.e. Thread to core affinity value for a thread is checked  

before scheduling to the core, if thread waiting time does not 

exceeds to threshold_wait_parent i.e. the waiting time for its 

parent core where its T2CA is maximum and its maximum 

cache hit ratio is guaranteed. So the thread will wait till 

threshold_wait_parent time so that it can take maximum 

benefit of the local cache L1 data which is private to this. But 

if thread waiting time is increased than 

threshold_wait_parent then it will check for second 

parameter i.e. second level cache L2 within the same package. 

So now the thread will wait till threshold_wait_pakage time 

so that it can take maximum benefit of the shared cache L2 

data which is shared to this. But if waiting time exceeds then 

it will migrate from this package. Otherwise threads 

throughput will be poor if it excessively waiting on its turn to 

share resource, but here at this point by migrating the thread 

will balance the throughput. This strategy will give best result 

with least recently used (LRU) cache replacement policy.  

When a thread has to migrate from a package it will check 

the T2CA value of cooperating thread. If T2CA value is less 

than zero then cooperating thread can be moved along with 

this thread to other nearest located package to improve inter 

thread communication. 

 

Step 1:  A Thread T with highest waiting time in ready_queue 

is searched.  

                Let us assume Thread T is found 

Step 2:  For Thread T, Thread to core affinity, T2CA values 

within a package for all core are searched. 

Step 3: If highest T2CA value core is found free then 

schedule thread on this core. 

Step 4: Otherwise If waiting time of a thread i.e.  

waiting_time < threshold_wait_parent 

                Then thread is put back into ready_queue 

                And next thread is searched. 

                Go to Step :1 

Step 5: Else If waiting time of a thread i.e., waiting_time < 

threashold_wait_package  

                Then thread is put back into ready_queue and next 

thread is searched. 

                 Go to Step: 1 

Step 6: Else Migrate thread into other package which is 

nearest located to current package. 

Fig. 4. Thread to core scheduling pseudo code. 
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C. Nearest Neighbor Affinity  

 The above approach explained in II B  is suitable for SMP 

like systems but if the system is Non Uniform memory 

Access (NUMA) the main memory is distributed among 

cores, then one more information is required to know  is   

Nearest  Neighbor affinity [4]. If thread is bringing into other 

core which is having its own private memory, it is not sharing 

the memory with previous core where the thread was 

previously schedule to run. Then the underlying 

communication network is required to consider the core 

which is nearest to previous core is desirable core to schedule 

first. Because now this thread has its data in previous core‟s 

main memory so it is required to access from there. To 

minimize memory access time it is necessary to allocate the 

core which is topologically near to this core. 

 

III. RELATED WORK 

In Reinventing Scheduling [12] for Multicore Systems 

multicore processors pose unique scheduling problems that 

require an approach that utilizes the large, but distributed 

on-chip memory well. So the approach is based on 

scheduling objects and operations to caches and cores, rather 

than a traditional scheduler that optimizes for CPU cycle 

utilization.  Predictive Thread-to-Core Assignment on a 

Heterogeneous Multi-core Processor [13] has a technique 

which statically determines the approximate phase behavior 

in a program. This phase behavior and the exhibited 

execution characteristics of a small set of representative 

phases are then exploited at runtime to determine likely 

profitable thread-to-core assignments for later phases of the 

program. 

Several studies (e.g. [14], [15]) suggest that operating 

system schedulers insufficiently deal with threads that 

allocate large parts of the shared level 2 cache and thus 

slow-up threads running on the other core that uses the same 

cache. The situation is unsatisfactory due to several reasons: 

First, it can lead to unpredictable execution times and 

throughput and second, scheduling priorities may loose their 

effectiveness because of threads running on cores with 

aggressive “co-runners” (i.e. threads running on another core 

in the same package). In the scheduling algorithm [14], the 

threads on a system are grouped into a best effort class and a 

cache-fair class. Best effort threads are penalized for the sake 

of performance stability of cache-fair threads, if necessary, 

but not vide-versa. However, it is taken care, that this does 

not result in inadequate discrimination of best effort threads. 

Fairness is enforced by allocating longer time shares to 

cache-fair threads that suffer from cache-intensive co-runners 

at the expense of these co-runners, if they are best effort 

threads.  

Two scheduling algorithms proposed for asymmetric 

single-ISA multicore processors by Becchi et al. [5] and 

Kumar et al. [16]. Both of them assume a system with two 

core types (“fast” and “slow”) and rely on continuous 

performance monitoring to determine optimal thread-to-core 

assignment. Becchi‟s IPCdriven algorithm periodically 

samples threads‟ instructions per cycle (IPC) on cores of both 

types to determine the relative benefit for each thread from 

running on the faster core. Those threads that have a higher 

fast-to-slow IPC ratio have a priority in running on the fast 

core, because they are able to achieve a relatively greater 

speedup there. Kumar‟s method uses a similar technique, 

except that the sampling method is made more robust by 

using more than one sample per core type per thread.  

In addition, Kumar et al. [16] proposed an algorithm that 

tries to determine a globally optimal assignment by sampling 

performance of thread groups rather than making local 

thread-swapping decisions. Both these approaches promise 

significantly better performance than naïve 

heterogeneous-agnostic policies with any kind of 

heterogeneous workload, but they are both difficult to scale 

to many cores. According to Hass: A scheduler for 

Heterogeneous Multicore System [17] thread signature is 

constructed on the basis of micro architectural parameters of 

thread execution and this information is utilized in thread 

scheduling by the runtime system. A similar approach has 

been given in Using OS Observations to improve 

performance in Multicore Systems [7]. According to this 

article operating system can use data obtained from dynamic 

runtime observation of task behavior to ameliorate 

performance variability and more effectively exploit 

multicore processor resources.  

History-aware resource-based dynamic scheduling for 

heterogeneous multi-core processors [18] introduces a 

history-aware, resource-based dynamic scheduler (HARD) 

for heterogeneous chip multi-processors (CMPs). HARD 

relies on recording application resource utilization and 

throughput to adaptively change cores for applications during 

runtime. 

 According to Bias Scheduling in Heterogeneous 

Multi-core Architectures [19], with cores that have different 

micro architectures and performance the key metrics are 

identifies that characterizes an application bias, namely the 

core type that best suits its resource needs. By dynamically 

monitoring application bias, the operating system is able to 

match threads to the core type that can maximize system 

throughput. KAPPI [20] implementation of runtime thread 

scheduling allows to group together tasks for a sequential 

execution in order to reduce scheduling overhead. 

 

IV. CONCLUSION AND FUTURE WORK 

In this approach the scheduler efficiently utilizes the 

asymmetry of underlying processor. Performance 

Asymmetry-aware load balancing ensures that the load on 

each core is proportional to its computing power. Also 

depending up on the nature of the task compute intensive or 

I/O intensive the thread to core assignment is done. The 

scheduler uses intelligent locality-aware scheduling of 

fine-grain threads. i.e., thread to core affinity, by utilizing 

private cache L1 and shared on board cache L2. Hence inter 

thread communication is also minimized. To maintain the 

throughput and load balancing the thread is migrated to 

nearest neighbor. So that memory operation time i.e. latency 

can be minimized if underlying system is NUMA or 

Distributed memory system. In this paper  mainly the cache 

memory and processor performance asymmetry is addressed 

through the proposed approach, the application data 

characteristics like irregular or regular and another parameter 

related to data requirement is static  or dynamic will be 

considered in future work and  implementation of the 
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approach will be included. 
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