
  
Abstract—Optimizing quality engineering problems has 

become a common problem when there are several correlated 
product quality characteristics. Moreover, in design of 
experiments, controlling covariate effects could reduce error 
and uncovered variances as well as give more insight about the 
process. This work identifies process variables to analyze 
correlated multiple responses with stochastic covariates. It also 
considers dispersion effects and specification limits besides 
location effects in an integrated framework based on 
desirability function. At the end, efficacies of the proposed 
approach are assessed by a numerical example. 
 

Index Terms—Design of experiments, multiresponse 
optimization, covariate effects, principal component analysis, 
and desirability function. 
 

I. INTRODUCTION 
A common problem in product or process design is 

selection of design variable settings to optimize different 
outputs, which are often highly correlated. Several studies 
have presented approaches addressing multiple quality 
characteristics but few published papers have focused 
primarily on the existence of correlation. If correlations 
among quality characteristics are ignored, engineering 
designer may miss finding design variable settings which 
simultaneously improved the quality of all the responses 
which could lead to an unrealistic solution. Principal 
Component Analysis can consider the correlation among 
multiple quality characteristics to obtain uncorrelated 
components. These components are then substituted into 
multiple original responses. To optimize several quality 
characteristics simultaneously, Su and Tong [1] and Antony 
[2] have tried to combine Taguchi method with principal 
component analysis. These approaches used the Kaiser’s 
study [3] to select the components whose eigenvalue is bigger 
than 1 to replace the original responses for further analysis. 
There are two obvious limitations in Su and Tong [1] and 
Antony’s [2] approaches. First, when the number of principal 
components whose eigenvalues are greater than 1 is more 
than one, the required trade off among them is unknown. 
Second, the total variance in the data does not count in the 
optimization process of the mentioned methods. 
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In order to overcome these two main shortcomings in these 
methods, Liao [4] and Wu and Chyu [5] presented methods 
based on weighted principal components (WPC) as in the 
former, PCA is conducted on signal to noise ratio values, 
whereas in the latter, PCA is conducted on a proportion of 
quality loss reduction values. In WPC method, all 
components are considered in order to completely explain 
variation in all responses. The WPC method uses the 
coefficient of determination, the proportion of eigenvalue to 
the number of original responses, as the weight to combine all 
principal components in order to form a multi-response 
performance index. Then decide the optimal factor levels by 
larger-the-better factor effects and smaller-the-better effects 
in Liao and Wu methods, respectively. Fung and Kang [6] 
also suggested a WPC method on the bases of Taguchi 
method. However, in this approach like Su and Tong [1] and 
Antony [2] only the components whose eigenvalues are 
greater than 1 are used. Routara et al. [7] perform PCA on 
normalized response variables and compute the 
Multiresponse Performance Index (MPI) as a weighted 
summation of PC values. Since the MPI values are not 
necessarily positive, in the next step SN rations are obtained 
based on absolute deviations of MPI values from the Ideal 
point (defined as Combined Quality Loss). Datta et.al [8] 
applied a combination of Taguchi robust optimization 
method and PCA to solve correlated MRS problem in which 
the overall objective function is defined as composite 
principal components. Since the composite objective is 
formed by Euclidean norm of principal components values, 
the negative values of principal components are taken into 
consider as same as the positive ones. Consequently, this 
approach could lead into the unreliable results. Ribeiro et al. 
[9] presented another approach for simultaneous optimization 
of correlated multiple quality characteristics and used score 
vector of the first principal component obtained from PCA on 
responses to find optimal design variable setting via response 
surface methodology (RSM). RSM was used to identify an 
optimal factor combination that reflects a compromise 
between the partially incommensurable behavior quality 
characteristics. As mentioned before, principal components 
are linear combinations of original response variables. 
Therefore, when PCA is conducted on signal to noise ratio or 
proportion of quality loss reduction values, the optimization 
directions of them might be lost. Regardless of this issue, 
aforementioned techniques maximize the component values. 
In other words, they do not correctly consider location effect. 
To overcome this shortcoming, Tong et al. [10] and Wang 
[11] determined the optimization direction of each 
component based on the corresponding variation mode chart 
nevertheless the responses with smaller relative importance 
could be disregarded. Furthermore, Tong et al. [10] and 
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Wang [11] used TOPSIS and Relative Closeness to the Ideal 
Solution (RCIS) indexes as an overall performance index to 
optimize the multiple quality characteristic problems and to 
gain the best factor level combination, respectively. Another 
disadvantage of the PCA-based approaches is that they do not 
ensure all quality characteristics fall within their specification 
limits. In this regard, Bashiri and Salmasnia [12] suggested a 
novel interactive multi response optimization method based 
on Geoffrion-Dyer-Feinberg (GDF), PCA and conventional 
desirability function in which two mentioned shortcoming 
were considered. Hejazi et al. [13] represented a novel 
method based on goal programming to find the best 
combination of factors so as to optimize 
multiresponse-multicovariate surfaces with consideration of 
location and dispersion effects. Also they considered 
covariate probable values as an objective function which 
should be maximized. This study aims to present a new 
general framework which considers all of  location  and 
dispersion effects, correlation among the responses and 
to  include  specification  limits  of  the  responses.  In 
addition,  probabilistic  covariate  is  included  into  the 
multi‐response  model  to  reduce  error  terms  and 
uncovered variance. 
 

II. METHODOLOGY 
The proposed procedure consists of four phases: Design, 

PCA, Model building and Optimization. In the first phase, by 
employing a proper experimental design the significant 
factors and covariate are identified. Therefore, the required 
data are gathered. The PCA phase checks the dependency 
among the output variables. This phase aims to get new 
independent variables from the original ones. Model building 
phase consists of empirical modeling of means, variances and 
principal components with respect to factors and covariate. In 
the optimization phase, the desirability functions of principal 
components are constructed. Therefore, an optimization 
model is used to maximize overall desirability subject to a 
desired region of all responses. In the rest of this section, 
parameters and variables are defined, and then the proposed 
method is described in details. 
Parameter and variable definition 

The parameters and variables used in the proposed method 
are defined as follows: 

 .௝ఓ௠௜௡:  Desired minimum value of ݆௧௛ responseݕ
 .௝ఓ௠௔௫:  Desired maximum value of ݆௧௛responseݕ
௝ܶఙమ:  Target value for variance of the ݆௧௛ response. 
௝ఙమݕ
௠௔௫: Desired maximum value for variance of the ݆௧௛ 

response. 
݂ሺܥሻ: Probability distribution function of the covariate. 
 .ሻ: Fitted response surface for mean of ݆௧௛ responseݔො௝ఓሺݕ
 .ሻ: Fitted response surface for variance of ݆௧௛ responseݔො௝ఙమሺݕ
݈  :௟ܥܲ ௧௛ Principal component. 
 .෢௟: Fitted response surface of ݈௧௛ principal componentܥܲ
ሺܮ, ܷሻ: Experimental region. 
Ω:  Feasible region of covariate. 
Phase 1- Design 

Step 0:   identify the significant input variables 

It is important that input variables which influence the 
response(s) of interest would be identified by a brainstorming 
session. 

Step 1:  Select a proper design of experiment 
Depending on the number and the nature of the factors and 

covariates, a proper design should be select for further 
analysis. 
Phase 2- PCA 

Step 2: Calculate the sample mean and the sample variance 
of the j୲୦ response under the i୲୦ experimental run. 

Step 3: Calculate the normalized sample mean and 
variance of the ݆௧௛ response under ݅௧௛ experimental run and 
normalized probability value of the covariate under the ݅௧௛ 
run. 

Step 4: Conduct PCA on the normalized sample mean 
response, the sample variance response and the covariate 
probability value to obtain a set of uncorrelated components 
which are linear combinations of the original responses. The 
number of retained principal components can be selected 
based on Kaiser’s criterion. 
Phase 3- Model building  

Step 6: Determine probability distribution function of the 
covariate. Probability distribution function can be defined as 
follow: 
 
൜ܨሺܿ ൅ ܽሻ െ ሺܿܨ െ ܽሻ ՞  Contineous distribution function for ܥ 

ܲሺݔ ൌ ܿሻ ՞  Discrete distribution function for ܥ   

 
Note that ܽ is an adjusting parameter that helps us finding 

an interval for calculating probability value of continuous 
random variables. 

Step 7: Find the fitted response surfaces of the mean and 
variance of responses, and the selected principal components. 

Phase 4: Optimization 
Step 8: Obtain the target value of the normalized variance 

of the ݆௧௛ response that minimizes the fitted response within 
the experimental region. Request the decision-maker to 
provide you with an acceptable upper bound. 

Step 9: Find the target value, the lower and the upper 
bounds for the desired region of the normalized mean 
responses. 

Step 10: Calculate the target value of the normalized 
probability of the covariate that maximizes probability 
distribution function. Request the DM to provide you with an 
acceptable lower bound. 

Step 11: Obtain the target value, the lower and the upper 
bounds for the desired region of principal components. Then, 
construct the conventional desirability function.  

Step 12: Find the optimal solution ሺכݔሻ  by solving the 
optimization model in (1). This model aims to identify כݔ 
that maximizes the overall desirability of the selected 
principal components within the desired region of mean and 
variance of original responses.  

ܦ ݁ݖ݅݉݅ݔܽ݉                    ൌ ሾ∏ ݀ሺܲܥ௟ሻ௟ ሿ               (1)  
.ݏ                   ௝ఓ௠௜௡ݕ   .ݐ ൑ ሻݔො௝ఓሺݕ ൑  ௝ఓ௠௔௫ݕ

௝ܶఙమ ൑ ሻݔො௝ఙమሺݕ ൑ ௝ఙమݕ
௠௔௫ 

݂ሺܥሻ ൒  ߙ

ܺ א ሺܮ, ܷሻ 

ܥ א  ߗ
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x: Design vector

c: Covariate



III. NUMERICAL EXAMPLE 
In this section, a case from the literature is studied to 

illustrate the applicability of the proposed approach. The case 
contains two factors and one normally distributed covariate 

that might affect two responses (TABLE I). The data are 
generated from three replicates of a Central Composite 
Design (CCD) and the proposed method is applied to these 
data. 

 
TABLE I: EXPERIMENTAL RESULT DATA. 

Factors Covariate 
Response variables 

Expected value Estimated Variance Probability 

x1 x2 C~ N (15,42) 1μ̂  
2μ̂  2

1σ̂  2
2σ̂  f(c) 

-1 -1 19.589 35 8.65 3.51 0.79 0.0516 

1 -1 17.385 30 2.88 1.16 1.70 0.0835 

-1 1 22.156 29 7.95 3.57 1.98 0.0201 

1 1 9.569 43 1.97 2.75 0.75 0.0397 

-1.414 0 20.328 40 5.61 3.99 1.47 0.0411 

1.414 0 17.519 34 3.48 1.50 0.88 0.0818 

0 -1.414 19.712 29 8.31 2.33 1.66 0.0498 

0 1.414 19.484 39 8.82 3.89 1.78 0.0532 

0 0 11.995 39 5.50 1.65 1.00 0.0752 

Desired 

region 
(Min, Target, Max) (34 ,36, 38) (5.75 ,6.25, 6.75) (0, 0,1.7) (0, 0,0.8) (0.17 ,0.197, 0.197) 

Standard deviation 5.22 2.664 1.0917 0.477 0.0213 

 
The response surfaces of output variables (mean, variance 

and first three components) are fitted to input variables 
(factors and covariate) using MINITAB 15 software. The 
results are as follows: 
 
෢ଵܥܲ ൌ 6.4483 െ ଵݔ2.1731 െ ଶݔ4.2682 െ 0.4163ܿ

൅ ଵଶݔ1.1466 ൅ ଶଶݔ0.2986 ൅ ଶݔଵݔ0.1644
൅ ଵܿݔ0.1489 ൅  ଶܿݔ0.2042

 

෢ଶܥܲ ൌ െ3.9049 ൅ ଵݔ5.8034 െ ଶݔ2.6785 ൅ 0.304ܿ
െ ଵଶݔ1.3848 െ ଶଶݔ0.7588 െ ଶݔଵݔ0.543
െ ଵܿݔ0.2625 ൅ ଶܿݔ0.106

 

ොଵఓݕ ൌ 68.24 െ ଵݔ57.85 ൅ ଶݔ23.75 െ 2.44 ܿ ൅ ଵଶݔ10.24
൅ ଶଶݔ6.68 െ ଶݔଵݔ1.73 ൅ ଵܿݔ2.82
െ ଶܿݔ1.04

 

ොଶఓݕ ൌ െ5.32 െ ଵݔ5.85 െ ଶݔ1.79 െ 0.9 ܿ െ ଵଶݔ3.9 െ ଶଶݔ1.89
൅ ଶݔଵݔ2.28 െ ଵܿݔ0.3 ൅  ଶܿݔ0.1

ොଵఙమݕ  ൌ െ2.24 െ ଵݔ3.63 ൅ ଶݔ1.75 െ 0.06 ܿ ൅ ଵଶݔ0.91
൅ ଶଶݔ0.97 ൅ ଶݔଵݔ0.17 ൅ ଵܿݔ0.14
െ ଶܿݔ0.06

 
 

ොଶఙమݕ ൌ 0.97 െ ଵݔ2.24 ൅ ଶݔ2.47 െ 0.003 ܿ ൅ ଵଶݔ0.18 ൅
ଶଶݔ0.34 െ ଶݔଵݔ0.84 ൅ ଵܿݔ0.11 െ   ଶܿݔ0.12
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The last step of the proposed method is to establish the 

mathematical model and to find best factor setting. In this 

regard, it is necessary to find the targets of the PCs.

Mathematical model of the optimization problem can be 

formulated as:

𝑚𝑎𝑥 𝑑 𝑃𝐶1 𝑑 𝑃𝐶2 
s. t:

34 ≤ 𝑦 1𝜇 ≤ 38;

5.75 ≤ 𝑦 2𝜇 ≤ 6.75;

0 ≤ 𝑦 1𝜎
2 ≤ 1.7;

0 ≤ 𝑦 2𝜎2 ≤ 0.8;

−1.414 ≤ 𝑥1 ≤ 1.414;

−1.414 ≤ 𝑥2 ≤ 1.414;

0.17 < 𝜑  𝑐 + 1 − 𝜑 𝑐 − 1 < 0.197;

The last constraint guarantees that the normally distributed 

covariate is in the predefined range. The optimal solution

resulted by solving the above model is represented in TABLE 

II and also a comparison study between the proposed method 

and other approaches is given by Table III.

The results indicate that the proposed method outperforms 

all the methods with respect to PCs’ desirability. It is 

observed that the other approaches do not guarantee limits of 

the specification region. The values exceeded from the 

predefined acceptable region are shown by bold numbers.



TABLE II: FINAL RESULTS OF THE CASE. 

Method x1 x2 C ݕොଵఓ ݕොଶఓ ݕොଵఙమ ොଶఙమݕ  ଵ௙ Overall Dݕ

Proposed Method -0.176 -0.494 13.218 36.506 6.104 1.69 0.755 0.179 1 

 
TABLE III: COMPARISON STUDY. 

Method ݀ሺܿ݌ଵሻ ݀ሺܿ݌ଶሻ ݕොଵఓ ݕොଶఓ ݕොଵఙమ ݕොଶఙమ  ଵ௙ݕ

Hejazi et 

al.[13] 
0.1 0.819 36 6.25 1.51 0.88 0.172

Derringer 

[14] 
0.224 0.934 36 6.252 1.54 0.85 0.17

Kim and 

Lin [15] 
0 0.914 33.36 5.722 1.33 0.79 0.15

Kovach and 

Cho [16] 
0 0.95 36 6.25 1.5 0.925 0.169

Pignatiello 

[17] 
0.271 0.927 35.92 6.07 1.512 0.809 0.17

Proposed 

Method 
1 1 36.5 6.104 1.69 0.755 0.179

 

IV. CONCLUSION 
In this paper, a mathematical model has been developed to 

find the best settings of variables to optimize multiresponse 
models where a stochastic covariate affects the responses. In 
addition, this work studies correlated responses by an 
approach based on PCA and also considers the dispersion 
effects. Another advantage of the proposed approach is to 
model multiresponse problem considering single covariate 
with known distribution function. Following subjects can be 
suggested as futures research:  
1) Consideration of multiple covariate models. 
2) Consideration of qualitative variables. 
3) Considering the variances of predicted responses as a 

separate objective function. 
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