
  

 

Abstract—There is an increasing need to develop processing 

tools for diffusion tensor image data with the consideration of 

the non-Euclidean nature of the tensor space. In this paper 

Procrustes analysis, a non-Euclidean shape analysis tool under 

similarity transformations (rotation, scaling and translation), is 

proposed to redefine sample statistics of diffusion tensors. A 

new anisotropy measure Procrustes Anisotropy (PA) is defined 

with the full ordinary Procrustes analysis. Comparisons are 

made with other anisotropy measures including Fractional 

Anisotropy and Geodesic Anisotropy. The partial generalized 

Procrustes analysis is extended to a weighted generalized 

Procrustes framework for averaging sample tensors with 

different fractions of contributions to the mean tensor. 

Applications of Procrustes methods to diffusion tensor 

interpolation and smoothing are compared with Euclidean, 

Log-Euclidean and Riemannian methods. 

 

Index Terms—Non-euclidean metric, diffusion tensor, 

procrustes analysis, anisotropic diffusion.  

 

I. INTRODUCTION 

Diffusion tensor imaging (DTI) is a specific magnetic 

resonance imaging (MRI) modality method for providing 

information about the microstructure and organization of the 

tissue in vivo. In DTI, displacement of water molecules over 

time is modeled by a zero-mean trivariate Gaussian 

distribution [1] with covariance matrix evolving linearly with 

time and determined by the diffusion tensor (DT), a 3x3 

symmetric positive-definite matrix. DT inference from 

observed diffusion MRI data has been commonly carried out 

using least squares [2] [3] and Bayesian [4] [5] methods. The 

principal eigenvector of the tensor estimates the dominant 

fiber orientation at a voxel whereas various tensor-derived 

diffusion anisotropy indices measure local anisotropy. DTI 

has been applied into the study of diseases such as multiple 

sclerosis, schizophrenia, and stroke [6]. White matter 

tractography [7] [8] [9] is another promising application of 

DTI for investigating brain connectivity. 

There is an increasing need to develop processing tools for 

diffusion tensor data. With the consideration of positive 

semi-definiteness and symmetry of diffusion tensor, 

non-Euclidean methods [10]-[14] have been proposed for 
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diffusion tensor processing and anisotropy study. 

Recall that D is a 3x3 real matrix with symmetric positive 

semi-definiteness, i.e. D = DT and xDxT ≥ 0 for all real x. Let 

f(D) be a probability density function of a diffusion tensor 

D on a Riemannian metric space. The Fréchet mean [14] [15] 

[16] of D is defined as 
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where d is a metric. A Fréchet mean is not necessarily unique. 

However, it is possible to prove the uniqueness with 

sufficient conditions. For example, for non-Euclidean spaces 

with negative sectional curvature, the Fréchet mean is always 

unique [17]. 

Given a sample of N diffusion tensors D1,…,DN the 

Fréchet mean of D1,…,DN is given by 
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And the sample variance of D1,.…,DN is defined as 
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The Euclidean [18], Log-Euclidean [19] and Riemannian 

[14], [20] metrics, denoted by LE dd  , and Rd  respectively, 

have been proposed for defining the sample mean of 

diffusion tensors.  

The main aim of this work is to define new statistics of 

diffusion tensor sample with the non-Euclidean method 

Procrustes analysis for tensor field processing and anisotropy 

study. 

 

II. PROCRUSTES MEAN DIFFUSION TENSOR  

A. Procrustes Distances 

In this section, two Procrustes-based distances full 

ordinary Procrustes and Procrustes size-and-shape distances 

will be introduced. 

To ensure the positive semi-definiteness of Di, i = 1, 2, we 

use a reparameterization Di = Qi Qi
T where Qi is a 3x3 real 

matrix. For example, Qi = chol(Di) is the Cholesky 

decomposition, or Qi = Di
1/2 is the matrix square root. In our 

computation we shall choose the Cholesky decomposition. 

Note that Qi and any rotation of it QiR (R   O(3)) result in 

the same Di, i.e. Di = Qi Qi
T = QiR (QiR) T. 

Full ordinary Procrustes analysis (FOPA) [21] [22] is used 

to match two objects as closely as possible with similarity 

transformations (translation, rotation and scale). Let us first 

consider a pair of diffusion tensors D1 and D2. The full 

Procrustes shape metric between D1 and D2 is given by 

                       RQβQ),D(DdF
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where )Ĕ,Ĕ( Rb  is the solution to minimize a squared 

Euclidean distance under the similarity transformations. The 

squared Euclidean distance is given by 

                 ,1
2

321

2

21

T
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where a 3 Е  3 rotation matrix R Í  O(3), a scale 

parameter 0b > , and a 3 Е 1 location vector ɔ represent 

three similarity transformations. Note 13 is the 3 Е 1 vector 

of ones. The solution )R,ɓ,R( ĔĔ Ĕ  to the minimization of (5) 

has been solved [21]. 

In DTI study, we wish to match Q1 (from D1) and Q2 (from 

D2) under location, rotation and reflection while often 

preserving scale information. Then the joint study of 

size-and-shape is of interest. Size-and-shape spaces were 

introduced by [23]. The definition of the size-and-shape of a 

configuration matrix was given by [21]. The Procrustes 

size-and-shape distance between two diffusion tensors is 

defined as 
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The Procrustes solution ĔR  for matching Q1 and Q2 is    
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where U and V are from the singular value decomposition. 

B. Procrustes Estimators 

Consider the general case where there are 

2²N diffusion tensors D1,é,DN, and Di = Qi Qi
T, i = 1,2. 

Now the aim is to calculate the Fréchet mean using the full 

Procrustes shape metric in (4) and the Procrustes 

size-and-shape metric in (6). 

The sample Fréchet mean relative to the full Procrustes 

shape metric )(ÖFd  is given by 
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The sample Fréchet mean relative to the Procrustes 

size-and-shape distance )(ÖSd  is given by 
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Specifically, 
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C. Procrustes Anisotropy 

We define a new anisotropy measure Procrustes 

anisotropy (PA) with the full Procrustes shape metric. The 

definition of PA is given by 

 

),
3

(
2

3
)( 33 D

I
dDPA x

F= ää
==

-=
3

1

23

1

/)(
2

3

i

i

i

i lll        (13)            

where ä =
= 3

1
3/

i ill . It is clear that PA is a normalization 

of the FOPA distance from any given diffusion tensor D to 

the identity tensor, representing the case of ideal isotropy. 

The range of PA is [0, 1] with PA=0 indicating full isotropy 

and PA º 1 representing the extremely strong anisotropy. PA 

is invariant to the uniform scaling of a diffusion tensor. 

 

III. WEIGHTED GENERALIZED PROCRUSTES METHOD 

In this section, diffusion tensor processing methods 

including smoothing and interpolation are developed with 

consideration of contributions from more than two 

neighboring tensors. 

A. Weighted Generalized Procrustes Analysis 

For processing a sample of diffusion tensors at voxels 

distributed in three-dimensional space, a more general case 

appears that the contributions from D1,é,DN are different to 

the mean diffusion tensor. Therefore, we need to consider a 

weighted problem to obtain the weighted mean diffusion 

tensor. 

Given a suitable distance function d, the weighted Fréchet 

sample mean of D1,é,DN  is defined by: 
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where the weights wi satisfy  wi²  0 and 1
1

=ä =

N

i iw , and 

in applications can be, for example, a function of the 

Euclidean distance from the location of interest to the 

sampling locations (e.g., voxels). 

Weighted generalized Procrustes analysis (WGPA) is 

proposed to estimate TĔ  when d = dS is the size-and-shape 

distance [13]. It can then be shown that the WGPA mean 

tensor is given by 
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B. Weights 

In WGPA we assume that the weights wi, i=1,......, N are a 

function of the Euclidean distance from the voxel of interest 

to the sampling voxel. The simplest setting for the weights is 

with the inverse distance function given by  
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where di is the Euclidean distance from the voxel containing 

the weighted mean to the ith voxel with Di. 

For more flexibility of weight setting, an exponential 
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weight function is proposed as follows: 
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where 0
 
, ²BA  are used to control the change of the weight 

as the distance changes. For example, with A = 1 and B = 0.01 

the weight changes more steadily than the weight with A = 20 

and B = 0.01. 

Below we give an algorithm (in Table I) for 

computing WGPAQĔ  
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P
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C. Weights 

In WGPA we assume that the weights wi, i=1,......, N are a 

function of the Euclidean distance from the voxel of interest 

to the sampling voxel. The simplest setting for the weights is 

with the inverse distance function given by  
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where di is the Euclidean distance from the voxel containing 

the weighted mean to the ith voxel with Di. 

For more flexibility of weight setting, an exponential 

weight function is proposed as follows: 
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where 0
 
, ²BA  are used to control the change of the weight 

as the distance changes. For example, with A = 1 and B = 0.01 

the weight changes more steadily than the weight with A = 20 

and B = 0.01. 

D. Smoothing 

Weighted generalized Procrustes framework can be 

adapted to smooth the diffusion tensor data. Let Vs be the 

voxel location in (x,y,z) coordinates. Let Ds be the original 

diffusion tensor in voxel Vs. Neighbor voxels of Vs can be 

defined by 

           
*

s
V

m d||V||V},V,,V{V ¢-= arg21 >                 (21)                                                                                         

where 0* ²d  is a constant. 

Given D1,é,Dm at voxels V1,...,Vm, the weighted mean 

sD is the weighted generalized Procrustes mean of D1,é,Dm 

and Dm+1, where Dm+1= Ds. It is natural to let Ds contribute to 

the weighted mean, and let Vs be a neighbor of itself, i.e. Vs 

=Vm+1. Weights of each diffusion tensor can be set with a 

weight function. For example, the exponential weights are 

given by 
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In particular, since ||Vm+1-Vs||=0, Ds with the largest weight 

wm+1 contributes most. 

In a diffusion tensor dataset given each diffusion tensor Ds 

at voxel Vs and D1,é,DN at neighbour voxels V1,...,VN we can 

calculate the weighted mean tensor sD which will replace 

each Ds. The weights w1,...,wN and ws are set as proposed in 

(18). 

E. Interpolation 

By interpolation of the tensor data we mean construction 

of new diffusion tensors based on the original data. More 

specifically, we mesh the three-dimensional volume 

containing diffusion tensor data with regular rigid. For each 

new born subvoxel V*, we will sample a weighted 

generalized Procrustes mean of diffusion tensors at V*s 

neighbors, and allocate this mean to V*. 

 

IV. APPLICATIONS 

A. Material 

A set of diffusion weighted MR images acquired with the 

Uniform 32 DTI diffusion gradient direction scheme [24] 

from a healthy human brain has been used for this study. The 

MR images were acquired using a spin echo EPI (echo planar 

imaging) sequence with diffusion weighting gradients 

applied with a weighting factor of b=1000 s/mm2 in a Philips 

3T Achieva clinical imaging system (Philips Medical 

Systems, Best, The Netherlands). Throughout the subject's 

head, 52 interleaved contiguous transaxial slices were 

acquired in a matrix of 112 Е 112 (interpolated to 224 Е 

224) with an acquisition voxel size of 1x1x2 mm3. For each 

slice, the acquisition was repeated for each of the 32 

non-collinear directions according to the Uniform 32 

direction scheme, and once with no diffusion weighting 

(b=0). A Bayesian estimation method [5] has been employed 



  

 

 

 

  

 

 

 

 
  

  

 

 

 

 

  

 

  

 

 

 

 

 

  

 

 

  

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

111

  

to compute the tensor field and all methods of this paper are 

programmed with MATLAB (The Mathworks, Inc., 

R2008a). 

B. Anisotropy Study 

Now let us compare PA with Fractional Anisotropy (FA) 

[25], and the hyperbolic tangent function of Geodesic 

Anisotropy (tanh(GA)) [12] from real data. Fig. 1 shows FA, 

PA and tanh(GA) maps (axial slices). Since PA of diffusion 

tensor is always smaller than FA and tanh(GA) values, the 

PA map gives a darker color overall. The splenium in corpus 

callosum is one of the regions where the overall anisotropy is 

strongly high [26]. We take FA, PA and tanh(GA) values 

along the green line in the splenium and show them in Fig. 2. 

PA has significantly higher variation than FA and tanh(GA). 

In general, PA offers better contrast in highly anisotropic 

regions. 

 

 

Fig. 1. Anisotropy maps from axial view. Left: FA map. Middle: PA map. 

Right: tanh(GA) map. 

 

 

 
Fig. 2. Comparison of FA, PA and tanh(GA) values. FA, PA and tanh(GA) 

values are from tensors at voxels along the green line in Fig. 1. 

C. Geodesic Interpolation 

Now we carry out an experiment to investigate the 

geometric nature of geodesic paths obtained with different 

metrics. 

Two synthetic tensors D1 and D2 are not orthogonal and are 

of different shape and size. To compare interpolations with 

different metrics in size, orientation and anisotropy of tensor, 

we use four measures: the determinant |D| (volume of the 

diffusion ellipsoid), |D|, FA and PA, where the angle f  

measures the difference of orientations from the synthetic D1 

to an interpolated tensor in the geodesic path. The angle f  is 

the smaller angle between the principal eigenvectors of D1 

and the interpolated tensor. The angle f  is defined as 

             9,......,1 ||),arcsin(|| 1 =³= ipvpv if            (22) 

where pv1 is the principal eigenvector of D1 and pvi is the 

principal eigenvector of the ith interpolated tensor (including 

two synthetic diffusion tensors), and i=1,é...,9, with i=1 and 

i=9 corresponding to the synthetic tensors D1 and D2, 

respectively. 

Fig. 3. shows four different geodesic paths between D1 and 

D2, namely, the Euclidean dE, log-Euclidean dL, Riemannian 

dR and Procrustes size-and-shape dS metrics. From a variety 

of examples it does seem clear that the Euclidean metric is 

very problematic, especially due to the parabolic 

interpolation of the determinant. The Procrustes metric offers 

somewhat better interpolation in the tensor's orientation and 

anisotropy (see graphs of |D| and f ). In general, the 

log-Euclidean and Procrustes size-and-shape methods seem 

preferable. 

 

Fig. 3. Geodesic paths in experiment 5 between two general tensors (in red) 

and graphs of four measures. 

D. Interpolation and Smoothing of Real Data 

We smooth and interpolate (with 2 interpolations between 

each pair of original voxels) the diffusion tensor data from a 

normal human brain, and calculate the FA and PA maps 

shown in Figure 4. Obviously, FA and PA maps from the 

processed tensor data are much smoother than the ones 

without processing. The feature that the cingulum (cg) is 

distinct from the corpus callosum (cc) is clearer in the 

anisotropy maps from the processed data than those without 

processing in Fig. 4. 

 

 

Fig. 4. FA (a) and PA (b) maps based on Bayesian estimates without 

post-processing. FA (c) and PA (d) maps from smoothed and interpolated 

tensor data obtained with the weighted generalized Procrustes method. (a.1), 

(b.1), (c.1) and (d.1) are zoomed inset region. 

 

V. CONCLUSION 

In this work, we have used the full ordinary Procrustes 

analysis to match two diffusion tensors. The solution to the 

full ordinary Procrustes problem of a diffusion tensor and an 

isotropy has been normalized to be a new anisotropy index- 

Procrustes Anisotropy (PA). PA provides better contrast in 

highly anisotropic region of the brain. For a more general 
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case with more than two tensors, the weighted generalized 

Procrustes framework has been developed for averaging 

more than two diffusion tensors with different fractions of 

contributions to the mean tensor. The weighted generalized 

Procrustes method has also been adapted for tensor field 

smoothing and interpolation. It will be interesting to apply 

Procrustes methods to other processing situations such as 

regularization of diffusion tensors [27] for the future work. 
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