

Abstract—While mobile computing has seen tremendous

growth and popularity, it has also introduced vulnerabilities in

information systems. When a mobile personal computing device

is stolen or misplaced, a great amount of data obtained from

database servers can be compromised; hence, it is useful to limit

the amount of sensitive data on mobile clients. In a number of

applications, it is necessary to limit the amount of answers in

response to a user query in order to enhance the security of a

database; for example, an army base can answer queries asking

for the phone numbers of its residents and yet, it should not

reveal the whole book. Since databases are large and dynamic

in content and structure, and the results of queries are

unpredictable, it is not feasible to manually specify exactly

which tuple should be suppressed for which user. In this paper,

our approach is based on declarative specifications: the

Database Administrator specifies the secrecies, i.e., the queries

whose answers need to be limited, and the user privileges, i.e.,

the number of tuples that can be revealed when a user query

intersects with a secrecy. The output of every query that

intersects with one of the secrecies will be limited in the number

of tuples revealed.

Index Terms—Mobile database, query filtering, security.

I. INTRODUCTION

While mobile computing has led to tremendous growth

towards the availability of data to users any time and

anywhere, it has also led to certain weaknesses. Mobility

poses new challenges to the mobile database management [1],

[2]. For example, when a mobile device is lost, a great

amount of data obtained from database servers can be

compromised. This problem of security is different from the

traditional one.

Previous related work have focused on authorization, e.g.,

context-sensitive authorization systems and the protection of

context information used in authorization rules or facts

[3]-[6]. Another approach has aimed at developing mobile

secure policy or code management system on the

administrator domain [7]-[9]. It has been shown that

restricted policies can be developed to ensure individual

privacy by publishing data without revealing confidential

information [10]-[13].

None of the above methods consider limiting the amount

of sensitive data at the query level. In a number of

applications, it is necessary to limit the number of answers in

the response to a user query in order to enhance the security

of a mobile database. A well-known example is that of an

army base which can answer queries asking for the phone

numbers of its residents and yet, it should not reveal the

Manuscript received August 18, 2012; revised October 9, 2012.

The authors are with the New Mexico Institute of Mining and Technology,

Socorro, NM 87801 USA (e-mail: dchen@ cs.nmt.edu, mazemdar@

cs.nmt.edu).

whole phone book. A more interesting example is that of a

soldier whose query for available resources should be

answered mindful of the fact that the soldier may be captured

by enemy forces and the information compromised. It is

useful to note that authorization is not the answer as the

queries are valid and should be answered. Similarly,

cryptography is not adequate either; consider the fact that

most mobile devices do not have the level of protection that

desktops do and also they are kept switched on for ease of

access enabling access to data already on the machine. In

such cases, it is useful to limit the amount of sensitive data on

mobile clients.

However, databases are typically very large, differ

markedly in design, and cater to a large number of users,

which makes it infeasible to manually specify exactly when

and to whom an answer tuple should be suppressed [14]. Our

approach is based on declarative specifications: the Database

Administrator (DBA) specifies the secrecies, i.e., the queries

whose answers need to be limited, and the user privileges, i.e.,

number of tuples that can be revealed when a user query

intersects with one of the secrecies.

In the next section, we describe our query filtering system.

In the next section, we outline performance issues.

Subsequently, we discuss future work and finally present

concluding remarks.

II. QUERY FILTERING SYSTEM

Often, a user of an information system keeps accessing

certain pieces of sensitive information. For example, a stock

broker might just be interested in his/her customers‟

information in a stock-trading system. As mentioned earlier,

the query-based filtering system is designed to help the DBA

to limit the sensitive data disclosed. In this system, the DBA

specifies the secrecies and the user privileges. The following

three tables are to be configured by DBA:

1) USERS (userid, loginname) is for storing users

information of the system.

2) SECRECIES(SecrecyID, Secrecy) is for storing query

statements, called secrecies, which represent the

information that the DBA wants to limit. Each secrecy

has a corresponding filter, which we explain later.

3) ACCESSNUMBER(UserID,SecrecyID, AccessNumber)

is for storing the user privilege information by specifying

the maximum quantity of query result for a user to

execute a query that intersects with a secrecy.

These tables are invisible to the users; only the DBA can

access them. The first time a query is executed that intersects

with a secrecy, a filter will be created for that user according

to the query results. Every later query that intersects with the

same secrecy will consult this filter and may also modify its

contents.

Limiting Answers to Queries to Enhance Security of

Mobile Database

Dongyi Chen and Subhasish Mazumdar

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

983

When a user sends a query, the system computes whether

or not it matches any secrecy. If there is no matching secrecy,

the system returns the whole query result. However, if there

is a matching secrecy, the system will consult the filter table

related to that secrecy. If the number of tuples is less than the

user privilege, then the difference denotes the number of

brand-new tuples that can be returned to the user and stored

in the filter table. Any tuple in the result that is already in the

related filter table can also be returned. If the secrecy related

filter table does not exist, which means that the user is

executing a query intersecting with this secrecy for the first

time, the system will create a related filter table automatically

and use it as described above. When the user executes a

similar query that matches the secrecy again, the system will

filter the result with the filtering data. Furthermore, the data

in the filter table has a lifetime and a function outdated()

returns true on tuples that are too old. While filtering, we

replace some “outdated” filtering data in the related filtering

table with some new data from the current query. For

example, in our prototype, if a tuple has not been accessed for

one month, is taken to be “outdated data”.

A. Algorithm

The system is built in the server side to protect data from

being intercepted during the transmission. When a query

statement was sent to the server, the system would work

correspondingly. Fig 1 illustrates the algorithm of the main

function.

In this algorithm, the parameter input is the query sent by

the user. First, in line 1, the current user‟s id is retrieved and

stored in uid. Next, the inputted query statement will be

parsed into a standard format in line 2, as discussed in section

B. Thirdly, the most similar secrecy (MSS) will be identified

and stored in s in line 3, as discussed in section C. If no MSS

is found, then the full results of the input would be returned,

which is handled in lines 4-7. Fourthly, in line 8, the

maximum number of tuples that can be accessed by the user

to the query is retrieved and stored in max. Fifthly, in line 9,

the name of related filter table (RFT) is formed. If the RFT

did not exist, the system would create an RFT as well as the

corresponding triggers, as shown in lines 10-16 and discussed

in section D and E. Sixthly, three accessorial temporary

tables will be created in line 17 and discussed in section F.

Seventhly, the filtering process will be executed in line 18-45,

as discussed in section G. Finally, the results will be

outputted in line 46, as discussed in section H.

B. Parser

Because one query statement can be represented in various

formats, which makes it very difficult to evaluate the

similarity between two queries, we designed a parser to parse

every query statement into a standard format. The format

follows these rules:

1) every letter is uppercase;

2) all the aliases are replaced by real table names;

3) all the attributes are represented in the form “table.

attribute”.

For example, the query statement

select a.×,b.name

from hrd a, project b
where a. proid=b. proid
and budget>=50000

order by a. empid
would be parsed into
select hrd.empid, hrd. proid, project. name from hrd, project
where hrd. proid=project. proid
and project. budget>=50000
order by hrd. empid.

Main(input)

 --get current userID

1 uid  getUserID();

--Parse the inputted query into a standard format

2 Parse(input)

--Find out the Most Similar Secrecy(MSS) in table SECRECIES

3 s  MSS(input)

4 If s = 0 then

 --if there is no MSS, then return all the results of the inputted query

5 Cursor c for input;

6 Return c;

7 End if

--get maximum tuple number the user can access

8 Select AccessNumber into max from AccessNumber where

UserID=uid and secrecyid=s;

-- name of the Related Filter Table (RFT)

9 rft  „FILTER_‟ + uid + „_‟ + s;

--get related filter table

10 Select count(*) into i from USER_TAB_COLS where

tablen_name=rtf;

11 If i = 0 --no related filter table: create it

12 (uid,s);

13 For each table tb in secrecy whose secrecyID is s

 -- to synchronize data in tb with those in tb‟s RFT

14 Trigger(tb); -- create trigger

15 End loop

16 End if

--Create three temporary tables: T1, T2 and T3

17 CreateTemporaryTables();

 --Filter the result

18 Cursor c for input;

19 For each tuple t in c

20 Insert(t,T1);

21 End loop;

22 For each tuple t in T1

23 m  0; --there is no corresponding tuple in rft

 --try to identify the corresponding tuple of t from rtf,

24 match(t,r); -- and cache it into r

25 if r is not null then

26 Insert(t,T2);

27 Update r set last_access_date=sysdate;

28 else

29 Select count(*) into j from rft;

30 If max>j then

31 Insert(t,T2);

32 Insert(t,rft);

33 Else

34 Insert(t,T3);

35 End if;

36 End if;

37 End for

38 For each tuple t in T3

39 o  the most “outdated” tuple from RFT;

40 if o is not null

41 delete(o,rft);

42 insert(t,T2);

43 insert(t,rft);

44 end if

45 End for

46 Output(T2)
End Main;

Fig. 1. Algorithm of the main filter function.

C. MSS Function

This function is for finding the most similar secrecy (MSS)

of the query. The system will go through the SECRECIES

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

984

table, and find out the most similar secrecy to the inputted

query by the rule “with the maximum matching

table/condition number, and the minimum unmatched

table/condition number”.

Matching table is the table name that exists in both the

inputted query statement and the secrecy. In table I, the table

name HRD, which is shown in bold and italics, is considered

as a matching table because it occurs in both the inputted

query statement and the secrecy.

TABLE I: THE MATCHING TABLES

Input query statement Secrecy

select … from

HRD,PROJECT where…

select … from HRD,EMP

where …

Unmatched table is a table name that exists in the secrecy,

but not in the inputted query statement. For example, in table

II, EMP, shown in bold and italics, is an unmatched table.

TABLE II: THE UNMATCHED TABLES

Input query statement Secrecy

select … from

HRD,PROJECT where…

select … from HRD,EMP

where …

Matching condition is a predicate in the inputted query

statement, which also occurs in the secrecy. In the standard

format, some semantic condition matching can be determined

through literal string matching. Two strings are regarded as

matched either if they are identical or become identical using

the commutativity of equality. Table III shows an example of

a matching condition. “HRD.PROID=PROJECT.PROID” is

regarded as the same as “PROJECT.PROID= HRD.PROID”

because if the two sides of the equality are switched, then the

two strings become identical.

TABLE III: THE MATCHING CONDITIONS

Input query statement Secrecy

select … from …

where

HRD.PROID=PROJECT.PROI

D

AND PROJECT.BUDGET <

=50000

select …from …

where PROJECT.PROID

=HRD.PROID

 AND PROJECT.BUDGET

< 50000

Unmatched condition is a predicate that is in the secrecy

but cannot be found in the inputted query statement. Two

strings are regarded as matched only if they are literally the

same as each other. Table IV shows an example of an

unmatched condition: “PROJECT.BUDGET<50000” does

not match “PROJECT.BUDGET<=50000”.

TABLE IV: THE UNMATCHED CONDITION

Input query statement Secrecy

select …from …

where

HRD.PROID=PROJECT.P

ROID

AND PROJECT.BUDGET

< =50000

select …from …

where PROJECT.PROID

=HRD.PROID

 AND PROJECT.BUDGET

< 50000

D. Create RTF Function

When the related filter table (RFT) is not found, the system

will create an RFT by using the name as the format:

“FILTER_USERID_SECRECYID”, Where USERID is the

unique ID of a user, and the SECRECYID is the unique ID of

MSS in table SECRECIES. The filter table includes all the

attributes of the tables in the secrecy, and each attribute is in

the format “table_attribute”. Besides that, the RFT has an

additional attribute “LAST_ACCESS_DATE” to indicate the

date when last update has been applied to that tuple; this is

useful for the outdated function.

E. Trigger

For every table which has an RFT, synchronization should

be maintained between the data in it and its RFT. The

synchronization means that once a tuple in T1 is updated or

deleted, the same operation will be executed on the

corresponding tuple in all T1‟s RFTs. This is implemented

using triggers in Oracle [15]. The problem then is how to

identify all the RFTs of a table. This is addressed by a two

step process: first, arbitrarily pick up one of the attributes of

the table and parse it into the form “table_attribute”. Because

all the filter tables include all the attributes of the related

business tables, any attribute can work. Second, search the

system table USER_TAB_COLS, which records all the

tables and their attributes, according to the attributes

achieved from the first step for all the RFT.

F. Temporary Tables

The system creates three temporary tables based on the

input query and named after the filter table name. For

example, if the filter table is FILTER_1_2, then the three

temporary tables will be FILTER_1_2_tmp denoted as T1,

FILTER_1_2_output denoted as T2 and FILTER_1_2_wait

denoted as T3.

1) FILTER_1_2_tmp is for storing the original query

results of the input query before filtering.

2) FILTER_1_2_ output is for storing the output result after

filtering.

3) FILTER_1_2_wait is for storing some intermediate

results which might be outputted but need further

estimation.

These three tables have the same attributes, which include

all the attributes of the tables in the input query. For example,

even if the input query is

select name from hrd,project where …,

the attributes of the three temporary tables will also be

“HRD_EMPID, HRD_PROID, PROJECT_PROID,

PROJECT_NAME, PROJECT_BUDGET” to make sure that

the attributes include all the primary keys of the table HRD

and PROJECT; this simplifies the procedure of finding the

corresponding tuples among the RFTs and these temporary

tables. The way to find out the corresponding tuples is similar

to that mentioned in the trigger part, but uses the exact

attribute names.

G. Filtering

First, the full results of the original inputted query are

retrieved and cached in T1. Secondly, for each tuple in T1, if

there exists a corresponding tuple in RTF or the number of

tuples in RTF is less than max, the maximum number of

tuples that the user can access, it will be cached into T2.

Otherwise, it will be cached into T3. Thirdly, if there exists

some “outdated” tuples in RTF, which means they are useless

and can be replaced by useful data, they will be replaced by

tuples arbitrarily chosen from T3; those chosen tuples will

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

985

also be cached into T2 and stored into RTF.

H. Output

The system gets the attributes and order by clause from the

inputted query, then parses the attributes to the format

“table_attribute”. After that, the system gets the results from

T2 projected by the parsed attributes and processed using the

order by clause, if any, and output the results.

III. PERFORMANCE ISSUES

Some simulation experiments aiming at studying the

performance of the system have been done. A runtime

environment was built, on which several Information

Systems with 5 GB data on average were simulated. First, our

system was embedded into those Information Systems easily.

Except several tables being added, no other change was done

to the original database. The interface connecting the

database and the client was changed. We observe that our

approach can be integrated with most information systems.

Secondly, we simulated some attack scenarios in which the

account information of a user was stolen by a malicious

person who attempted to access sensitive information by

executing queries. Protected by our system, however, no

sensitive information was compromised, except those already

cached in the device. However, if the malicious person kept

attacking the system for a long time, i.e., beyond the designed

lifetime, then some other sensitive information could be

compromised. Note that the lifetime implies that data

becomes too stale to matter.

As designed, two parameters, the maximum accessing

number and the computed parameter outdated, in this system

were decisive for the security level of this system. It is very

clear that the maximum accessing number is important

because it determines the quantity of data cached in a user

device. So, the smaller the maximum accessing number, the

more secure the system, while providing less information to

the user. That is a tradeoff, which should be considered by the

DBA. The outdated function defines how long a piece of data

will be regarded as useful data since it was visited last. On the

other hand, the greater the lifetime, the more secure the

system because the attacker has to wait longer to learn new

data. We assigned the lifetime to be 30 days in our system,

which might be changed in different situations.

Thirdly, as is expected, the query speed was reduced by

adding seconds on average to the query execution time.

IV. FUTURE WORKS

First, the parser needs enhancement to deal with semantic

query. In a query statement, a condition can be represented in

different format. For example, condition “A >= B” carries the

same meaning of condition “A > B or A = B”. Second, we will

do some optimization work on this system to improve its

execution performance which is discussed in the last section.

Thirdly, a data dictionary might be generated to facilitate the

queries.

There are strategies for compensating for the loss in speed.

For example, if the results of a query are a subset of one of the

previous queries, the results can be retrieved directly from the

filter rather than the data tables which usually contain much

more data than the filters. Especially in a distributed

environment, the time spent on transmitting data among

different physical data resources can be saved, which will

increase the query speed greatly.

REFERENCES

[1] T. Imielinksi and B. R. Badrinath, “Wireless mobile computing:

challenges in data management,” Communications of ACM, vol. 37, no.

10, 1994.

[2] S. K. Madria, M. Mohania, et al., “Mobile data and transaction

management,” Information Sciences, vol. 141, no. 3-4, pp. 279-309.

2002.

[3] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and D. Mickunas,

“Cerberus: A context-aware security scheme for smart spaces,” The

First IEEE International Conference on Pervasive Computing and

Communications IEEE Computer Society, pp. 489-496, March 2003.

[4] M. J. Covington, W. Long, S. Srinivasan, A. K. Dey, M. Ahamad, and

G. D. Abowd, “Securing context-aware applications using

environment roles,” The Sixth ACM Symposium on Access Control

Models and Technologies, ACM Press, pp. 10-20, 2001.

[5] G. Myles, A. Friday, and N. Davies, “Preserving privacy in

environments with location-based applications,” IEEE Pervasive

Computing, vol. 2, no. 1, pp. 56-64, 2003.

[6] K. Minami and D. Kotz. “Secure context-sensitive authorization,”

Pervasive and Mobile Computing, vol. 1, no. 1, pp. 123-156, March

2005.

[7] G. Edjlali, A. Acharya, and V. Chaudhary, “History-based access

Control for mobile code,” Proceeding of ACM Computer and

Communications Security Conference, 1998.

[8] D. Evans and A. Twyman, “Flexible policy-directed code safety,”

IEEE Secur Privacy, May 1999.

[9] Y. Song, D. Brett, and Fleisch, “Rico: A security proxy for mobile

code,” Computers and Security, vol. 23, no. 4, pp. 338-351, June 2004.

[10] L. Sweeney, “k-Anonymity: A model for protecting privacy,”

International Journal on Uncertainty, Fuzziness and Knowledge-based

Systems, vol. 10, no. 5, pp. 557-570, 2002.

[11] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam,

“l-Diversity: Privacy beyond k-anonymity,” ACM Transactions on

Knowledge Discovery from Data, vol. 1, no. 1, March 2007.

[12] N. Li, T. Li and S. Venkatasubramanian, “t-Closeness: Privacy beyond

k-anonymity and l-diversity,” ICDE, 2007.

[13] D. J. Martin, D. Kifer. A. Machanavajjhala, J. Gehrke, and J. Y.

Halpern, “Worst-case background knowledge for privacy preserving

data publishing,” ICDE, 2007.

[14] J. Melton and A. R. Simon, “Privileges, users, and security,” SQL:

1999. 2002.

[15] Oracle Database PL/SQL User‟s Guide and Reference 10g Release 2

(10.2). B14261-01, 2005.

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

986

