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Abstract—The need for workflow management has become  

readily apparent in recent years, and in order to manage 

various business workflow features, a conceptual modeling or 

specification of workflow is paramount. Statechart is a visual 

language for software requirement specification that has been 

widely used due to its compactness, expressiveness, 

compositionality, and modularity. This paper presents a 

tutorial of the Statechart visual language and how it can be used 

for workflow specification. 

 
Index Terms—Statechart, workflow.  

 

I. INTRODUCTION 

Today's business enterprises must deal with global 

competition, reduce the cost of doing business, and rapidly 

develop new services and products. To address these 

requirements enterprises must constantly reconsider and 

optimize the way they do business and change their 

information systems and applications to support evolving 

business processes. Osterweil and Sutton [1] showed that 

software technology has direct relevance and applicability to 

workflow.  

The concept of workflow originated from the notion of 

process in manufacturing and office environments. Typical 

examples of workflow include such things as the processing 

of a credit request in a bank [2], the medical treatment of 

patients in a hospital, insurance claims, customer requests for 

telephone service, etc.. A workflow consists of a set of 

processing steps (tasks) together with some specification of 

the control and data-flow between these activities. Processes 

can be mapped into workflow descriptions that can be 

executed automatically by a workflow management system.  

Workflow technology facilitates this by providing 

methodologies and software [3]. 

Two distinct constructs, the transaction and the tasks, are 

used to model workflow. The transaction deals with the 

specification of the communication aspects of workflow, 

while the task deals with required adaptability of workflow 

systems. A workflow specification captures a process 

abstraction. There exist a multitude of languages for this 

purpose: process-programming language [4], rule-based [5], 

data-flow based, control-flow based [6], visual Petri Net 

based, etc. Regardless of language, the specification of 

workflow should be unambiguous and have a modular 

structure. It should be simple and clear, and it must contain 
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only the information needed by the developers and analysts.  

The language for software requirement specification should 

be easy to use and result in more readable and revisable 

specifications. However, in current practice, the rule-based 

languages are most frequently used, yet they lack modularity, 

and the maintenance of rule-based programs composed of 

many thousands of rules is extremely difficult.  A possible 

solution to this paradox is through the use of a visual 

language [7]. 

Statechart by Harel et al [8]-[11] is a visual language for 

software requirements specification that has been widely 

used [12]-[14].  In essence, it extends the conventional 

language of state-transition diagrams with three elements that 

accommodate the notions of hierarchy, concurrency, and 

communication.  Additionally, it allows multilevel 

concurrency and the use of high- and low-level events.  It is 

compact, expressive, compositional, and modular. Statechart 

is perceived by practitioners as intuitive and easy to learn, yet 

it has rigorous semantics [15].  

The syntactic and semantic elements of Statechart use low 

level functional formalism, and the semantics appears to be 

novel in its treatment of shared variables, chain-reactions, 

and simultaneous multiple transitions.  More recently, 

Statecharts are being used as UML (Universal Markup 

Language) state machine diagrams [16] and state machine 

notations for control abstraction [17]. 

This paper is a tutorial of Statechart used for workflow 

specification.  Section 2 introduces the basic idea of 

Statechart and the reasons for using Statechart. Basic features 

of Statechart are discussed in Section 3. In Section 4, 

Statechart is applied to a workflow specification  example. 

Finally, the merits, shortcomings, and future research in 

workflow specification will be discussed. 

 

II. STATECHART 

A finite state machine (FSM) is a model of a system with 

discrete inputs and outputs.  The system can be in any one of 

a finite number of internal states or configurations. The state 

of the system summarizes the information concerning past 

input that is needed to determine the behavior of the system 

on subsequent input. One state denoted by q0 is the initial 

state. The system consists of a finite set of states and 

transitions from state to state that occur on input symbols. For 

each input symbol there can be exactly one transition out of 

each state or there can be more than one transition out of a 

state. A directed graph, called a transition diagram is 

associated with the FSM. The vertices of the graph 

correspond to the states. If there is a transition from state q to 

state p on input a, then there is an arrow labeled a from state   

q to state p.  Fig. 1(a) shows a state transition diagram with 

four states and eight transitions. A Mealy machine is also a 
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type of finite state machine, except it gives an output in 

response to input. Fig. 1(b) shows a Mealy machine, which 

takes input 0 or 1 and gives output n. 

 

Fig. 1. (a) Transition diagram. (b) Mealy machine. 

Harel [8], [9] constitutes an attempt to revive the classical 

formalism of finite state machines and state transition 

diagrams and make them fitting for use in large and complex 

applications. Statechart, a visual language for specification, 

is proposed to overcome the drawbacks of state diagrams 

while preserving and even enhancing the visual appeal of 

conventional state diagrams.  

Statechart transforms a state transition diagram into a 

highly structured and economical description language.  

When coupled with the capabilities of computerized graphics, 

Statechart enables people to view the description at different 

levels of detail and makes very large process-control 

requirement specification manageable and comprehensible. 

The syntax and semantics of Statechart use low level 

functional formalism, and the semantics appears to be novel 

in its treatment of shared variables, chain-reactions and 

simultaneous multiple transitions. In particular, Statechart 

specifications are amenable to model checking [18], [19], so 

that critical workflow properties that are expressible in 

temporal logic can be formally verified. 

In order to let application experts who know very little or 

nothing about computers or software to be able to understand 

and use Statechart, notations used in this paper are graphics, 

symbols, and plain English. 

 

III. BASIC FEATURES OF STATECHART 

Statechart is a finite state machine augmented with 

schemes for expressing hierarchy, parallelism, and 

communication.  Rectangles are used to denote states at any 

level.   A simple finite state machine (FSM) is composed of 

states connected by transitions.  An arrow labeled with an 

event, and optionally with a parenthesized condition, denotes 

the transition. A small arrow marks default or start states.  In 

the FSM of Fig. 2(a), for example, there are three states: A, B, 

and C. Event c occurring in state A transfers the system from 

state A to state C if and only if (iff) condition p holds at the 

instant of occurrence.  State A here is the default state, which 

means that the system enters state A when the state machine 

is entered unless otherwise specified.  

A. Composition of a Superstate  

In a Statechart, states may be grouped into a superstate.  

The concept of a superstate has its origin in higraph [3], 

which combines the notions of Euler circles, Venn diagrams, 

and hypergraphs.  A Statechart may contain states at any 

level, and encapsulation is used to express the hierarchical 

relation.  

In Fig. 2(a), since event b takes the system to state B from 

either state A or state C, states A and C can be clustered into a 

new superstate D, and the two b arrows can be replaced by 

one as shown in Fig. 2(b).  The semantics of  D is the 

exclusive-or (XOR) of states A and C, i.e., being in state D is 

equivalent to being in either state A or state C, but not both.  

Superstate D is an abstraction of states A and C.  Such 

groupings reduce the number of transitions need to be drawn 

on a Statechart. The superstate D and outgoing arrow b 

capture a common property of states A and C, viz., a 

transition from either of its substates A or C via arrow b to 

state B. 

A superstate can be entered in two ways. First, the 

transition to the superstate may end at the border of the 

superstate as exemplified by arrow a in Fig. 2(b).  In that case, 

the default state A is entered, i.e., it is equivalent to having 

arrow a drawn from state B to state A.  Second, the transition 

may be made to a particular state inside a superstate, such as 

arrow d in Fig. 2(b) that leads from state B to state C. 

A superstate may be exited in two ways.  Analogous to 

transitions into the superstate, transitions out of the 

superstate may originate from the border of the  superstate or 

from an inner state of the superstate.  In Fig. 2(b), b arrow 

indicates a transition from the border of the superstate. In this 

case, the system leaves superstate D and all substates A and C. 

The superstate can be exited from a substate such as f arrow 

in Fig. 2(b) that leads from state A to state B.  

 

Fig. 2. (a) Finite state machine. (b) Superstate. 

Grouping states into a superstate indeed reduces the 

number of transitions and makes the specification more 

readable. 

B. Composition of a Parallel State 

One of the most important innovations in Statechart is the 

parallel state, which is also referenced as orthogonal or 

product state. A parallel state contains two or more parallel 

components (AND components) separated by dashed lines.  

In Fig. 3(a), parallel state H consists of two parallel 

components, state A and state D. The semantics of H is the 

product (AND) of states A and D, i.e., being in state H entails 

being in both state A and state D.  When the parallel state H is 

entered, each of the parallel components, state A and state D 

within H, is entered too. In Fig. 3(a), when parallel state H is 

entered from the outside via arrow a, the substate B of A and 

substate F of D are entered by the default arrows.   When any 

transition is taken out of the parallel state H, all states H, A, 

and D are exited.  
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Fig. 3. (a) Parallel state consists of two parallel components. 

The parallel components state A and D can be superstate 

or be parallel states themselves. In Fig. 3(a), parallel 

components state A and state D are superstates themselves. A 

parallel state in Statechart illustrates a certain kind of 

synchronization. In Fig. 3(a), if event a then occurs, the 

transition from state B to state C and from state F to G will 

take place simultaneously. 

The use of a parallel state greatly reduces the size of the 

specification. Fig. 3(b) is the conventional AND-free 

equivalent “flat” version of Fig. 3(a). The usual product of a 

conventional state transition diagram is a disjoint product. 

Fig. 3(b) contains six states, the product of the two substates 

in A and three substates in D.  Clearly, two components with 

one thousand states each would result in one million states in 

the product. This is the root of blow-up in number of states. 

Parallel state in Statechart introduces some dependence 

between components, i.e., in Fig. 3(a), the special condition 

“in(G)” attached to arrow f causes state A to depend on state 

D and indeed to “know” something about substates of D. If 

the parallel construct is used often, and on many levels, the 

state explosion problem can be overcome in a reasonable 

way.   

 

 Fig. 3. (b) Disjoint product of parallel state. 

A parallel state can be entered in four ways. First, the 

transition to the parallel state may end at the border of the 

parallel state as exemplified by arrow a in Fig. 3(c). (Fig. 3(c) 

adds a possible interface description of the parallel state H of 

Fig. 3(a). Internal transitions of Fig. 3(a) have been omitted 

for simplicity.) In this case, as mentioned before, state B and 

state F are entered by default. Second, the transition may be 

made to particular states inside the parallel components, such 

as split arrow b in Fig. 3(c) that leads transition from state J to 

state B and state E.  Third, the transition may be made to one 

particular state, such as arrow c in Fig. 3(c) that leads the 

transition from state K to state C by arrow c and state F by 

default. Fourth, the transition may be made to one particular 

state and an H-entry such as split arrow d in Fig. 3(c) that 

leads the transition from state L to state C and the most 

recently visited state in state D. 

 

 Fig. 3. (c) Multiple exits of parallel state. 

A parallel state may be exited in three ways. First, the 

transition exits a parallel state from the border of the parallel 

state as exemplified by arrow e in Fig. 3(c). In this case, the 

parallel state H and all parallel components, state A and state 

D are exited unconditionally. Second, an “exiting 

independently” transition exits a parallel state from an inner 

state such as arrow f in Fig. 3(c) that leaves state H, state A, 

and state D, and enters state K.  Third, an “exiting 

dependently” transition exits a parallel state from a certain 

combination of states as exemplified by arrow h in Fig. 3(c). 

In that case, the event h occurred in state B, and state G 

causes transferring from parallel state H to state K.  An 

alternative to the third case is to replace one of the outgoing 

branches of the merging arrows by a condition as shown in 

arrow g from state F in Fig. 3(c). In this case, transition exits 

parallel state H to state M only from state F and state B. 

Using parallel states reduces the state explosion problem 

in conventional state machines. The parallel state 

components can be carried out on any level of states and is 

therefore more convenient than allowing only single level 

sets of communicating in a FSM. The use of a parallel state 

enables Statechart to describe independent and concurrent 

state components and eliminates the need for multiple control 

activities within a single activity. 

C. Actions 

In Section 3.2, the reaction part is expressed only by the 

system changing its internal state configuration to incoming 

or sensed events and conditions. None of the transitions 

contain any outputs. Parallel components can synchronize 

only through common events and can affect each other only 

through in(s) special conditions. The real subtlety of the way 

Statechart models concurrence is in their output events.  

Statechart can be viewed as an extension of a Mealy machine, 

in that it has the ability to generate events and change the 

values of conditions. These output events denoted by /s are 

called actions to be attached optionally to the label of a 

transition.  The enriched transition labeling is the form e[p]/s 

where e is the event triggering the transition, p, the condition 

that guides the transition, and s, the action to be carried out 

upon the transition.  

In contrast to conventional Mealy machines, however, an 

action appearing along a transition in a Statechart is not 

merely sent to the “outside world” as an output. The action 

typically will affect the behavior of the Statechart itself in its 

parallel components. This is achieved by a simple broadcast 

mechanism in the same way as the occurrence of an external 

event that causes transitions in all parallel components.  
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D. Timeout 

The ability to limit the system’s delay in a state and putting 

a time constraint on a state is an important property of 

real-time system requirements specification. Statechart uses 

implicit timers to respond to time restrictions.  Formally, this 

is done using the event expression timeout(event, number).   

This expression represents that timeout event occurs 

precisely when the specified number of time units have 

elapsed from the occurrence of the specified event.  

In Fig. 4, the system will exit from state A to state B when 

120ms have elapsed from the occurrence of event f. 

 

Fig. 4. Timeout. 

 

IV. WORKFLOW SPECIFICATION  

In this section, Statechart is applied to a workflow example, 

credit request processing in a bank.  A more detailed 

application study in the area of credit processing is currently 

conducted within the Mentor (Middleware for Enterprise 

Wide Workflow Management) project [19]. The purpose of 

this example is to demonstrate the principal suitability of 

Statechart for the workflow specification. 

When a company makes a credit request, the bank will 

check the company’s current credit balance with the 

corresponding checking of the company’s credit rating and 

risk evaluation. In addition, the bank will determine the 

ownership and control relations, which the company has with 

other national and international companies. The decision is 

eventually made on the credit request either to approve it or 

to turn it down. 

In this simplified workflow specification, there are six 

activities that reflect the functional decomposition of a 

system and correspond directly to the activities of the 

workflow. 

INIT:   Initializes the system; 

ENCR: Enters the credit request into a credit database; 

CCW:   Checks credit balance and credit with other 

financially related companies; 

RISK:  Evaluates the potential risk that is associated with 

the requested credit; 

DEC: Records the decision about credit request; 

ERROR: Handles errors.  

There are several conditions, events, and actions defined in 

this specification: 

1) Event en(s) occurs upon entering state s 

2) ENCR_OK and ENCR_NOK are the corresponding 

conditions for ENCR; 

3) CCW_OK and CCW_NOK are the corresponding 

conditions for CCW; 

4) RISK_OK and RISK_NOK are the corresponding 

conditions for RISK; 

5) REQUEST_REJECTED is the corresponding condition 

for state CR_S; 

6) DEC_OK and DEC_NOK are the corresponding 

conditions for DEC; 

7) Action st!(activity) starts the activity; 

8) Action sp!(activity) stops the activity; 

9) Event PANIC occurs upon system failure. 

Statechart reflects the behavior of a system. The Statechart 

depicted in Figure 5 shows the control flow between the six 

activities. One state is entered exactly when the 

corresponding activity is started.  The system enters into the 

INIT and ERR_INIT states simultaneously.  A TIMEOUT is 

triggered whenever a state is not left within specified 

DELAY time after it has been entered; the ERROR activity is 

started and ERROR_S state is entered. A NOK_activity 

condition is generated if anything is wrong in that activity. 

This NOK_activity condition causes the ERROR activity to 

start.CCW_S and RISK_S are parallel components of CR_S 

state, meaning that the corresponding activities will be 

executed concurrently. 

 

V. DISCUSSION AND FUTURE STUDIES 

business environments as that of a canonical representation 

for an underlying executing engine with rigorously defined 

semantics. Other specifications can be converted into 

Statechart, and Statechart may serve as an exchange format 

across different workflow engines.  

Verification techniques can be used to check the 

correctness of Statechart based workflow specifications. In 

particular, Wodtke and Weikum [14] validate Statechart 

properties by means of reach-ability tests [10] and symbolic 

model checking [18]. The property that every credit request 

in our example will eventually be granted or rejected, and 

these two results exclude each other, can be easily expressed 

in the temporal logic CTL[20] and efficiently verified by 

model checking. 

However there are several drawbacks of the original 

Statechart. The order of the transitions taking place is 

important. The Statechart shows structure non-determinism 

caused by the freedom of selecting subsets in micro-steps and 

the uncertainty of selecting concurrent events.  One of the 

most important properties of any real-time system is the time 

constraint that should be clearly indicated in the requirement 

specification. Although Statechart provides timeout feature 

and time bound, these features are not well defined and are 

not sufficient to represent the critical time requirements. 

From the perspectives of practitioners, Statechart is still 

too formal and not appropriate for wide use in business 

environments. The capabilities for invoking external 

software and some form of callback facility are important 

features. For example, the need for flexible decision making 

while minimizing the risks may require dynamic 

modifications to the specified control flow by introducing 

additional “ad-hoc” activities while the workflow is being 

executed. Another challenge is the problem of ensuring the 

consistency of the underlying information when several 

workflows of this type are to be executed concurrently. 
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Fig. 5. Workflow of credit request processing in a bank. 
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