



Abstract—The need for workflow management has become

readily apparent in recent years, and in order to manage

various business workflow features, a conceptual modeling or

specification of workflow is paramount. Statechart is a visual

language for software requirement specification that has been

widely used due to its compactness, expressiveness,

compositionality, and modularity. This paper presents a

tutorial of the Statechart visual language and how it can be used

for workflow specification.

Index Terms—Statechart, workflow.

I. INTRODUCTION

Today's business enterprises must deal with global

competition, reduce the cost of doing business, and rapidly

develop new services and products. To address these

requirements enterprises must constantly reconsider and

optimize the way they do business and change their

information systems and applications to support evolving

business processes. Osterweil and Sutton [1] showed that

software technology has direct relevance and applicability to

workflow.

The concept of workflow originated from the notion of

process in manufacturing and office environments. Typical

examples of workflow include such things as the processing

of a credit request in a bank [2], the medical treatment of

patients in a hospital, insurance claims, customer requests for

telephone service, etc.. A workflow consists of a set of

processing steps (tasks) together with some specification of

the control and data-flow between these activities. Processes

can be mapped into workflow descriptions that can be

executed automatically by a workflow management system.

Workflow technology facilitates this by providing

methodologies and software [3].

Two distinct constructs, the transaction and the tasks, are

used to model workflow. The transaction deals with the

specification of the communication aspects of workflow,

while the task deals with required adaptability of workflow

systems. A workflow specification captures a process

abstraction. There exist a multitude of languages for this

purpose: process-programming language [4], rule-based [5],

data-flow based, control-flow based [6], visual Petri Net

based, etc. Regardless of language, the specification of

workflow should be unambiguous and have a modular

structure. It should be simple and clear, and it must contain

Manuscript received July 23, 2012; revised September 25, 2012.

W. W. Zhang and T. Beaubouef are with the Computer Science and

Industrial Technology Department, Southeastern Louisiana University,

Hammond, USA (e-mail: wzhang@selu.edu, tbeaubouef@selu.edu).

H. Ye is with the School of Electrical Engineering and Computer Science,

The University of Newcastle, Callaghan, NSW 2308, Australia (e-mail:

Huilin.Ye@newcastle.edu.au).

only the information needed by the developers and analysts.

The language for software requirement specification should

be easy to use and result in more readable and revisable

specifications. However, in current practice, the rule-based

languages are most frequently used, yet they lack modularity,

and the maintenance of rule-based programs composed of

many thousands of rules is extremely difficult. A possible

solution to this paradox is through the use of a visual

language [7].

Statechart by Harel et al [8]-[11] is a visual language for

software requirements specification that has been widely

used [12]-[14]. In essence, it extends the conventional

language of state-transition diagrams with three elements that

accommodate the notions of hierarchy, concurrency, and

communication. Additionally, it allows multilevel

concurrency and the use of high- and low-level events. It is

compact, expressive, compositional, and modular. Statechart

is perceived by practitioners as intuitive and easy to learn, yet

it has rigorous semantics [15].

The syntactic and semantic elements of Statechart use low

level functional formalism, and the semantics appears to be

novel in its treatment of shared variables, chain-reactions,

and simultaneous multiple transitions. More recently,

Statecharts are being used as UML (Universal Markup

Language) state machine diagrams [16] and state machine

notations for control abstraction [17].

This paper is a tutorial of Statechart used for workflow

specification. Section 2 introduces the basic idea of

Statechart and the reasons for using Statechart. Basic features

of Statechart are discussed in Section 3. In Section 4,

Statechart is applied to a workflow specification example.

Finally, the merits, shortcomings, and future research in

workflow specification will be discussed.

II. STATECHART

A finite state machine (FSM) is a model of a system with

discrete inputs and outputs. The system can be in any one of

a finite number of internal states or configurations. The state

of the system summarizes the information concerning past

input that is needed to determine the behavior of the system

on subsequent input. One state denoted by q0 is the initial

state. The system consists of a finite set of states and

transitions from state to state that occur on input symbols. For

each input symbol there can be exactly one transition out of

each state or there can be more than one transition out of a

state. A directed graph, called a transition diagram is

associated with the FSM. The vertices of the graph

correspond to the states. If there is a transition from state q to

state p on input a, then there is an arrow labeled a from state

q to state p. Fig. 1(a) shows a state transition diagram with

four states and eight transitions. A Mealy machine is also a

Statechart: A Visual Language for Workflow Specification

Wendy Wenhui Zhang, Theresa Beaubouef, and Huilin Ye

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

921

type of finite state machine, except it gives an output in

response to input. Fig. 1(b) shows a Mealy machine, which

takes input 0 or 1 and gives output n.

Fig. 1. (a) Transition diagram. (b) Mealy machine.

Harel [8], [9] constitutes an attempt to revive the classical

formalism of finite state machines and state transition

diagrams and make them fitting for use in large and complex

applications. Statechart, a visual language for specification,

is proposed to overcome the drawbacks of state diagrams

while preserving and even enhancing the visual appeal of

conventional state diagrams.

Statechart transforms a state transition diagram into a

highly structured and economical description language.

When coupled with the capabilities of computerized graphics,

Statechart enables people to view the description at different

levels of detail and makes very large process-control

requirement specification manageable and comprehensible.

The syntax and semantics of Statechart use low level

functional formalism, and the semantics appears to be novel

in its treatment of shared variables, chain-reactions and

simultaneous multiple transitions. In particular, Statechart

specifications are amenable to model checking [18], [19], so

that critical workflow properties that are expressible in

temporal logic can be formally verified.

In order to let application experts who know very little or

nothing about computers or software to be able to understand

and use Statechart, notations used in this paper are graphics,

symbols, and plain English.

III. BASIC FEATURES OF STATECHART

Statechart is a finite state machine augmented with

schemes for expressing hierarchy, parallelism, and

communication. Rectangles are used to denote states at any

level. A simple finite state machine (FSM) is composed of

states connected by transitions. An arrow labeled with an

event, and optionally with a parenthesized condition, denotes

the transition. A small arrow marks default or start states. In

the FSM of Fig. 2(a), for example, there are three states: A, B,

and C. Event c occurring in state A transfers the system from

state A to state C if and only if (iff) condition p holds at the

instant of occurrence. State A here is the default state, which

means that the system enters state A when the state machine

is entered unless otherwise specified.

A. Composition of a Superstate

In a Statechart, states may be grouped into a superstate.

The concept of a superstate has its origin in higraph [3],

which combines the notions of Euler circles, Venn diagrams,

and hypergraphs. A Statechart may contain states at any

level, and encapsulation is used to express the hierarchical

relation.

In Fig. 2(a), since event b takes the system to state B from

either state A or state C, states A and C can be clustered into a

new superstate D, and the two b arrows can be replaced by

one as shown in Fig. 2(b). The semantics of D is the

exclusive-or (XOR) of states A and C, i.e., being in state D is

equivalent to being in either state A or state C, but not both.

Superstate D is an abstraction of states A and C. Such

groupings reduce the number of transitions need to be drawn

on a Statechart. The superstate D and outgoing arrow b

capture a common property of states A and C, viz., a

transition from either of its substates A or C via arrow b to

state B.

A superstate can be entered in two ways. First, the

transition to the superstate may end at the border of the

superstate as exemplified by arrow a in Fig. 2(b). In that case,

the default state A is entered, i.e., it is equivalent to having

arrow a drawn from state B to state A. Second, the transition

may be made to a particular state inside a superstate, such as

arrow d in Fig. 2(b) that leads from state B to state C.

A superstate may be exited in two ways. Analogous to

transitions into the superstate, transitions out of the

superstate may originate from the border of the superstate or

from an inner state of the superstate. In Fig. 2(b), b arrow

indicates a transition from the border of the superstate. In this

case, the system leaves superstate D and all substates A and C.

The superstate can be exited from a substate such as f arrow

in Fig. 2(b) that leads from state A to state B.

Fig. 2. (a) Finite state machine. (b) Superstate.

Grouping states into a superstate indeed reduces the

number of transitions and makes the specification more

readable.

B. Composition of a Parallel State

One of the most important innovations in Statechart is the

parallel state, which is also referenced as orthogonal or

product state. A parallel state contains two or more parallel

components (AND components) separated by dashed lines.

In Fig. 3(a), parallel state H consists of two parallel

components, state A and state D. The semantics of H is the

product (AND) of states A and D, i.e., being in state H entails

being in both state A and state D. When the parallel state H is

entered, each of the parallel components, state A and state D

within H, is entered too. In Fig. 3(a), when parallel state H is

entered from the outside via arrow a, the substate B of A and

substate F of D are entered by the default arrows. When any

transition is taken out of the parallel state H, all states H, A,

and D are exited.

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

922

Fig. 3. (a) Parallel state consists of two parallel components.

The parallel components state A and D can be superstate

or be parallel states themselves. In Fig. 3(a), parallel

components state A and state D are superstates themselves. A

parallel state in Statechart illustrates a certain kind of

synchronization. In Fig. 3(a), if event a then occurs, the

transition from state B to state C and from state F to G will

take place simultaneously.

The use of a parallel state greatly reduces the size of the

specification. Fig. 3(b) is the conventional AND-free

equivalent “flat” version of Fig. 3(a). The usual product of a

conventional state transition diagram is a disjoint product.

Fig. 3(b) contains six states, the product of the two substates

in A and three substates in D. Clearly, two components with

one thousand states each would result in one million states in

the product. This is the root of blow-up in number of states.

Parallel state in Statechart introduces some dependence

between components, i.e., in Fig. 3(a), the special condition

“in(G)” attached to arrow f causes state A to depend on state

D and indeed to “know” something about substates of D. If

the parallel construct is used often, and on many levels, the

state explosion problem can be overcome in a reasonable

way.

 Fig. 3. (b) Disjoint product of parallel state.

A parallel state can be entered in four ways. First, the

transition to the parallel state may end at the border of the

parallel state as exemplified by arrow a in Fig. 3(c). (Fig. 3(c)

adds a possible interface description of the parallel state H of

Fig. 3(a). Internal transitions of Fig. 3(a) have been omitted

for simplicity.) In this case, as mentioned before, state B and

state F are entered by default. Second, the transition may be

made to particular states inside the parallel components, such

as split arrow b in Fig. 3(c) that leads transition from state J to

state B and state E. Third, the transition may be made to one

particular state, such as arrow c in Fig. 3(c) that leads the

transition from state K to state C by arrow c and state F by

default. Fourth, the transition may be made to one particular

state and an H-entry such as split arrow d in Fig. 3(c) that

leads the transition from state L to state C and the most

recently visited state in state D.

 Fig. 3. (c) Multiple exits of parallel state.

A parallel state may be exited in three ways. First, the

transition exits a parallel state from the border of the parallel

state as exemplified by arrow e in Fig. 3(c). In this case, the

parallel state H and all parallel components, state A and state

D are exited unconditionally. Second, an “exiting

independently” transition exits a parallel state from an inner

state such as arrow f in Fig. 3(c) that leaves state H, state A,

and state D, and enters state K. Third, an “exiting

dependently” transition exits a parallel state from a certain

combination of states as exemplified by arrow h in Fig. 3(c).

In that case, the event h occurred in state B, and state G

causes transferring from parallel state H to state K. An

alternative to the third case is to replace one of the outgoing

branches of the merging arrows by a condition as shown in

arrow g from state F in Fig. 3(c). In this case, transition exits

parallel state H to state M only from state F and state B.

Using parallel states reduces the state explosion problem

in conventional state machines. The parallel state

components can be carried out on any level of states and is

therefore more convenient than allowing only single level

sets of communicating in a FSM. The use of a parallel state

enables Statechart to describe independent and concurrent

state components and eliminates the need for multiple control

activities within a single activity.

C. Actions

In Section 3.2, the reaction part is expressed only by the

system changing its internal state configuration to incoming

or sensed events and conditions. None of the transitions

contain any outputs. Parallel components can synchronize

only through common events and can affect each other only

through in(s) special conditions. The real subtlety of the way

Statechart models concurrence is in their output events.

Statechart can be viewed as an extension of a Mealy machine,

in that it has the ability to generate events and change the

values of conditions. These output events denoted by /s are

called actions to be attached optionally to the label of a

transition. The enriched transition labeling is the form e[p]/s

where e is the event triggering the transition, p, the condition

that guides the transition, and s, the action to be carried out

upon the transition.

In contrast to conventional Mealy machines, however, an

action appearing along a transition in a Statechart is not

merely sent to the “outside world” as an output. The action

typically will affect the behavior of the Statechart itself in its

parallel components. This is achieved by a simple broadcast

mechanism in the same way as the occurrence of an external

event that causes transitions in all parallel components.

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

923

D. Timeout

The ability to limit the system’s delay in a state and putting

a time constraint on a state is an important property of

real-time system requirements specification. Statechart uses

implicit timers to respond to time restrictions. Formally, this

is done using the event expression timeout(event, number).

This expression represents that timeout event occurs

precisely when the specified number of time units have

elapsed from the occurrence of the specified event.

In Fig. 4, the system will exit from state A to state B when

120ms have elapsed from the occurrence of event f.

Fig. 4. Timeout.

IV. WORKFLOW SPECIFICATION

In this section, Statechart is applied to a workflow example,

credit request processing in a bank. A more detailed

application study in the area of credit processing is currently

conducted within the Mentor (Middleware for Enterprise

Wide Workflow Management) project [19]. The purpose of

this example is to demonstrate the principal suitability of

Statechart for the workflow specification.

When a company makes a credit request, the bank will

check the company’s current credit balance with the

corresponding checking of the company’s credit rating and

risk evaluation. In addition, the bank will determine the

ownership and control relations, which the company has with

other national and international companies. The decision is

eventually made on the credit request either to approve it or

to turn it down.

In this simplified workflow specification, there are six

activities that reflect the functional decomposition of a

system and correspond directly to the activities of the

workflow.

INIT: Initializes the system;

ENCR: Enters the credit request into a credit database;

CCW: Checks credit balance and credit with other

financially related companies;

RISK: Evaluates the potential risk that is associated with

the requested credit;

DEC: Records the decision about credit request;

ERROR: Handles errors.

There are several conditions, events, and actions defined in

this specification:

1) Event en(s) occurs upon entering state s

2) ENCR_OK and ENCR_NOK are the corresponding

conditions for ENCR;

3) CCW_OK and CCW_NOK are the corresponding

conditions for CCW;

4) RISK_OK and RISK_NOK are the corresponding

conditions for RISK;

5) REQUEST_REJECTED is the corresponding condition

for state CR_S;

6) DEC_OK and DEC_NOK are the corresponding

conditions for DEC;

7) Action st!(activity) starts the activity;

8) Action sp!(activity) stops the activity;

9) Event PANIC occurs upon system failure.

Statechart reflects the behavior of a system. The Statechart

depicted in Figure 5 shows the control flow between the six

activities. One state is entered exactly when the

corresponding activity is started. The system enters into the

INIT and ERR_INIT states simultaneously. A TIMEOUT is

triggered whenever a state is not left within specified

DELAY time after it has been entered; the ERROR activity is

started and ERROR_S state is entered. A NOK_activity

condition is generated if anything is wrong in that activity.

This NOK_activity condition causes the ERROR activity to

start.CCW_S and RISK_S are parallel components of CR_S

state, meaning that the corresponding activities will be

executed concurrently.

V. DISCUSSION AND FUTURE STUDIES

business environments as that of a canonical representation

for an underlying executing engine with rigorously defined

semantics. Other specifications can be converted into

Statechart, and Statechart may serve as an exchange format

across different workflow engines.

Verification techniques can be used to check the

correctness of Statechart based workflow specifications. In

particular, Wodtke and Weikum [14] validate Statechart

properties by means of reach-ability tests [10] and symbolic

model checking [18]. The property that every credit request

in our example will eventually be granted or rejected, and

these two results exclude each other, can be easily expressed

in the temporal logic CTL[20] and efficiently verified by

model checking.

However there are several drawbacks of the original

Statechart. The order of the transitions taking place is

important. The Statechart shows structure non-determinism

caused by the freedom of selecting subsets in micro-steps and

the uncertainty of selecting concurrent events. One of the

most important properties of any real-time system is the time

constraint that should be clearly indicated in the requirement

specification. Although Statechart provides timeout feature

and time bound, these features are not well defined and are

not sufficient to represent the critical time requirements.

From the perspectives of practitioners, Statechart is still

too formal and not appropriate for wide use in business

environments. The capabilities for invoking external

software and some form of callback facility are important

features. For example, the need for flexible decision making

while minimizing the risks may require dynamic

modifications to the specified control flow by introducing

additional “ad-hoc” activities while the workflow is being

executed. Another challenge is the problem of ensuring the

consistency of the underlying information when several

workflows of this type are to be executed concurrently.

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

924

Cichochi, et al.[7] view the role of Statechart in practical

Fig. 5. Workflow of credit request processing in a bank.

REFERENCES

[1] L. J. Osterweil and S. M. Sutton, “Using software technology to define

workflow processes,” Proceedings of the NSF Workshop on Workflow

and Process Automation in Information Systems: State-of-the-Art and

Future Directions, Athens, GA, May 8-10, 1996.

[2] D. Wodtke, J. Weissenfels, G. Weikum, and A. Kotz Dittrich, “The

mentor project: steps toward enterprise-wide workflow management,”

Proceedings of 11th International Conference on Data Engineering,

New Orleans, 1996, pp. 556-565.

[3] D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of

workflow management: from process modeling to workflow

automation infrastructure,” Distributed and Parallel Database, vol. 3,

pp. 119-153, 1995.

[4] S. M. Sutton, H. Ziv, D. Heimbigner, H. E. Yassayam, M. Maybee, L. J.

Osterweil, and X. Song, “Programming a software

requirements-specification process,” Proceedings of First

International Conference on the Software Process: Manufacturing

Complex Systems, Redondo Beach, USA, October, 1991, pp. 68-89.

[5] M. Scott, “A rule-based approach for thdesign and implementation of

information systems,” Advanced in Database Technology, 4th

International Conference on Extending Database Technology, March

1994

[6] D. G. Kopoulos and M. F. Hornick, “A framework for enforceable

specification of extended transaction models and transactional

workflows,” International Journal of Intelligent and Cooperative

Information Systems, vol. 3, no. 3, 1994.

[7] A. Cichochi, A. Helal, M. Rusinkiewsicz, and D. L. Woelk, Work Flow

and Process Automation Concepts and Technology, Kluwer Academic

Publishers, 1998.

[8] D. Harel, “Statecharts: a visual formalism for complex systems,”

Science of Computer Programming, vol. 8, 1987.

[9] D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman, “On the formal

semantics of statecharts (extended abstract),” Proceedings of the

Second Symposium, Logic in Computer science, Ithaca, N.Y. 1987.

[10] D. Harel, H. Lachover, A. Naamad, A Pnueli, M. Politi, R. Sherman, A.

S. Trauring, and M. Trakhtenbrot, “Statemate: A working environment

for the development of complex reactive systems,” IEEE Transactions

on Software Engineering, vol. 16, no. 4, April 1990.

[11] D. Harel and A. Naamad, “The statemate semantics of statecharts,”

Technical Report, I-Logix Inc. October 95.

[12] M. P. E. Heimdahl and N. Leveson, “Completeness and consistency in

hierarchical state-based requirements,” IEEE Transactions on Software

Engineering, vol. 22, no. 6, June 1996.

[13] F. Jahanian and A. Mok, “Safety analysis of timing properties in real

time systems,” IEEE Transactions on Software Engineering, vol.

SE-12, September 1986.

[14] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese,

“Requirements specification for process-control systems,” IEEE

Transactions on Software Engineering, vol. 20, no. 9, September 1994.

[15] D. Wodtke and G. Weikum, “A formal foundation for distributed

workflow execution based on state charts,” Data Theory - proceedings

of 6th International Conference, Delphi, Greece, January 1997, pp.

230-246.

[16] S. Ambler. (2010). UML 2 State Machine Diagram. [Online]. Available:

http://www.agilemodeling.com/artifacts/stateMachineDiagram.htm.

[17] Working draft. (May 13, 2010). State chart XML (SCXML): State

Machine Notation for Control Abstraction. [Online]. Available:

http://www.w3.org/TR/2010/WD-scxml-20100513/.

[18] J. Helbig and P. Kelb, “An OBDD-representation of statecharts,”

Proceedings of European Design and Testing Conference, 1994.

[19] K. L. McMillian, Symbolic model checking, Kluwer Academic

Publishers, 1993.

[20] E. A. Emerson, “Temporal and modal logic,” Handbook of Theoretical

Computer Science, Elsevier, 1990.

Wendy Wenhui Zhang was born in Shanghai, China.

She got her M.S. and Ph.D. in computer science from

University of Houston, Texas, United States. She is full

professor of Computer Science & IT Department in

Southeastern Louisiana University, Louisiana, United

State. Her research interests include spatial database,

high performance computing, and hyperspectral

remote sensing. Dr. Wendy Zhang is a member of

ACM and IEEE. She was awarded summer research

fellowships from NASA and Naval Research Lab during 2008-2009 and

research grant from National Science Foundation (NSF) from 2009-2012.

Theresa Beaubouef earned the B.S. in Computer

Science from Louisiana State University and the M. S.

and Ph.D. degrees from Tulane University in New

Orleans, Louisiana in 1992. Dr. Beaubouef has

worked as a computer scientist for the U.S. Navy and

its contractors, and as Assistant Professor at Xavier

University in New Orleans. She is currently a

professor at Southeastern Louisiana University.

Her research interests include uncertainty in databases,

data mining, spatial databases, artificial intelligence, and computer science

education. Dr. Beaubouef is also interested in scientific computing and

mathematical applications and formal modeling of processes.

Dr. Huilin Ye is an Associate Professor at School of

Electrical Engineering and Computer Science,

University of Newcastle, Australia. Her main research

interest is in the area of software engineering,

including software product line engineering,

object-oriented software development, software

reusability, and software library systems etc. She is the

leader of Software Engineering Research Group at

University of Newcastle and currently leading an

Australian Research Council funded project in feature model based software

product line engineering. Prior to her academic career she had been a senior

software engineer and system analyst in software engineering industry for

more than 10 years.

Author’s formal

photo

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

925

