
  

 

Abstract—An MX-CIF quadtree is a variant of 

quadtreewhich is for efficient spatial querysuch as whether 

objects are included by a spatial area. When query objects are 

indexed, a primary result withcandidates which may intersect 

the query rectanglewill be reported to have asuccessional 

precise inspection.We saved time from inspecting each of the 

objectsintensively.The fewer the candidates are reported to the 

exact query; the less the timeis used to accomplish a query.In 

this paper, we propose an improved MX-CIF quadtree, 

compared with the original MX-CIF quadtree.A filter with our 

structure will decrease the failure rate of result, that is, a query 

will get fewer uncertain objects, the mechanism of which 

accelerates the secondary query. Compare to original MX-CIF 

quadtree, with polygon data given by JTS Topology Suite 

(JTS)[1], 42.1%~67.5% incorrect resultswere filtered outby our 

improved MX-CIF quadtree,and its cost of tree-building timeis 

only slightly higher than the original MX-CIF quadtree. 

 
Index Terms—Distributed systems, recursive algorithm, 

spatial data structure, spatial index.  

 

I. INTRODUCTION 

MX-CIF quadtree was originally proposed in [2], and 

extensive literature available [3]-[5].It is designed for a 

dynamic environment [5]. A distributed system based on 

MX-CIF quadtree has much less index-structure updates and 

traffic cost than system based on R-tree, which is 

demonstrated in [6]. Though MX-CIF quadtree has 

advantages over R-tree in a distributed environment, as a 

filter, it still needs to be more accuracy to speed up the 

precise queries. In Section 2, the MX-CIF quadtree structure 

is introduced. An implementation example of MX-CIF 

quadtree is given in Section 3. Improved MX-CIF quadtree is 

proposed in Section 4. Finally, experimental result of the 

improvement will be shown in Section 5. 

 

II. MX-CIF QUADTREE 

MX-CIF quadtree is a variant of quadtree data structure 

which supports area-based query. It is designed for storing a 

set of rectangles in a dynamic environment. Here we review 

the algorithm and structure based on [2],[4], [5]. The region 

of every node is one of the four quadrants of the region of the 

parent node. Comparing to other quadtrees, in an MX-CIF 

quadtree, each rectangle inserted to the quadtree node that 
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contains the rectangle totally, and more than one rectangle can 

be associated with both leaf node and nonleaf node.There is 

no limitation about the number of the rectangles associated to 

a node.The two-dimensional square space is considered to be 

decomposed into four sub-squares with equal area 

recursively. Subdivision stops when there is no more 

rectangles contained in a node or the depth of the tree gets to 

a set value. The planar partition and structure is given by Fig. 

1. 

 
(a) 

 
(b) 

Fig. 1. The planar partition (a) and structure (b) of an MX-CIF quadtree for 

rectangles 

The followings are the properties of MX-CIF quadtree. 

 Rectangle of polygons allows association with a leaf 
or a nonleaf node. 

 A rectangle will be associated with only one node. 
Once a rectangle is associated with a node, say N, 
then it will never be split to any sub nodes of N. For 
example, in Fig. 1, rectangle 6 overlaps node NW and 
its sub-nodes, but it is only associated with node NW. 

 

III. A VIABLE IMPLEMENTATION OF MX-CIF QUADTREE 

MX-CIF quadtree is used by JTS [7] for judging whether 

polygons are nested with the usage of [8].  

A node of MX-CIF quadtree in JTS including five 

elements listed as follows: 

 Center, the centric coordinate of a node’s rectangle. 

 MBR, or say minimumboundingrectangle,the lower 
left and upper right corner’s coordinate of a node’s 
extent. 

 Items, the coordinates of every polygon associated 
with a node. 

 Level, the level of an MX-CIF quadtree the node 
consists in. The level number is the power of two for 
the size of the node’sMBR. 

 Sub-node, points to the sub nodes of the node. 
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To build an MX-CIF quadtree, first all of the 

polygons’MBRsarecalculated, an MBR of a polygon is a 

bounding box that is created with the minimum and 

maximum x and y coordinate of the polygon. With a 

polygon’s MBR, which node of the quadtree that the polygon 

should be associated to will be found out by making query to 

the minimum node who’s MBR contains the polygon’s MBR. 

Once all of the polygons are addedto the nodesthey are 

associated to, an MX-CIF quadtree is built. 

Following is an example with four polygons (Fig. 2).  

Assume there are four polygons A, B, C, D. The planar 

partition is given by Fig. 2, and the structure of the quadtree 

is given by Fig. 3.  

 

Fig. 2. The planar partition of an MX-CIF quadtree with polygon A, B, C and 

D 

 

Fig. 3. The structure of the quadtree shown in Fig. 2. 

Following is the MBR of these polygons: 

A: (28, -53) (47, -23) 

B: (55, -40) (68, -26) 

C: (5, -27) (20, -12) 

D: (1, -16) (10, -8) 

Fig. 3 shows that the value of the MBR in every node is the 

sum of the range of all its sub-nodes below.Level0is 

considered asthelowestlevelofthetree.The program judges 

overlap by comparing every polygon’s MBR with every 

node’s MBR. For example, to judge if there is any polygon 

overlapped polygon C, the program will first use Polygon C’s 

MBR(5, -27)(20, -12)to compare with Node 3’s MBR (0, 0) 

(68, 68). According to the coordinates, Polygon C is covered 

by Node 1, so add the polygons in Node 1 (i.e. A, B) to a 

candidate list then keep on comparing with all the nodes not 

null. When the recursive is finished, all the four polygons 

will be added to the list, because the MBR of Polygon C 

overlapped with the nodes’ MBR they associated to. Now the 

primary filter’s work is finished. Then the secondary filter is 

going to judge if the polygons are nested exactly.  

There is a problem in the primary filter. All the MBR of 

polygons in Node 3 are not overlapped with polygon C, but 

they still be added to the list. This will lay a burden on the 

secondary filter, the more the objects report to the exact 

query; the more the time will be used to finish the inquiry. 

 

IV. IMPROVEMENT OF THE SPEED PERFORMANCE BY 

RECURSIVE DIVISION OF MBRS 

To decrease candidates generated by the primary filter,a 

“Region-MBR” element is proposed to add into a node of an 

MX-CIF quadtree structure. The Region-MBR is the sum of 

the range of the polygons only in the node itself. Improved 

quadtree structure is given by Fig. 4. When indexing spatial 

objects with the improved MX-CIF quadtree structure, first, 

which level and which node in a quadtree the object should 

be add to, will be calculated, the algorism follows to the 

original MX-CIF quadtree structure. After adding the object 

to a node, the “Region-MBR” will be calculated, if the object 

is the first one that be added into the node, then the value of 

the MBR of the object will be the value of the Region-MBR 

of the node. Once there are more than one objects added into 

a node, there are two cases.  

 

Fig. 4. The structure of improved quadtree. 

If the MBR of the new object added into the node that is 

including the Region-MBR of the node, nothing will be 

changed for the Region-MBR, else, the area of the 

Region-MBR will be enlarged to include the new object.    

When executing query with a search window, first we pick 

up the non-null node(s) come from the four sub-nodes of the 

root, then judge if there is an overlap between the search 

window and all the picked up nodes MBR one by one, the 

overlapped node will be kept on judgment if the 

Region-MBR of the node is overlapped by the search 

window. Because of the area of the MBR of a node includes 

all the objects’ MBR indexed in every sub-nodes in every 

level below,the program will ignore the sub-nodes of a node 
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which does not overlapped by the search window. Else the 

program will keep on collecting objects in all the valid nodes 

recursively.  

The planar partition of the improved MX-CIF quadtreethat 

includes polygon A, B, C and D is shown in Fig. 5. The black 

border of the polygons represents the area of the 

Region-MBR of every node. Both of polygon A and B are 

associated with node 3, so the value of the Region-MBR of 

node 3 is, lower left point: (28, -53), upper right point: (68, 

-23), comes from the lower left point’s X-Y coordinate and 

the upper right point’s Y coordinate of polygon A and the 

upper right point’s X coordinate of polygon B. Both of Node 

30 and Node 302 are associated with only one polygon, so the 

value of their Region-MBR is equal to their polygon’s MBR.  

From Fig. 5 we see that polygon A and B will not be included 

as a result, because their node’s Region-MBR(28, -53)(68, 

-23) is not overlapped by Polygon C’s MBR(5, -27)(20, -12). 

Thus reduce the burden of the secondary filter.  

Here we have a small experiment to prove that use our 

structure will reduce the results compare with the original 

MX-CIF quadtree.Plot (a) of Fig. 6 is a plot of a polygon 

dataset, plot (b) is a plot of the MBR of every inner hole of 

the polygon. The test is going to find the rectangle(s) 

overlap(s) the circled one in all the 30 rectangles. The 

comparison between MX-CIF quadtree and our structure is 

given by Fig. 7, which shows that the result given by 

MX-CIF quadtreeincludes 10 rectangles while our approach 

gives only one, the circled rectangle overlaps its self. We see 

that the right answer should be 0.The reason why the result of 

both of the two structures includes the circled rectangle itself 

is because all the 30 rectangles were sent to be judgment with 

the circled one includes itself. 

 

Fig. 5. The planar partition of an MX-CIF quadtree with polygon A, B, C and 

D 

 
(a)                          (b) 

Fig. 6. A plot of a polygon with its inner holes’ MBRs 

 
(a)                           (b) 

Fig. 7. Result comparison between MX-CIF quadtree (a) and improved 

MX-CIF quadtree (b) 

The reason of the two results is so different is because of 

the Region-MBR. Fig. 8 shows the polygons of result and 

their associated node’s MBR. Each node and its polygons are 

painted with different color, the black lines are split lines of 

the structure. We know from the figure that all the colored 

MBRs are intersecting with the circled one. In the original 

MX-CIF quadtree, all of the node’s MBR intersect the search 

window; their associated polygons will be added as a 

result.Thus all the polygons in Fig. 8 are added as a result.But 

in our improved structure, only the polygon intersecting both 

of a node’s MBR and Region-MBR can be added as a result. 

Fig. 9 shows the Region-MBR of the nodes which the 

polygons associate to.Only the circled Region-MBR 

intersects the search window, so it will be the only one added 

as a result. 

 

Fig. 8. Polygons of result and their node’s MBR 

 

Fig. 9. Polygons of result and their node’s Region-MBR 
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Algorithm insertRegionMBR (Node node,  Rectangle MBR) 

if node.Region-MBR:≠ null then 

Enlarges the boundary of node.Region-MBR so that itcontains 
MBR. Does nothing if MBRis within the boundaries; 

else 
node.Region-MBR:=MBR; 
end if; 
end insertRegionMBR; 

Fig. 10. The algorithm of insertRegionMBR 

Thealgorithm to calculate the value of Region-MBR of a 

node when add an associated MBRis listed in Fig. 10. In the 

expansion, the Region-MBRextends to include an MBR out 

of its boundary and ignores the smaller ones. The value of 

Region-MBR should be calculated every time when add an 

MBR into a node. 

Algorithm query (Node node, RectanglesearchMBR) 

ifnode.MBRinersectssearchMBRdo 

ifnode.Region-MBR intersects searchMBRdo 

add all the MBRs associated with node into a list defined 

out of this algorithm; 

end if; 

        for each not null sub-node of node do 

  query recursively; 

end for; 

end if; 

end query 

Fig. 11. The algorithm of query 

Another algorithm for making a query with Region-MBR 

is listed in Fig. 11. Compare to original query method, this 

algorithm adds one more judgment about if the Region-MBR 

of a node is overlapped with the search rectangle. Though a 

search rectangle intersects with the MBR of a node, but not 

intersects with the Region-MBR of the node, the objects 

associated with the node will not be added to the results. 

Thusthis reduces the failure rate of result. 

The comparison of tree-building and query will give in 

section 5. 

 

V. EXPERIMENTAL RESULTS  

In this section, we compare the performance of our 

proposed approach with the original MX-CIF quadtree. The 

experiment is realized with a nested judgment method[9]of 

JTS. This method is used to test if any polygons are nested 

inside another polygon in a dataset. An MX-CIF 

quadtreestructure is used as a filter to speed up the secondary 

filter of the exact judgment. The process of the nested 

judgment is introduced as follows: first build an MX-CIF 

quadtree, then make query for the result of polygons in the 

index intersected with the first polygon, collecting the 

candidate polygons as a list then report them to the secondary 

filter. Then query for the second polygon, then the third and 

so forth till the last one. The time cost of index, fist query, 

second query and the number of reported polygon by the first 

query are compared between the original and the improved 

MX-CIF quadtree. The dataset we used in this experiment 

includes five WKT (well-known text) data files for polygons 

with different sizes. Information about the dataset is given in 

Fig. 12. 

File name Image Holes in polygon 

A.wkt 

 

30 

B.wkt 

 

332 

C.wkt 

 

789 

D.wkt 

 

3276 

E. wkt 

 

6937 

Fig. 12. Information of the dataset used in experiment. 

TABLE I: RESULT OF EXPERIMENT 

File name Structure Index time 
The First Query 

time 

Number of 

Reported Polygons 

The Second 

Query time 
Total time 

A.wkt 
MX-CIF quadtree 0.0388 ms 0.0318 ms 197 0.0209 ms 0.0915 ms 

Improved MX-CIF quadtree 0.0409 ms 0.0234 ms 64 0.0146 ms 0.0789 ms 

B.wkt 
MX-CIF quadtree 0.1812 ms 0.8993 ms 9538 0.7692 ms 1.8497 ms 

Improved MX-CIF quadtree 0.1826 ms 0.5987 ms 4156 0.6645 ms 1.4458 ms 

C.wkt 
MX-CIF quadtree 0.3317 ms 3.1356 ms 38248 2.6131 ms 6.0804 ms 

Improved MX-CIF quadtree 0.3384 ms 2.0763 ms 22144 2.0665 ms 4.4812 ms 

D.wkt 
MX-CIF quadtree 1.5398 ms 23.6822 ms 256831 17.9644 ms 43.1864 ms 

Improved MX-CIF quadtree 1.5790 ms 12.1951 ms 126061 13.4892 ms 27.2633 ms 

E.wkt 
MX-CIF quadtree 15.2138 ms 67.2680 ms 757729 66.4776 ms 148.9594 ms 

Improved MX-CIF quadtree 16.2269 ms 47.0981 ms 344162 59.1549 ms 122.4799 ms 
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TABLE II: RELATIVE PERCENTAGE DETAILS OF THE RESULT 

File 

name 
Index time The First Query time Number of Reported Polygons The Second Query time Total time 

A.wkt + 5.4123% - 26.4150% -67.5126% -30.1435% -13.7704% 

B.wkt + 0.7726% - 33.4259% -56.4269% -13.6115% -21.8359% 

C.wkt + 2.0198% - 33.7830% -42.1041% -20.9176% -26.3009% 

D.wkt + 2.5457% - 48.5052% -50.9167% -24.9114% -36.8706% 

E.wkt + 6.6590% - 29.9843% -54.5798% -11.0152% -17.7738% 

 

The time costs of result given by TABLE I are average 

values, which are calculated by twenty time queries.  

TABLE II shows the relative percentage details of time 

cost and polygons reported. 

The results indicate that 42.1041%~67.5126% of 

candidates are deducted to be reported by the first query in an 

improved MX-CIF quadtree, the indexing time raised by 

0.7726% to 6.6590%, but the total query time effectively 

reduced by 13.7704% to 26.3009%.Due to our proposed 

approach adds one more parameter to every non-empty node 

and regulates the value of the parameter when add new object 

to the node  to make the result more accurate, it uses a little 

more tree-building time,but that is a trade-offwith the total 

query’s performance. 

 

VI. CONCLUSION 

We have introduced an improved MX-CIF quadtreethat 

provides more precisereduced results to speed up exact 

queries based on those results.The experiment demonstrated 

and revealed that our proposed structure reduces the sum of 

time cost in total for indexing and query. Because of our new 

MX-CIF quadtree creates one more element in structure, the 

indexing time rises, but instead of the increased time cost, 

time cost of query is greatly saved. In our experiment, from 

13.7704% to 36.8706% of total cost of time is reduced, 

compared with the original MX-CIF quadtree. 

In our future work, we shall investigate the performance of 

our improved structure with other systematic tests such as 

The SEQUOIA 2000 storage benchmark [10]. 
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