

Abstract—An MX-CIF quadtree is a variant of

quadtreewhich is for efficient spatial querysuch as whether

objects are included by a spatial area. When query objects are

indexed, a primary result withcandidates which may intersect

the query rectanglewill be reported to have asuccessional

precise inspection.We saved time from inspecting each of the

objectsintensively.The fewer the candidates are reported to the

exact query; the less the timeis used to accomplish a query.In

this paper, we propose an improved MX-CIF quadtree,

compared with the original MX-CIF quadtree.A filter with our

structure will decrease the failure rate of result, that is, a query

will get fewer uncertain objects, the mechanism of which

accelerates the secondary query. Compare to original MX-CIF

quadtree, with polygon data given by JTS Topology Suite

(JTS)[1], 42.1%~67.5% incorrect resultswere filtered outby our

improved MX-CIF quadtree,and its cost of tree-building timeis

only slightly higher than the original MX-CIF quadtree.

Index Terms—Distributed systems, recursive algorithm,

spatial data structure, spatial index.

I. INTRODUCTION

MX-CIF quadtree was originally proposed in [2], and

extensive literature available [3]-[5].It is designed for a

dynamic environment [5]. A distributed system based on

MX-CIF quadtree has much less index-structure updates and

traffic cost than system based on R-tree, which is

demonstrated in [6]. Though MX-CIF quadtree has

advantages over R-tree in a distributed environment, as a

filter, it still needs to be more accuracy to speed up the

precise queries. In Section 2, the MX-CIF quadtree structure

is introduced. An implementation example of MX-CIF

quadtree is given in Section 3. Improved MX-CIF quadtree is

proposed in Section 4. Finally, experimental result of the

improvement will be shown in Section 5.

II. MX-CIF QUADTREE

MX-CIF quadtree is a variant of quadtree data structure

which supports area-based query. It is designed for storing a

set of rectangles in a dynamic environment. Here we review

the algorithm and structure based on [2],[4], [5]. The region

of every node is one of the four quadrants of the region of the

parent node. Comparing to other quadtrees, in an MX-CIF

quadtree, each rectangle inserted to the quadtree node that

Manuscript received August 10, 2012; revised October 1, 2012.

W. Yusi is with the Computer Science, Graduate School of Science and

Engineering, Shimane University Matsue, Japan (e-mail: wayis@live.com).

S. Tanaka is with the Computer Science, Faculty of Science and

Engineering, Shimane University Matsue, Japan (e-mail:

tanaka@cis.shimane-u.ac.jp).

contains the rectangle totally, and more than one rectangle can

be associated with both leaf node and nonleaf node.There is

no limitation about the number of the rectangles associated to

a node.The two-dimensional square space is considered to be

decomposed into four sub-squares with equal area

recursively. Subdivision stops when there is no more

rectangles contained in a node or the depth of the tree gets to

a set value. The planar partition and structure is given by Fig.

1.

(a)

(b)

Fig. 1. The planar partition (a) and structure (b) of an MX-CIF quadtree for

rectangles

The followings are the properties of MX-CIF quadtree.

 Rectangle of polygons allows association with a leaf
or a nonleaf node.

 A rectangle will be associated with only one node.
Once a rectangle is associated with a node, say N,
then it will never be split to any sub nodes of N. For
example, in Fig. 1, rectangle 6 overlaps node NW and
its sub-nodes, but it is only associated with node NW.

III. A VIABLE IMPLEMENTATION OF MX-CIF QUADTREE

MX-CIF quadtree is used by JTS [7] for judging whether

polygons are nested with the usage of [8].

A node of MX-CIF quadtree in JTS including five

elements listed as follows:

 Center, the centric coordinate of a node’s rectangle.

 MBR, or say minimumboundingrectangle,the lower
left and upper right corner’s coordinate of a node’s
extent.

 Items, the coordinates of every polygon associated
with a node.

 Level, the level of an MX-CIF quadtree the node
consists in. The level number is the power of two for
the size of the node’sMBR.

 Sub-node, points to the sub nodes of the node.

Performance Improvement of MX-CIF Quadtree by

Reducing the Query Results

Wei Yusi and ShojiroTanaka

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

902

To build an MX-CIF quadtree, first all of the

polygons’MBRsarecalculated, an MBR of a polygon is a

bounding box that is created with the minimum and

maximum x and y coordinate of the polygon. With a

polygon’s MBR, which node of the quadtree that the polygon

should be associated to will be found out by making query to

the minimum node who’s MBR contains the polygon’s MBR.

Once all of the polygons are addedto the nodesthey are

associated to, an MX-CIF quadtree is built.

Following is an example with four polygons (Fig. 2).

Assume there are four polygons A, B, C, D. The planar

partition is given by Fig. 2, and the structure of the quadtree

is given by Fig. 3.

Fig. 2. The planar partition of an MX-CIF quadtree with polygon A, B, C and

D

Fig. 3. The structure of the quadtree shown in Fig. 2.

Following is the MBR of these polygons:

A: (28, -53) (47, -23)

B: (55, -40) (68, -26)

C: (5, -27) (20, -12)

D: (1, -16) (10, -8)

Fig. 3 shows that the value of the MBR in every node is the

sum of the range of all its sub-nodes below.Level0is

considered asthelowestlevelofthetree.The program judges

overlap by comparing every polygon’s MBR with every

node’s MBR. For example, to judge if there is any polygon

overlapped polygon C, the program will first use Polygon C’s

MBR(5, -27)(20, -12)to compare with Node 3’s MBR (0, 0)

(68, 68). According to the coordinates, Polygon C is covered

by Node 1, so add the polygons in Node 1 (i.e. A, B) to a

candidate list then keep on comparing with all the nodes not

null. When the recursive is finished, all the four polygons

will be added to the list, because the MBR of Polygon C

overlapped with the nodes’ MBR they associated to. Now the

primary filter’s work is finished. Then the secondary filter is

going to judge if the polygons are nested exactly.

There is a problem in the primary filter. All the MBR of

polygons in Node 3 are not overlapped with polygon C, but

they still be added to the list. This will lay a burden on the

secondary filter, the more the objects report to the exact

query; the more the time will be used to finish the inquiry.

IV. IMPROVEMENT OF THE SPEED PERFORMANCE BY

RECURSIVE DIVISION OF MBRS

To decrease candidates generated by the primary filter,a

“Region-MBR” element is proposed to add into a node of an

MX-CIF quadtree structure. The Region-MBR is the sum of

the range of the polygons only in the node itself. Improved

quadtree structure is given by Fig. 4. When indexing spatial

objects with the improved MX-CIF quadtree structure, first,

which level and which node in a quadtree the object should

be add to, will be calculated, the algorism follows to the

original MX-CIF quadtree structure. After adding the object

to a node, the “Region-MBR” will be calculated, if the object

is the first one that be added into the node, then the value of

the MBR of the object will be the value of the Region-MBR

of the node. Once there are more than one objects added into

a node, there are two cases.

Fig. 4. The structure of improved quadtree.

If the MBR of the new object added into the node that is

including the Region-MBR of the node, nothing will be

changed for the Region-MBR, else, the area of the

Region-MBR will be enlarged to include the new object.

When executing query with a search window, first we pick

up the non-null node(s) come from the four sub-nodes of the

root, then judge if there is an overlap between the search

window and all the picked up nodes MBR one by one, the

overlapped node will be kept on judgment if the

Region-MBR of the node is overlapped by the search

window. Because of the area of the MBR of a node includes

all the objects’ MBR indexed in every sub-nodes in every

level below,the program will ignore the sub-nodes of a node

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

903

which does not overlapped by the search window. Else the

program will keep on collecting objects in all the valid nodes

recursively.

The planar partition of the improved MX-CIF quadtreethat

includes polygon A, B, C and D is shown in Fig. 5. The black

border of the polygons represents the area of the

Region-MBR of every node. Both of polygon A and B are

associated with node 3, so the value of the Region-MBR of

node 3 is, lower left point: (28, -53), upper right point: (68,

-23), comes from the lower left point’s X-Y coordinate and

the upper right point’s Y coordinate of polygon A and the

upper right point’s X coordinate of polygon B. Both of Node

30 and Node 302 are associated with only one polygon, so the

value of their Region-MBR is equal to their polygon’s MBR.

From Fig. 5 we see that polygon A and B will not be included

as a result, because their node’s Region-MBR(28, -53)(68,

-23) is not overlapped by Polygon C’s MBR(5, -27)(20, -12).

Thus reduce the burden of the secondary filter.

Here we have a small experiment to prove that use our

structure will reduce the results compare with the original

MX-CIF quadtree.Plot (a) of Fig. 6 is a plot of a polygon

dataset, plot (b) is a plot of the MBR of every inner hole of

the polygon. The test is going to find the rectangle(s)

overlap(s) the circled one in all the 30 rectangles. The

comparison between MX-CIF quadtree and our structure is

given by Fig. 7, which shows that the result given by

MX-CIF quadtreeincludes 10 rectangles while our approach

gives only one, the circled rectangle overlaps its self. We see

that the right answer should be 0.The reason why the result of

both of the two structures includes the circled rectangle itself

is because all the 30 rectangles were sent to be judgment with

the circled one includes itself.

Fig. 5. The planar partition of an MX-CIF quadtree with polygon A, B, C and

D

(a) (b)

Fig. 6. A plot of a polygon with its inner holes’ MBRs

(a) (b)

Fig. 7. Result comparison between MX-CIF quadtree (a) and improved

MX-CIF quadtree (b)

The reason of the two results is so different is because of

the Region-MBR. Fig. 8 shows the polygons of result and

their associated node’s MBR. Each node and its polygons are

painted with different color, the black lines are split lines of

the structure. We know from the figure that all the colored

MBRs are intersecting with the circled one. In the original

MX-CIF quadtree, all of the node’s MBR intersect the search

window; their associated polygons will be added as a

result.Thus all the polygons in Fig. 8 are added as a result.But

in our improved structure, only the polygon intersecting both

of a node’s MBR and Region-MBR can be added as a result.

Fig. 9 shows the Region-MBR of the nodes which the

polygons associate to.Only the circled Region-MBR

intersects the search window, so it will be the only one added

as a result.

Fig. 8. Polygons of result and their node’s MBR

Fig. 9. Polygons of result and their node’s Region-MBR

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

904

Algorithm insertRegionMBR (Node node, Rectangle MBR)

if node.Region-MBR:≠ null then

Enlarges the boundary of node.Region-MBR so that itcontains
MBR. Does nothing if MBRis within the boundaries;

else
node.Region-MBR:=MBR;
end if;
end insertRegionMBR;

Fig. 10. The algorithm of insertRegionMBR

Thealgorithm to calculate the value of Region-MBR of a

node when add an associated MBRis listed in Fig. 10. In the

expansion, the Region-MBRextends to include an MBR out

of its boundary and ignores the smaller ones. The value of

Region-MBR should be calculated every time when add an

MBR into a node.

Algorithm query (Node node, RectanglesearchMBR)

ifnode.MBRinersectssearchMBRdo

ifnode.Region-MBR intersects searchMBRdo

add all the MBRs associated with node into a list defined

out of this algorithm;

end if;

 for each not null sub-node of node do

 query recursively;

end for;

end if;

end query

Fig. 11. The algorithm of query

Another algorithm for making a query with Region-MBR

is listed in Fig. 11. Compare to original query method, this

algorithm adds one more judgment about if the Region-MBR

of a node is overlapped with the search rectangle. Though a

search rectangle intersects with the MBR of a node, but not

intersects with the Region-MBR of the node, the objects

associated with the node will not be added to the results.

Thusthis reduces the failure rate of result.

The comparison of tree-building and query will give in

section 5.

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of our

proposed approach with the original MX-CIF quadtree. The

experiment is realized with a nested judgment method[9]of

JTS. This method is used to test if any polygons are nested

inside another polygon in a dataset. An MX-CIF

quadtreestructure is used as a filter to speed up the secondary

filter of the exact judgment. The process of the nested

judgment is introduced as follows: first build an MX-CIF

quadtree, then make query for the result of polygons in the

index intersected with the first polygon, collecting the

candidate polygons as a list then report them to the secondary

filter. Then query for the second polygon, then the third and

so forth till the last one. The time cost of index, fist query,

second query and the number of reported polygon by the first

query are compared between the original and the improved

MX-CIF quadtree. The dataset we used in this experiment

includes five WKT (well-known text) data files for polygons

with different sizes. Information about the dataset is given in

Fig. 12.

File name Image Holes in polygon

A.wkt

30

B.wkt

332

C.wkt

789

D.wkt

3276

E. wkt

6937

Fig. 12. Information of the dataset used in experiment.

TABLE I: RESULT OF EXPERIMENT

File name Structure Index time
The First Query

time

Number of

Reported Polygons

The Second

Query time
Total time

A.wkt
MX-CIF quadtree 0.0388 ms 0.0318 ms 197 0.0209 ms 0.0915 ms

Improved MX-CIF quadtree 0.0409 ms 0.0234 ms 64 0.0146 ms 0.0789 ms

B.wkt
MX-CIF quadtree 0.1812 ms 0.8993 ms 9538 0.7692 ms 1.8497 ms

Improved MX-CIF quadtree 0.1826 ms 0.5987 ms 4156 0.6645 ms 1.4458 ms

C.wkt
MX-CIF quadtree 0.3317 ms 3.1356 ms 38248 2.6131 ms 6.0804 ms

Improved MX-CIF quadtree 0.3384 ms 2.0763 ms 22144 2.0665 ms 4.4812 ms

D.wkt
MX-CIF quadtree 1.5398 ms 23.6822 ms 256831 17.9644 ms 43.1864 ms

Improved MX-CIF quadtree 1.5790 ms 12.1951 ms 126061 13.4892 ms 27.2633 ms

E.wkt
MX-CIF quadtree 15.2138 ms 67.2680 ms 757729 66.4776 ms 148.9594 ms

Improved MX-CIF quadtree 16.2269 ms 47.0981 ms 344162 59.1549 ms 122.4799 ms

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

905

TABLE II: RELATIVE PERCENTAGE DETAILS OF THE RESULT

File

name
Index time The First Query time Number of Reported Polygons The Second Query time Total time

A.wkt + 5.4123% - 26.4150% -67.5126% -30.1435% -13.7704%

B.wkt + 0.7726% - 33.4259% -56.4269% -13.6115% -21.8359%

C.wkt + 2.0198% - 33.7830% -42.1041% -20.9176% -26.3009%

D.wkt + 2.5457% - 48.5052% -50.9167% -24.9114% -36.8706%

E.wkt + 6.6590% - 29.9843% -54.5798% -11.0152% -17.7738%

The time costs of result given by TABLE I are average

values, which are calculated by twenty time queries.

TABLE II shows the relative percentage details of time

cost and polygons reported.

The results indicate that 42.1041%~67.5126% of

candidates are deducted to be reported by the first query in an

improved MX-CIF quadtree, the indexing time raised by

0.7726% to 6.6590%, but the total query time effectively

reduced by 13.7704% to 26.3009%.Due to our proposed

approach adds one more parameter to every non-empty node

and regulates the value of the parameter when add new object

to the node to make the result more accurate, it uses a little

more tree-building time,but that is a trade-offwith the total

query’s performance.

VI. CONCLUSION

We have introduced an improved MX-CIF quadtreethat

provides more precisereduced results to speed up exact

queries based on those results.The experiment demonstrated

and revealed that our proposed structure reduces the sum of

time cost in total for indexing and query. Because of our new

MX-CIF quadtree creates one more element in structure, the

indexing time rises, but instead of the increased time cost,

time cost of query is greatly saved. In our experiment, from

13.7704% to 36.8706% of total cost of time is reduced,

compared with the original MX-CIF quadtree.

In our future work, we shall investigate the performance of

our improved structure with other systematic tests such as

The SEQUOIA 2000 storage benchmark [10].

REFERENCES

[1] Java Topology Suite-GoldenMap. [Online]. Available:

http://www.vividsolutions.com/jts/caseStudy_largePolyValidation.ht

m

[2] G. Kedem, “The quad-CIF tree: A data structure for hierarchical

on-line algorithms,” Proc. 19th Conference on Design Automation, pp.

352-357, 1982.

[3] J.-P. Dittrich and B. Seeger, “Data redundancy and duplicate detection

in spatial join Processing,” Proc. 16th International Conference on

Data Engineering, pp. 535, 2000.

[4] H. Samet, “The design and analysis of spatial data structures,”

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, pp. 200,

1990.

[5] E. Tanin, A. Harwood, and H. Samet, “Using a distributed quadtree

index in peer-to-peer networks,” The VLDB Journal-The International

Journal on Very Large Data Bases, vol. 16 no. 2, pp. 165-178, 2007.

[6] R. Zimmermann, W.-S. Ku, and W.-C. Chu, “Efficient query routing in

distributed spatial databases,” Proc. 12th ACM Int’l Symp. Geographic

Information Systems, pp. 176–183, 2004.

[7] The Concept. Characteristics and System Architecture. [Online].

Available: http://www.vividsolutions.com/jts/JTSHome.htm

[8] Source Forge.net. Repast. Repast-Interest. [Online]. Available:

http://www.vividsolutions.com/jts/javadoc/com/vividsolutions/jts/ind

ex/quadtree/Quadtree.html

[9] Quadtree Nested Ring Tester. [Online]. Available:

http://www.vividsolutions.com/jts/javadoc/com/vividsolutions/jts/ope

ration/valid/QuadtreeNestedRingTester.html

[10] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith, “The SEQUOIA

2000 storage benchmark,” Proc. 1993 ACM-SIGMOD Int. Conf.

Management of Data, Washington DC, pp. 2-11, 1993.

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

906

http://www.vividsolutions.com/jts/JTSHome.htm
http://www.vividsolutions.com/jts/javadoc/com/vividsolutions/jts/index/quadtree/Quadtree.html
http://www.vividsolutions.com/jts/javadoc/com/vividsolutions/jts/index/quadtree/Quadtree.html
http://www.vividsolutions.com/jts/javadoc/com/vividsolutions/jts/operation/valid/QuadtreeNestedRingTester.html
http://www.vividsolutions.com/jts/javadoc/com/vividsolutions/jts/operation/valid/QuadtreeNestedRingTester.html

