

Abstract—In this paper we propose a new array sorting

algorithm with average and best time complexity of O(n). Its

best, worst and average time complexity has been analysed.

Also the difficulty of applying this algorithm with strings has

been discussed and its solution too is found. The limitation of

the solution is also analysed.

Index Terms—Sorting algorithm, interpolation, sub-arrays,

time complexity, strings.

I. INTRODUCTION

There are basically two kind of sorting

algorithms,)(2nO and (())O n Log n .)(2nO algorithms

takes more time but less while (())O n Log n algorithms

takes less time but more space and as described by Knuth[1].

So)(2nO algorithms are preferred for small arrays and

(())O n Log n for large arrays There are sorting

algorithms with O(n) time complexity too like Radix sort but

with limitation on the range of the data.

A new sorting algorithm which derives its motivation from

interpolation search is proposed [2]-[5]. It shows a high

probability to show O(n) time complexity for a well

distributed data. The algorithm has a disadvantage of large

code size and taking a lot of RAM memory for sorting. Also,

it can‟t be used to sort large strings.

II. EXPLANATION OF THE ALGORITHM

The algorithm can be better understood if preceded by an

example. So this section will aim at explaining the algorithm

with an example and then discuss how to implement the same

in reality.

Consider the following unsorted array of size 15:

The backbone of the sorting algorithm is the interpolation

formula as described by GH Gonnet [4]:

([] [])
[] (1)

([] [])

DATA i DATA MIN
IPOS i SPOS N

DATA MAX DATA MIN

where,

IPOS[i] → Interpolated position of the ith element of the

unsorted array.

SPOS → Starting index of the array.

N → Number of elements in the array

Manuscript received June 24, 2012; revised August 7, 2012.

Gourav Saha is with the Madras Institute of Technology, Anna University,

India (e-mail: sahahotmail@hotmail.com).

DATA[i] → Data at the ith position of the unsorted array

DATA[MIN] → Smallest data of the array.

DATA[MAX] → Largest data of the array.

It is to be noted that the division performed in the formula

is integer division, i.e. decimal part is ignored.

For the given array,

SPOS=1

N=15

DATA[MAX]=80

DATA[MIN]=9

Substituting these values in the interpolation formula we

get the interpolated positions of the elements as,

Rearranging the array from smaller to bigger IPOS we get:

So we see that most of the elements got sorted but there are

few groups of elements whose IPOS values turned out to be

the same. These groups of elements are treated as sub-arrays.

The above technique is applied on each of these sub-arrays

until we get no further sub-arrays.

To achieve the same algorithm in reality we have to find a

way to “rearrange the array from smaller to bigger IPOS”.

Two structure types have to be used to do the above

effectively. They are:

A. NODE1

The data type of the field DATA is that of the data being

sorted.

RIGHT is a pointer of type NODE1.

B. NODE2

START is a pointer of type NODE1.

SPOS and N are integer variables.

An array “BEG” of type NODE2 is used to store the

information of the sub-arrays yet to be sorted. The starting

index of the sub-array in the main array is stored in SPOS

while N contains the number of elements in the sub-array.

The information of the sub-array to be sorted is always

present in BEG [1], i.e. the first element of BEG. Using the

Interpolation Sort and Its Implementation with Strings

Gourav Saha and S. Selvam Raju

772

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

information of the sub-array present in BEG[1] the sub-array

is sorted.

To do this another array “SUBARRAY” of type NODE2 is

used. The size of SUBARRAY is equal to the BEG [1]. N, i.e.

number of elements in the sub-array to be sorted. Each and

every element of SUBARRAY represents an interpolated

position. For a sub-array with N elements there are N

possible interpolated positions possible, so the size of

SUBARRAY is equal to the number of elements in the

sub-array. The sub-array to be sorted is traversed to

interpolate the position of the element. The elements are then

stored as a linked list in SUBARRAY according to their

interpolated position. The first element of every linked list is

pointed by the field START of NODE2. The value of N for

every element of SUBARRAY is incremented to represent

the number of nodes in the corresponding linked list.

The linked list of SUBARRAY represent the smaller

sub-arrays created in the process of sorting the main

sub-array. These smaller sub-arrays are transferred to the

actual array sequentially, i.e. starting from the linked list

pointed by the first element of SUBARRAY to the last. Now

the sub-arrays whose number of elements is less than or equal

to 3 is directly sorted using Bubble Sort. Else the information

of the sub-array is stored in the BEG. To do this the

information of these sub-arrays is stored in an array

NEWBEG of type NODE2. Then the information of the

arrays stored in BEG which are yet to be sorted is transferred

to NEWBEG, i.e. all the elements of BEG except BEG [1].

After that the array BEG is deleted and NEWBEG is renamed

as BEG.

So basically the BEG is acting like a stack containing

information of those sub-arrays which are yet to be sorted.

III. THE ALGORITHM

Input: Unsorted array ARRAY[] of size SIZE.

Output: Sorted array ARRAY[] of size SIZE.

INTERSORT (ARRAY[], SIZE)

1) Make an array BEG of type NODE2 and size 1 using

dynamic memory allocation.

2) Set BEG [1].SPOS=1, BEG [1]. N=SIZE and BEG

[1].START=NULL.

3) Set NUM = 1.

4) Repeat steps 5 to 14 while NUM ≠ 0

5) Traverse ARRAY from index BEG [1].SPOS to

BEG[1].SPOS + BEG[1].N – 1 and find the maximum

and the minimum data. Save them as MAX and MIN

respectively.

6) Make an array SUBARRAY of type NODE2 and size

BEG [1]. N using dynamic memory allocation . For each

and every element of SUBARRAY initialize there fields

N=-1 and START=NULL.

7) Set A = 0.

8) Traverse ARRAY from index BEG [1].SPOS to

BEG[1].SPOS + BEG[1]. N – 1 and for each and every

data in this range:

 a) Interpolate the position IPOS of the data in

SUBARRAY using interpolation formula. For

interpolation take SPOS = 1, N = BEG [1].N,

DATA[MIN] = MIN and DATA[MAX]=MAX.

 b) Save the element in the memory location pointed by

SUBARRAY [IPOS].START. To do this create a

variable VAR of type NODE1. Set VAR.DATA =

THE DATA, VAR.RIGHT =

SUBARRAY[IPOS].START. Then Point

SUBARRAY[IPOS].START to VAR.

 c) If SUBARRAY[IPOS]. N = -1 set it to 1. Else

increase it by 1.

 d) If SUBARRAY[IPOS].N = 4 then increment A by 1.

9) Set NUM = NUM + A – 1.

10) Make an array NEWBEG of type NODE2 of size NUM

using dynamic memory allocation.

11) Traverse SUBARRAY and for each and every element

for which N ≠ -1

 a) Set the field SPOS = BEG[1].SPOS for very first

element for which N ≠ -1. For other elements SPOS

= TEMP.

 b) Set TEMP = SPOS + N.

 c) Copy all the data from the memory location pointed

by START to the ARRAY in consecutive array

indices starting from index SPOS in the actual array.

Delete the memory locations pointed by START.

 d) If N<=3 then sort the data in ARRAY using bubble

or insertion sort.

 e) If N>3 copy the element in NEWBEG.

12) Copy all the elements of BEG to NEWBEG except BEG

[1].

13) Delete BEG and SUBARRAY.

14) Set NEWBEG as BEG.

IV. IMPLEMENTATION WITH STRINGS

The interpolation formula is:

[] (1)

([] [])

([] [])

IPOS i SPOS N

DATA i DATA MIN

DATA MAX DATA MIN

The interpolation formula involves arithmetic operations

which is not possible with strings. So before carrying out the

sorting we need to represent each and every string with a

numerical value such that:

1) Numerical value is unique for each string.

2) Lexically greater strings have greater numerical value.

We have,

STRING = “C1 C2 C3………….. C(m-1) Cm”

Is a string of „m‟ characters, where C1, C2, C3…………..

C(m-1), Cm belongs to a domain containing „N‟ characters.

Each character in this domain have a numerical value starting

from „0‟ to „(N-1)‟ depending on there ASCII code. The

character with higher ASCII code has greater numerical

value. Let the numerical value of a character Ci be

represented by A[Ci].

The formula to assign numerical value to the string is:

0 1 2 (1)[1] [2] [3] [] mA C N A C N A C N A Cm N

or

(1)

1

[]
m

i

i

A Ci N

773

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

The above formula is same as the one used to convert

number of any base to base 10. Since each and every number

of a base has an unique decimal representation and

numerically greater number in a base will have numerically

greater decimal representation so, the above formula will

successfully assign numerical values to string meeting the

desired requirement.

So the string “HELLO” whose character domain is all

upper case alphabets will have a numerical value

= 7 26^(0) + 4 26^(-1) + 11 26^(-2) + 11 26^(-3) +

14 26^(-4)

= 7.163822

This method has a limitation.

Consider two strings with the difference only in the ith

character. The
thi character differs lexically by unit 1 only.

The numerical difference of the two string =
)1(iN

However large be “i” an ideal method should be able to

assign separate numerical values to each of these strings. But

each and every compiler has a limit till which it can

differentiate a decimal number. For C compiler it is till 5th

decimal place. So for N=26, i.e. the number of upper case

English alphabets, the compiler won‟t be able to distinguish

between two strings if i>4.

V. CORRECTNESS OF THE ALGORITHM

The necessary and sufficient condition to prove the

correctness of the algorithm is to prove that the interpolation

formula when applied to an array at least create two sub

arrays. In that way the array will finally get sorted.

Proof:

The interpolation formula is:

([] [])
[] (1)

([] [])

DATA i DATA MIN
IPOS i SPOS N

DATA MAX DATA MIN

So IPOS for the minimum element will be SPOS and the

IPOS for the maximum element will be (SPOS+N-1).

So whatever be the IPOS of the other elements of the array

we will be getting two or more sub-arrays.

Hence we prove the correctness of the interpolation sort

algorithm.

VI. ANALYSIS OF BEST AND WORST CASE TIME

COMPLEXITY

The sorting algorithm shows its worst time complexity of

)(2nO for those arrays which when sorted have data

agreeing the following relationship:

[] (1) ([1] [1]) [1]DATA i i DATA i DATA DATA

In such cases for each and every traversal of the whole

array only two sub arrays will be generated, one of size (N-1)

and the other of size 1, where N is the size of the array which

is broken down into sub arrays. Hence
2

)1(* NN

iterations will be required to sort the whole array.

An example of such an array is:

This array when sorted yields:

All the data in the sorted array satisfies the above

relationship.

The best time complexity of O(n) is shown for those arrays

which when sorted have data agreeing the following

relationship:

(1) ([] [1])

[1] []
(1)

([] [1])
[1]

(1)

i DATA N DATA
DATA DATA i

N

i DATA N DATA
DATA

N

In such cases all the elements of the array will be allotted

unique IPOS values and hence the whole array will get sorted

in a single traversal. Hence N iterations will be required to

sort the array.

An example of such an array is:

This array when sorted yields:

All the data in the sorted array satisfies the above

relationship.

It can be easily seen that an unsorted array which gives

)(2nO time complexity is very unlikely while that which

gives O(n) time complexity is very common. Hence this

algorithm has a high tendency to show O(n) time complexity.

VII. AVERAGE TIME COMPLEXITY ANALYSIS

Consider an array with N elements. The number of

iterations needed to sort the array is the sum of the number of

iterations required to traverse the array once to find the

interpolated position of the N elements and the time taken to

sort the sub arrays generated.

The number of iterations required to traverse the array

once to find the interpolated positions of the N elements is N.

If Nnnnn,,.........,, 321 are the number of elements

in the sub arrays generated corresponding to interpolated

positions 1,2,3,………..,N respectively then, the number of

iterations T(N) required to sort the array is given by,

)](......)()()([)(321 NnTnTnTnTNNT (1)

But,

Nnnnn N 321 (2)

There are many possible combinations of

774

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

Nnnnn,,.........,, 321
 which satisfies equation (2). So the

average iterations T(N) required to sort the array is given by,

M

nTnTnTnT
NNT

N

)](......)()()([
)(

321 (3)

where

M → Number of possible combinations of

Nnnnn,,.........,, 321 satisfying equation (2).

So M is basically the number of solutions of equation (2)

such that Nnnnn,,.........,, 321 is between 0 to (N-1).

Now the number of solution of the equation

Nnnnn M 321

where Mnnnn,,.........,, 321 are integers ranging from

0 to N is given by following formula [6],

1

1

NM

M
C (4)

Here M=N so,

NCL
N

N

12

1
 (5)

where,
!

! ()!

n

m

n
C

m n m

Now,

)](......)()()([321 NnTnTnTnT

0 1 2 1[(0) (1) (2) (1)]NK T K T K T K T N

1

0

()
N

i

i

K T i

 (6)

where

iK for i=0,1,2,………….,(N-1) are constants given

by
2 2

2

N i

i
N

K N C

 for i=1,2,3,……..,(N-1) (7)

iK
2 2

2
(1)

N i

N
N C N

 for i=0 (8)

The above formula can be derived by 1n as i in equation

(2) and than finding the number of possible integer solution

of the equation by formula. The result should be multiplied

by N as the solution of equation (2) is symmetric

around Nnnnn,,.........,, 321 .

So using equations (4), (5), (6), (7), (8) we get,

1 2 2

2 1
2

0

1

() () (1) (0)
N N i

N
N

i

N

N
T N N C T i N T

C N

 (9)

Making a fair guess that the average time complexity of the

algorithm is better than O(N*Log(N)) and worse than O(N)

we conclude that the graph of T(N) vs N for the given

algorithm will be between the plot of N*Log(N) and N. Since

the graph of N*Log(N) is fairly linear for large values of N it

will be fair to infer that the plot of T(N) which lies between

N*Log(N) and N is fairly linear for large values of N. So by

One-Point Straight Line formula,

Fig. 1. Graph showing number if iterations needed to sort and array with

algorithm of O(N) and O(N*Log(N)) complexity.

() () () '()T i T N N i T N (10)

where, T‟(N) is the derivative of T(N) with respect to N.

Substituting equation (10) in (9) we get,

1 12 2 2 2

2 1
2 2

0 0

1

() [() '() ()
N NN i N i

N
N N

i i

N

N
T N N T N C T N N i C

C N

(1)[() '()]]N T N N T N

1 12 2 2 2

2 1
2 1

0 0

1

() [() '() (1)
N NN i N i

N
N N

i i

N

N
T N N T N C T N N C

C N

() () (1) '()]N T N T N N N T N

As shown in [6],
1

1

b

a

b

ai

i

a
CC , hence,

2 1 2 1

2 1
1

1

() [() [1] '() (1)
N N

N
N N

N

N
T N N T N C T N N C

C N

() () (1) '()]N T N T N N N T N

2 1 2 1

2 1
1

1

() [() [] '() (1) []]
N N

N
N N

N

N
T N N T N C N T N N C N

C N

() [() (1) '()]T N N N T N N T N

(1) '() (1) ()N N T N N N T N

1

1)(
)('

NN

NT
NT

Solving the above differential equation gives,

1
() [1]eT N N Log N

N

775

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

where, is an arbitrary constant.

For large values of N,
1

[1] 1eN Log
N

So,

() 1T N N for large values of N.

So the average time complexity of the algorithm is O(N).

VIII. RESULTS AND DISCUSSION

A code implementing the above algorithm has been made

and the working of the algorithm is checked. The algorithm

works fine. Also the number of iterations to sort an array of

given size is counted using the same code. The number of

iterations is compared with that of Quick Sort and found to be

less most of the time.

TABLE I: TABLE COMAPRING THE AVERAGE NUMBER OF ITERATIONS

(AVERAGED OVER 100 RANDOM TEST CASES) OF INTERPOLATION SORT,

HEAP SORT AND QUICK SORT.

Number of

Elements

 Average Number of Iterations

Interpolation Sort Heap Sort Quick Sort

 50 77 269 257

 100 164 637 712

 150 271 1033 1195

 200 380 1468 1677

 250 486 1911 2347

 300 590 2378 3166

 350 698 2838 3478

 400 800 3327 4242

 450 900 3822 5019

 500 1000 4300 5615

A graph is plotted taking size of the array in the X-axis and

number of iterations in the Y-axis. A Least Square Fit of the

above graph verifies that the algorithm is O(n) time

complexity.

Fig. 2. Graph between number of elements and average number of iterations

required to sort an array using interpolation sort. Red line is the Least Square

Fit of the data obtained.

It should be noted that the number of iterations required to

sort an array using Interpolation Sort depends a lot on the

variance of the data present in the array. Lesser the variance,

lesser the number of iterations required to sort the array. In

other words better the distribution of data (lesser variance),

faster will be the sorting.

IX. CONCLUSION AND FUTURE WORK

Hence an algorithm has been developed using the principle

of interpolation which sorts an array of in O(n) time

complexity. Also a way has been proposed to implement the

same algorithm for Strings.

An important thing to note about the algorithm is that an

arbitrary array size of 3 is chosen after which the array is

sorted using bubble sort. But this might not give optimum

result always. For small arrays bubble sort will work better

while for large arrays interpolation sort works better. Our

future work will consist of determining the array size below

which bubble sort will give better performance than

interpolation sort. To do this we first aim at finding the

constants A and B of the following equations:

2()bubT N A N

int ()T N B N

where

)(NTbub → Average number of Iterations require to sort

an array using Bubble Sort

)(int NT → Average number of Iterations required to sort

an array using Interpolation Sort

The value oN we are interested in can be obtained by

equating the above equations. i.e.

int

2

() ()bub o o

o o

o

T N T N

A N B N

B
N

A

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming, 2nd ed., Addison

Wesley, ch. 5 and 6, vol. 3, 1998.

[2] G. H. Gonnet, “Interpolation and interpolation hash searching,” Ph. D.

dissertation, Univ. of Waterloo, Ontario, Canada, 1976.

[3] D. E. Willard, “Searching unindexed and nonuniformly generated files

in loglog N time,” SIAM Journal on Computing, vol. 14, pp. 1013-1029,

1985.

[4] A. C. Yao and F. F. Yao, “The complexity of searching an ordered

random table,” in Proc. of 17th Annual Symp on Foundations of

Computer Science, Houston, Texas, 1976, pp. 173-177.

[5] Andersson, Arne, and C. Mattsson, “Dynamic interpolation search in

o(log log n) time,” Proc. of the 20th Int Colloquium on Automata,

Languages and Programming, London, UK, 1993, pp. 15-27

[6] S. M. Ross, A First Course in Probability, 3rd ed., Macmillan, New

York, 1988.

776

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

