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Abstract—In this paper output regulation problem for 

sampled-data systems with constant exogenous signals is 

considered. A discrete output feedback controller is designed 

under the assumption that the regulator equation in 

discrete-time has a solution. Discretization of the plant and 

exosystem is carried out by zero order hold equivalence. The 

goal is to design the complete controller/observer in discrete 

domain. As an application magnetic levitation is discussed. The 

simulation results along with the comparison with the 

continuous-time controller show the effectiveness of the 

proposed controller. 

 
Index Terms—Discretization, linear systems, output 

regulation, sampled-data control. 

 

I. INTRODUCTION 

Output regulation problem is a fundamental problem in 

control theory. It has been studied very actively since the 

seminal work by Francis in 1977 [1], and up till now, we have 

quite a complete solution.  It addresses the problem of 

designing a feedback controller to achieve asymptotic 

tracking for a class of reference inputs and rejection for a 

class of disturbances while maintaining closed loop stability. 

The theory of LTI systems is well known [1-3]. It has been 

extended to time-varying systems, where instead of using 

classical (algebraic) regulator equations differential regulator 

equations are applied [4-6]. This problem was then extended 

to its corresponding problem in non-linear setting [7]. For 

sampled-data systems with zero order holds, the problem of 

output regulation with constant exogenous signals is easily 

solved [8-9] but the problem complicates for general 

exogenous signals as the ripples between the sampling period 

complicates matter and continues-time pre-compensators are 

necessary to attenuate ripples [9]. Generalized hold devices 

are presented in [10-11]. 

In navigation and control of auto-motives such as vehicles, 

ships and airplanes, control of attitude is important and 

tracking of constant signals is considered. Output regulation 

problem for sampled-data systems is given by (1). 

1 2

1 11 12

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t Ax t B w t B u t

z t C x t D w t D u t

  

  

 


             (1) 
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where 
nx R  is the state, 

2mu R  is the control input 

realized through a zero-order hold, i.e. 

( ) [ ], ( 1)u t u k k t k     . Here  is the sampling 

time and 
1pz R is the output to be regulated. The signal  

2py R  is the sampled measurement realized through a 

zero-order hold and is given as: 

2[ ] [ ]y k C x k                               (2) 

The constant exogenous signal 
1mw R is generated by 

( ) 0w t                                        (3) 

For the sampled-data system (1) and (3) we want to find a 

discrete time controller such that the closed loop system is 

asymptotically stable and the following condition is fulfilled: 

lim ( ) 0,
t

z t


  for any (0)x  and (0).w  

In the typical output regulator the observer and state 

feedback gains can be designed independently by using the 

separation principle. Two approaches have conventionally 

been used to design a sampled-data control system. In the 

first approach, a continuous-time controller/observer is 

designed that stabilizes the continuous-time system model. 

The controller/observer is then discretized and implemented. 

This approach has been applied in [12] where a discrete-time 

output feedback controller is designed under the assumption 

that the regulator equation in the continuous-time has a 

solution. The second approach is based on finding some 

discrete-time equivalent model for the continuous-time 

system to be stabilized. The controller/observer design is 

subsequently carried out completely in the discrete domain. 

Since, the closed form exact discrete-time model for 

continuous-time system required for controller/ observer 

design can be obtained conveniently for linear time-invariant 

systems, in general [13] we have designed a discrete-time 

output feedback controller based on the latter approach. The 

continuous-time system and the exosystem are first 

discretized via zero-order hold and then the solution to the 

regulator equations in discrete-time is computed to design the 

corresponding discrete-time controller. In this way the 

overall system can be presented in discrete-time. 

Section 1 is introduction and Section 2 gives assumptions 

and the main result. Performance of the designed controller is 

illustrated in Section 3 by applying this control to a single 

link robot and Section 4 is conclusion. 

Notations: Throughout this paper, let ( )M be the set of 

all Eigen values of a square matrix M . 
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II. OUTPUT REGULATION FOR SAMPLED DATA SYSTEMS 

Consider the sampled-data system (1) and the exosystem 

(2) with the following assumptions: 

1) ( 2, dd
A B ) is stabilizable. 

2) There exist matrices   and   which satisfy the 

regulator equation 

1 2

1 11 120

d d d d

d d d

S A B B

C D D

     

    
 

3) ( 2 , A
e

eC e


) is detectable. 

Let
A

dA e 
,

0

1, 2whereAr

id i iB e dr B


   and let 

( )f A =
0

Ar
e dr



 . We have 
idB = ( ) if A B  for i=1,2 and 

dA I = ( )f A A . By [17], we have that matrix ( )f A  is 

invertible if ( 2,d dA B ) is stabilizable. Then by combining 

the results in [12] and [9] we have the following result. 

A. Theorem 2.1:   

Consider the system (1) and (2) and if the assumptions 

A1-A3 hold then the output feedback controller  

2
[ [ ]

ˆ ˆ
1] [ ]

ˆ ˆ
( )

0
eA

ek
x x

k e u k
w w

B
f A


    
    
      

    

2 [ ]
ˆ

{ [ ] }
ˆe k
x

K y k C
w

 
 
 

                      (4) 

 [ ] [ ]
ˆ

ˆ
u k F F k

x

w
   

 
 
 

                                     

fulfills output regulation for the sampled-data system (1) 

where F is chosen such that  2,A B C   and 

 2,d dA B D  . K  is chosen such that 
2

eA

ee KC

  is 

exponentially stable. 

B. Proof:  

See Appendix A. 

 

III. SAMPLE-DATA BASED TRACKING CONTROL FOR 

MAGNETIC LEVITATION SYSTEM 

Fig. 1 shows a schematic diagram of a magnetic levitation 

system where a ball of magnetic material is suspended by 

means of an electromagnet whose current is controlled by 

feedback from the optically measured ball position [14]. This 

system has the basic ingredients of systems constructed to 

levitate mass, used in gyroscopes, accelerometers, and fast 

trains. The equation for the motion of the ball is  

where G mg with m as the mass of the ball and 0y   is 

the vertical position of the ball measured from a reference 

point. k  is a viscous friction coefficient, g is the 

acceleration due to gravity, ( , )F y i given by (6) is the force 

generated by the electromagnet and I  is it’s electric current. 

 

Fig. 1.  Magnetic levitation system. 

 ,my ky G F y I                            (5) 

 
 

2

0
2,

2 1

L I
F y I

a y a





              (6) 

where 0L and a  are positive constants. For the system (5) 

we consider control of vertical position of the ball y . We 

want it to track the reference signal given by (3). The system 

(5) is linearized and (3, 5-6) can be rewritten as: 

2

1 1

1 11

2

( ) ( ) ( )

( ) 0 , (0)

( ) ( ) ( )

( ) ( ),

x d

x t Ax t B u t

w t w y

z t C x t D w t

y t C x t

 

 

 






                     (7) 

where
0 1
2 /( ) /ss

A
g a y k m

 
   

, 2

0
B

M
 
  

 , 

 1 1 0C  , 11 1D    and  2 1 0C  . ssy  is the 

steady state output set at 0.05m and 

021
( )ss

L ag
M

a y m



. For the system (7) we set 

the sampling time 0.01  sec and assume the control input 

realized through a zero-order hold and the observation is 

taken at k . The system (7) becomes 

2

1 1

1 11

( ) ( ) ( )

( ) 0 , (0)

( ) ( ) ( ).

x d

x t Ax t B u t

w t w y

z t C x t D w t

 

 

 

 

                      (8) 

For this system we shall design an output feedback 

controller. To do so we first investigate if the assumptions 

A1-A3 are satisfied. It is obvious that A1 is satisfied. Since 

1
B =0 and 

12
D  =0 in the discrete regulator equations of A2, 

the solution of   and  is: 

 
1 0

, 44.3 1
0 0

 
     

 
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This satisfies A2.  Assumption A3 is also satisfied if the 

detectability of pair (
,2e eC A ) is ensured which is achieved by 

choosing the sampling time to be nonpathological [9]. Thus, 

by applying Theorem 2.1 we can design an output feedback 

controller for the tracking control of (5). In this case all the 

eigenvalues of A and eA are real and hence sampling 

time =0.01sec is nonpathological. To solve the tracking 

problem, it remains to design a feedback gain F and 

observer gain K .  The feedback gain F is obtained by 

placing the eigen values at 
0.8 0.8e e   

   resulting in  

 44.44 0.53F     

This satisfies 2( )d dA B F D   . While observer gain 

K  is obtained by placing the eigen values at 

0.8 0.8 0.8e e e     
   resulting in  

 0.04 2.012 0.0
T

K   

This satisfies 2( )e
eA

e KC D
   . We have applied 

the proposed discrete-time controller (3) with the proposed 

controller and observer gains to the tracking control of 

vertical position y  of a magnetic suspension system (5). 

Here, we want the output to track the reference 

signal (0) 10w   . For, comparison, we have also applied the 

continuous-time controller (9) on the linearized system (5).  
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0

2
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y
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m
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discrete-time controller

continuous-time controller

 
Fig. 2.  The trajectories of y by using discrete and continuous controller  

1 2
2

( ) ( )
ˆ ˆ ˆ

( ) { ( ) }
ˆ ˆˆ 0

e et t
x x x

A u t K y t C
w ww

B      
      
        

   



 

 1 1( ) ( )
ˆ

ˆ
u t F F t

x

w
   

 
 
 

                  (9) 

The gain 1F  is obtained by placing eigenvalues 

at  0.8 0.8   and 1K  is designed for eigenvalues 

 0.8 0.8 0.8    Let the initial conditions of the 

system be: 

(0) [0.05 0] , (0) [10]Tx w   

and the initial conditions of the observed states be : 

ˆ ˆ(0) [0.5 (0)] , (0) [0]Tx x w   

 Simulations were done using Matlab and Simulink. The 

obtained results are shown in the figures below. Fig.2 shows 

the time response of the vertical position y with the controller 

(3) and (18). Error plots for both controllers are shown in Fig. 

3 which shows that lim ( ) 0.
t

z t


  It can be seen from the 

Fig. 2 and Fig. 3, the time response of the trajectories of the 

vertical position of the linearized magnetic suspension 

system is almost same for both discrete and continuous-time 

controllers.  In both the controllers the tracking is achieved 

by the designed controllers. 

 

IV. CONCLUSION 

In this paper the output regulation of LTI sampled-data 

system and a constant exosystem is considered. The proposed 

discrete-time controller is designed by assuming that the 

regulator equations in discrete-time has a solution which led 

to designing the overall system in discrete domain realized 

through a zero-order hold. As an application the controller is 

applied to the tracking of the vertical positioon of a linearized 

magnetic levitation system and the comparison of the 

proposed controller with the continuous-time controller is 

presented. 
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-2

0

2

4

6

8

10

Time (sec)

E
r
r
o
r

 

 

discrete-time controller

continuous-time controller

 

Fig. 3.  Error plots for both discrete and continuous time controllers. 

 

V. APPENDIX 

A. Proof:   

Since we have  

 ( ) ( ), 1u t u t k t k    and ( ) ( ) (0)w t w k w  ,  

the sampled-data system (1) is rewritten as 

 

 

( )

1 2

1 2

1 11 12

2 21

( ) ( )

(0) ( )

( ) ( ) (0) ( )

( ) ( ) (0) ( ),

( ) ( ) (0).

k h

Ah A k h r

k

Ah

x k h e x k e dr

B w B u k

e x k h B w B u k

z k h C x k h D w D u k

y k C x k D w







 



 





   

 

  

    

 



 

for any 0 h    and ( )x k is determined by the following 

discrete-time system  
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1 2( 1) ( ) ( ) ( )d d dx k A x k B w k B u k       

where [ ] ( ),x k x k [ ] ( ) (0)w k w k w   and  

( )

0

( )

h
A h s

h e ds
    

Since  

1

0

d deA A B

I
e   

  
 

 

The controller (3) can be re-written as 

1 2

0 0
[ 1] [ ]

ˆ ˆ
[ ]

ˆ ˆ

d d dBA B

I
k k

x x
u k

w w

      
      

      
   

2{ [ ] [ ]
ˆ

}
ˆeK y k C k
x

w

 
 
 

  

 [ ]
ˆ

ˆ
u k F F

x

w

 
    

 
 

Let 1 2
ˆ ˆ( ) ( ) ( ), ( ) ( ) ( )e k x k x k e k w k w k      and 

1 2( ) [ ( ) ( )]T T Te k e k e k . Then we have 

1

2
0

( 1) { ( ) ( )d d

e

A B
e

I
e k K y k C k

  
  
  

    

And by assumption we have ( ) 0e k  as k  . So, 

 

 

2

1 2

2

( ) ( ) ( ){ ( )

(0) }

( ) ( )

Ahx k h e x k h B Fx k

B B F w

h B F F e k

    

      

  

    (10) 

 

 

1 12

11 12

12

( ) ( ) ( )

(0)

( )

z k h C x k h D Fx k

D D F w

D F F e k

      

    

  

          (11) 

And  

 

 

2

1 2

2

( 1) ( ) ( )

[ ] ( )

( )

d d

d d

d

x k A B F x k

B B F w k

B F F e k

   

  

  

 

         (12) 

Since 2 2( )( )d dA B F f A A B F I    and

1 2 1 2( ) ( )[ ( )],d dB B F f A B B F          (12) 

becomes 

 

2

1 2

2

( 1) [ ( )( ) ] ( )

( )[ ( )] ( )

( )d

x k f A A B F I x k

f A B B F w k

B F F e k





    

   

  

 

  

We know that [ ] (0)w k w for any k , 

 ( 2,d dA B ) D  and lim ( )
k

x x k 
  ,  we have 

2

1 2

2

1 2

[ ( )( ) ]

( )[ ( )] (0)

0 [ ( )( ) ]

( )[ ( )] (0)

x f A A B F I x

f A B B F w

f A A B F I x

f A B B F w









 



   

  

   

  

 

By the stabilizability of ( 2,d dA B ), ( )f A is invertible 

so, 

2 1 2( ) [ ( )] (0) 0A B F x B B F w        

Using A2, we have 

1 2d d dS A B d B       

2 1( ( ) ) ( ) ( )I f A A I f A B f A B          

2 10 A B B     

where 1 2 2( ) ( )B B F A B F         hence                   

2( )[ (0)] 0A B F x w   .Since
2( )A B F C  

which implies that 2A B F  is invertible and we have 

(0)x w                                  (13) 

From (10) we get  

2

2

( ) ( )( )[ ( ) (0)] ( )

( ) [ ] ( )

x k h h A B F x k w x k

h B F F e k

       

  

 

Using (13) we get 

2lim ( ) ( )( ) lim [ ( ) (0)]

lim ( )

for any 0

k k

k

x k h h A B F x k w

x k

x h

 





 



    



  

  (14) 

By, (13), (14) and lim ( ) 0
t

e t


 we can ensure that the 

closed-loop system (1) and (3) is asymptotically stable since 

lim ( ) 0
t

x t


   and hence ˆlim ( ) 0
t

x t


  if ( ) (0)w t w . 

Using A2 we have  

1 11 120 d d dC D D                        (15) 

where step invariant transformation maps 

   , , , , , ,d dA B C D A B C D , thus (15) becomes, 

1 11 120 C D D                             (16) 

Now, using (11), (14) and (16) we have 
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 

1 12

11 12

1 11 12

lim ( ) lim{ ( ) ( )

(0)}

( ) (0)

0 for any 0

k k
z k h C x k h D Fx k

D D F w

C D D w

h

  



 
    

     

    

  

 

This implies lim ( ) 0
t

z t


 and hence we have the 

assertion. 
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