

Abstract—A new single packet authentication method HSPA

is presented in this paper. HSPA works transparently for

authenticating remote clients and in its design solved two main

problems, resource starvation attack and the lack of association

between the authentication process and establishing process.

Authentication data of HSPA packet is maintained secure by

encrypting it using Rijndael, in cipher block chaining (CBC)

mode, with a block size of 192 bits and a key length of 192 bits.

HSPA evaluation study, in accordance to processing overhead,

buffering, and communication overhead, shows that HSPA

overhead is marginal as compared to its improvements in

authentication.

Index Terms—Firewall, passive authentication, port

knocking, single packet authorization.

I. INTRODUCTION

Many machines now run some form of Firewall to help

prevent unauthorized connections to open ports, however, if

the machine is needed to run services accessible to the

Internet, then this is not always an option. There are countless

ways to protect information flowing over a network, but if the

software running those services has bugs, then protecting that

machine against attacks becomes a much bigger problem [1].

Most software has vulnerabilities and now system

administrators cannot rely on the security provided by

software manufacturers. Thousands of bugs that could be

exploited by malicious attackers have been found in all kinds

of network services. Those bugs are often fixed weeks,

months or even years after they were made public so the

window of exposure for some vulnerabilities can be very

high. Critical systems need additional layers of security to

prevent zero-day exploit attacks against running services and

this is when Passive Authentication Techniques come in

handy [2].

Passive Authentication Techniques are Port knocking PK

and Single Packet Authentication SPA. They are methods to

keep a machine hidden from would-be attackers, and yet

allow legitimate users to connect to services running on that

machine. In broad terms, they are methods for transmitting

information across closed ports, with the aim of

authenticating users before allowing them, and only them, to

access a protected service [1].

These can be achieved in many ways but in general a client

sends a specific sequence of connection attempts to a

listening server. The server detects this sequence and opens

one of its ports so the client machine can connect to it. This

Manuscript received June 19, 2012; revised August 5, 2012. This paper

was accepted by 4th IEEE International Conference on Computer Science

and Information Technology (IEEE ICCSIT 2011)

H. Zorkta and B. Almutlaq are with the Aleppo University- Syria (e-mail:

drzorkta@hotmail.com, basel_almutlaq@hotmail.com).

prevents attackers from scanning your network for open ports

or attacking network services with 0-day exploits because the

protected ports will appear to be closed [2].

Although that port knocking provides some real benefits

that enhance security, still has some serious limitations [3],

[4]. Single Packet Authentication [5], [4] is a relatively newer

protocol that retains all of the benefits of port knocking, but

fixes many PK limitations [5].

II. SPA MECHANISM

In general a client prepares the authentication data that is

put in the payload of a single UDP/TCP packet (SPA packet)

then sends the packet to the listening server. The server

detects, validates SPA packet and opens one of its ports,

which is required. So the client machine can connect to it. For

a graphical representation of SPA in action, see Fig. 1.

Fig. 1. Single packet authentication basics.

Fig. 1 shows the main steps of SPA:

1) Client send SPA packet

2) After the Server daemon detect validation SPA packet, it

reconfigure packet filter to allow Client access to a

desired service.

3) SPA Client initiate session with the desired service.

Although that SPA fixes many PK limitations, it stills

suffer from many problems. One problem is the lack of

association between the authentication process and the

follow-on TCP connection to be established. This problem

enables the attacker to connect to a protected service on

behalf of a valid client, after the client has successfully

authenticated with the firewall but before he establishes a

TCP connection with this service. Another problem is

Resource Starvation Attacks against the server daemon

through replaying SPA packet, which make the server

daemon consuming resources, and make the authentication

service unavailable.

 A new proposal HSPA for authentication purposes, which

tackles these problems, is presented in this paper.

III. PROPOSED DESIGN

As any SPA implementation, HSPA relies on a packet

sniffer and a completely closed firewall) entire TCP ports are

Harden Single Packet Authentication (HSPA)

Haythem Zorkta and Basel Almutlaq, Member, IACSIT

717

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

mailto:drzorkta@hotmail.com

closed (, which is set to drop all packets that arrive over TCP.

That makes firewall to be more silent in its denial (packets

that arrive are dropped without sending an ICMP PORT

UNREACHABLE back to the initiator) [6], [7]. Two

separate software components are required in HSPA, one at

client side and the other at the server. Packet filters will be

reconfigured after SPA packet is received and validated by

server daemon.

HSPA defines his packet format as: (see Fig. 2).

IP

HEADER

TCP/UDP

HEADER

ENCRYPTED

AUTHENTICATION DATA
CHECKSUM

ENTIRE DETECTED SYN/FIN/RST

TCP PACKET

Fig. 2. HSPA packet formate.

Encrypted authentication data: This filed holds encrypted

Authentication Data. Rijndael, in Cipher Block Chaining

(CBC) mode, with a block size of 192-bits and a key length of

192-bits was used for encryption. Authentication Data

consist of five fields as shown in Fig. 3.

AUTHENTICATION DATA

192

bits

192-bit

shared key

192

bits

Rijndael

ENCRYPT

ENCRYPTED

AUTHENTICATION DATA

24 Bytes

4 Bytes 2 Bytes 4 Bytes 2 Bytes

1bit
TCP

UDP

10 Bytes

TIMESTAMP
RANDOM

NUMBER
User Name

CLIENT

IP ADDRESS

DESIRED

PORT ADDRESS

NEXT TIME

PORT ADDRESS

2 Bytes

Fig. 3. Encrypted authentication data format.

 Timestamp (4bytes) and random number (2 bytes) are
used to solve Replay Attack Problem. Server daemon
compares these 6 bytes with corresponding 6 bytes of
last SPA packet received from this client. If it is equal
or smaller, then it assumes that there is a replay attack,
and takes no action and writes a warning message to
WarnLog. Hence, any SPA packet that is intercepted
by a third party cannot be replayed on the network in
an effort to get access through the default-drop packet
filter.

 TCP/UDP bit, which is the lest important bit of
random number, defines the transport protocol (TCP
or UDP) of next SPA packet, (1 for TCP, 0 for UDP).

 User name (10 bytes) is used to maintain different

authorization levels for remote users by the server

daemon.

 Client IP address (4 bytes) is the IP address of the

client.

 Desired port address (2 bytes) is the port address that

which the client wants to access to it.

 Next time port address (2 bytes) represents a port

address, which next SPA packet will send over it. It

used to solve the DoS attacks to server daemon. Since

the destination port address of SPA packet, is

different from previous SPA packet, if a third party

intercepts any SPA packet, and replays it, there is no

listening to this port address by server daemon.

Entire detected SYN/fin/RST TCP packet: is the

SYN/FIN/RST TCP packet that the client sends it to server

for initiate/finalize/reset TCP session. The client daemon

detects this packet and used it entirely in HSPA packet.

Checksum: is the CRC32 digest of both authentication data

and entire detected SYN/fin/RST TCP packet. It is used by

server to verify SPA packet integrity, see Fig. 4.

32

bits

Checksum

Checksum
4 Bytes

Password

AUTHENTICATION DATA
ENTIRE DETECTED SYN/FIN/RST TCP

PACKET

Fig. 4. Checksum calculation.

The following sequence gives overview of how HSPA

works:

1) 1- Server daemon listens to a number of specific

TCP/UDP ports for incoming SPA packet from specific

clients, where it specify a TCP or UDP port for each

client (see Fig. 5).

2) 2- A client send SYN/FIN/RST TCP packet to the server

to initeiate/finalize/reset TCP session. This packet will

be droped when it has been arrived, by server packet

filter, because all TCP ports are closed (see Fig. 6).

3) 3- Client daemon detects SYN/FIN/RST TCP packet

transmitted by the client, generates a SPA pcaket and

sends it to the server over an agreed TCP or UDP port

address. This packet is used to authenticate the client for

the server, and it contains the transmitted SYN/FIN/RST

TCP packet (see Fig. 7).

4) 4- Server daemon receives the SPA packet, decrypts

encrypted authentication data, validates user name,

checksum, timestamp and random number, passes the

entire detected SYN/fin/RST TCP packet into stack and

drop it. Server daemon reconfigures the Firewall,

allowing client to access the desired port. Finally, server

daemon starts listening to the new next time port address

for next SPA packet from this client.

The first step of TCP three way hand shacking, has been

completed now (see Fig. 8). The other two steps will run

normally without any intervention by the client and server

daemons.

Server Daemon is listening to UDP port 3184 for

incoming SPA Packet transmitted from Client X.

Server Daemon is listening to TCP port 5231 for

incoming SPA Packet transmitted from Client Z.

Server Daemon is listening to UDP port 5954 for

incoming SPA Packet transmitted from Client Y.

D

A

E

M

O

N

F

I

R

E

W

A

L

L

5231

5954

3184
UDP

UDP

TCP

S

T

A

C

K

Server

Fig. 5. Primitive (orginal) state of sersver daemon.

SYN/FIN/RST TCP

PACKET

P1 F

I

R

E

W

A

L

L

D

A

E

M

O

N5231

5954

3184

D

A

E

M

O

N

Client X

Over TCP port 22 UDP

UDP

TCP

S

T

A

C

K

S

T

A

C

K

Server

Fig. 6. Transmitting SYN TCP packet by Client.

718

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

F

I

R

E

W

A

L

L

D

A

E

M

O

N
5231

5954

3184

SPA packet

P2

Over UDP port 3184

D

A

E

M

O

N

UDP

UDP

TCP

S

T

A

C

K

Client X

S

T

A

C

K

Server

Fig. 7. Transmitting SPA packet by the client daemon to the server daemon.

Server Daemon has no more listening to

UDP port 3184

Server Daemon is listening to UDP port 7777 for

incoming SPA Packet transmitted from Client X.

Server Daemon is listening to TCP port 5231 for

incoming SPA Packet transmitted from Client Z.

Server Daemon is listening to UDP port 5954 for

incoming SPA Packet transmitted from Client Y.

F

I

R

E

W

A

L

L

D

A

E

M

O

N
5231

5954

3184

7777

P2

UDP

UDP

TCP

UDP

S

T

A

C

K

Server

Fig. 8. Server daemon status after detecting valid SPA packet.

where:

Client Daemon Detect transmitted SYN Packet.

Server Daemon listening to this port (Next Time Port Address filed of

previous SPA Packet of the specific Client) for detect SPA Packet

No listening.

Client Daemon formats SPA Packet and send it. It's destination port is Next

Time Port Address field of previous SPA Packet.

Presenting droping pcket by packet filter.

Allow role on packet filter to allow all incoming packets exception

SYN TCP packet

IV. HSPA EVALUATION

The most critical parameter for SPA analytical study is the

performance factor. Thus, three basic analysis parameters

were used to evaluate the HSPA performance: processing

overhead, communication overhead and buffering. Moreover

strength analysis attempt is presented also.

A. Processing Overhead

Processing overhead is the time amount which added to the

main time work of the machines in both sides of the

authentication system. While HSPA provide improvements

for authentication, it burdens the processor. HSPA

Processing Overhead was measured through one second for

client and server sides, using Intel Pentium 4 machine

running at 3.2 GHz with 4 MHz bus, 2 MB L2 Cache and 3

GB of RAM. Table I list these results (see also Fig. 9 and Fig.

10).

HSPA processing overhead is increased proportionally

with the number of HSPA packets sent in time unit. There is

144µsec and 181µsec are added to the actual time at client

and server sides respectively. HSPA processing overhead is

marginal as compared to the improvements in authentication.

B. Communication Overhead (bytes)

Communication overhead is the data amount in bytes,

which added to the main transmission traffic volume. HSPA

packet format suggests that, the sizes of its fields are (see Fig.

2):

- Authentication data: 24 bytes

- Checksum: 4 bytes

- Entired SYN/fin/RST TCP packet: 40 to 120 bytes (see

table II for the headers required for calculations)

Table II illustrates all possible combinations for the

minimum and maximum HSPA Communications Overhead.

TABLE I: HSPA PROCESSING OVERHEAD AND PERCENTAGE PROCESSING

OVERHEAD

Percentage

overhead on

Server side

Delay on

Server side

(ms)

Percentage

overhead on

client side

Delay on

client side

(ms)

SPA packets per

second

0.0363% 0.363 0.0293% 0.293 1

0.0731% 0.731 0.0582% 0.582 2

0.1101% 1.101 0.0885% 0.885 3

0.1517% 1.517 0.1163% 1.163 4

0.1889% 1.889 0.1480% 1.480 5

0.2263% 2.263 0.1801% 1.801 6

0.2633% 2.633 0.2090% 2.090 7

0.3024% 3.024 0.2397% 2.397 8

0.3410% 3.410 0.2711% 2.711 9

0.3792% 3.792 0.3007% 3.007 10

Fig. 9. HSPA processing overhead through one second.

Fig. 10. Percentage processing overhead of the proposed design through one

second.

TABLE II: DIFFERENT PROTOCOLS HEADERS (MIN, MAX)

Header Min(bytes) Max(bytes)

TCP 20 60

UDP 8 8

IP 20 60

ETHERNET 14 14

719

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

TABLE III: HSPA COMMUNICATIONS OVERHEAD

state

initiate

TCP

session

over

finalize

TCP

session

over

IP and

TCP

header

size

overhead

(Bytes)

for each SPA

packet to

 initiate session

overhead

(Bytes)

for each SPA

packet to

finalize session

Total

overhead

for

session

1 TCP TCP 40 122 122 244

2 TCP UDP 40 122 110 232

3 UDP TCP 40 110 122 232

4 UDP UDP 40 110 110 220

5 TCP TCP 64 146 146 292

6 TCP UDP 64 146 134 280

7 UDP TCP 64 134 146 280

8 UDP UDP 64 134 134 268

9 TCP TCP 120 202 202 404

10 TCP UDP 120 202 190 392

11 UDP TCP 120 190 202 392

12 UDP UDP 120 190 190 380

Example scenario. suppose, there are 100 clients, each

client initiate and finalize 1 session on the server through 1

minute, bandwidth of connection is 64 kbps (65536 bps) and

TCP header of SYN/FIN/RST packet have 24 bytes options.

Three cases were used to estimate HSPA bandwidth

consumption:

1) The worst case, all SPA packets that used for initiate and

finalize the sessions are transmitted over TCP. In this

case, size of 200 SPA packets is 200 * 146 B = 29200

Bytes. This size of bytes will consume 5.94% from

bandwidth see Fig. 11.

2) The intermediate case, half of SPA packets that used for

initiate and finalize the sessions are transmitted over

UDP and the other half over TCP. In this case, size of

200 packets is (100 * 134 B) + (100 * 146 B) = 28000

bytes. This size of bytes will consume 5.69% from

bandwidth see Fig. 11.

3) The better case, all SPA packets that used for initiate and

finalize the sessions are transmitted over UDP. In this

case size of 200 packets is 200 * 134B = 26800 bytes.

This size of bytes will consume 5.45% from bandwidth

see Fig. 11.

Fig. 11. HSPA bandwidth consumption in the example scenario.

Results in previous scenario, shows that HSPA

communications overhead is marginal as compared to the

improvements in authentication.

C. Buffering

Since, both of client and server daemons buffering the

entire HSPA packet, two suitable buffers are needed at both

sides for caching it (see Table III).

With the Worst Case of the last scenario, only 14.3Kbytes

is needed at each side, and these buffering requirements are

marginal as compared to the HSPA improvements in

authentication.

D. Strength Evaluation

In General, SPA can be used to construct authentication

systems on firewalls with the goal of only allowing

authorized users access to open ports. Although that SPA

provides some real benefits that enhance security, it still has

some serious limitations. HSPA fixes two of these limitations:

Resources Starvation attacks and the lack of association

between the authentication process and establishing process.

By appending SYN, FIN, and RST TCP PACKET to SPA

packet, HSPA solves the lack of association between

authentication process and the follow-on TCP connection to

be established, where the attacker can connect to a protected

service on behalf of a valid client, after client has

successfully authenticated with the firewall, but before he

establishes a TCP connection with this service.

Moreover, with HSPA, the server listen to a new TCP or

UDP port for each SPA packet. Therefore, Resource

Starvation Attacks against the server daemon through

replaying SPA packet, that makes the server daemon

consuming resources, and makes the authentication service

unavailable, was solved.

Authentication data of HSPA packet is maintained secure

by encrypting it using already exist standard encryption

algorithm (Rijndael, in Cipher Block Chaining (CBC) mode,

with a block size of 192-bits and a key length of 192-bits).

V. COMPARATIVE STUDY

A comparative study between HSPA and other advanced

SPA techniques (aldaba, Fwknop), shows that HSPA not

only provides characteristics of other techniques like

authorization and encryption (see Table IV), but it also

provides solutions for these problems:

TABLE IV: SPA TECHNIQUES COMPARATIVE STUDY

State

Total

packet

length

Encryption type
Authentication

status

a lack of association

between

authentication and

TCP connections

being established

HSPA
110 - 202

bytes
Rijndael

TCP

Connections
non- exist

Aldaba Unknown
Blowfish, Twofish

Serpent, Rijndael

TCP, UDP

Connections
exist

Fwknop
80 - 1600

bytes
Rijndael, ElGamal

TCP, UDP

Connections
exist

State

Resource

Starvation

Attacks

Authorization
SPA packet over

Protocol

SPA packet over

Port number

HSPA non- exist exist Dynamic UDP,TCP
DYNAMIC

Aldaba exist exist
Static

TCP SYN STATIC

Fwknop exist exist
Static

UDP,TCP, ICMP STATIC

 A lack of association between authentication and TCP
connections being established.

720

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

 Resurce Starvation Attacks.

This means that HSPA is robust against attacks more than

existing SPA techniques.

VI. CONCLUSIONS

A new SPA proposal (HSPA) for authentication purposes

is presented in this paper. HSPA provides solutions for:

 A lack of association between authentication and TCP
connections being established.

 Resurce Starvation Attacks.

Analysis study proved that HSPA is robust against attacks

more than existing SPA techniques, and has marginal

processing, communications, and buffering overhead, when

compared to the improvements in authentication.

REFERENCES

[1] S. Jeanquier, “An analysis of port knocking and single packet
authorization,” MSc Thesis, Royal Holloway College, University of
London September 9, 2006.

[2] Security of course is an important thing. If this really bugs you then
look into port knocking. [Online]. Available:
http://www.aldabaknocking.com/faq

[3] A. Manzanares, J. Marquez, J. Tapiador, and J. Castro, “Attacks on port
knocking authentication mechanism,” ICCSA LNCS-Springer
Berlin/Heidelberg, 2005, pp. 1292-1300.

[4] M. Rash, “Protecting SSH servers with single packet authorization,” in
the Linux Journal, May 2007.

[5] M. Rash, “Single packet authorization with fwknop,” Usenix; login:
Magazine, vol. 31, no. 1, February 2006, pp. 63–69.

[6] R. deGraaf, J. Aycock, and M. Jacobson, “Improved port knocking
with strong authentication,” Department of Computer Science,
University of Calgary, Canada (fdegraaf, aycock,
jacobsg@cpsc.ucalgary.ca).

[7] C. Borss „DROP/DENY vs. REJECT‟. 2001, Listserv post to
Braunschweiger Linux User Group (lug-bs@lk.etc.tu-bs.de).

721

Assoc. Prof. Dr. Haythem Zorkta was bron in 1970,

Damascus – Syria. He is a lecturer at Aleppo

University- Syria. Master and PhD degree at computer

networks security from MTC- Cairo- Egypt. A lot of

international and local papers at the same field, and a

technical reviewer for many international and local

conferences. Supervisor for many Master and PhD

thesis's.

Eng. Basel Almutlaq was bron in 1980, Damascus-Syria Master degree

from Aleppo University (2011) at network security Many local papers and

International participation at (IEEE ICCSIT 2011).

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

http://www.aldabaknocking.com/faq
mailto:lug-bs@lk.etc.tu-bs.de

