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 

Abstract—Source code plagiarism is currently a severe 

problem in academia. In academia’s programming assignments 

are used to evaluate students in programming courses. 

Therefore, checking programming assignments for plagiarism 

is essential. If a course consists of a large number of students, it 

is impractical for a human inspector to check each assignment. 

Therefore, it is essential to have automated tools in order to 

detect plagiarism in the programming assignments. 

Majority of the current source code plagiarism detection 

tools are based on structured methods. Structural properties of 

a plagiarized program and the original program differ 

significantly. Therefore, it is hard to detect plagiarized 

programs with tools based on structural methods, when the 

plagiarism level is four or above. 

This paper proposes a new plagiarism detection method, 

which is based on the attribute counting technique. Novelty of 

our method is that, we have utilized a meta-learning algorithm 

in order to improve the accuracy of our plagiarism detection 

system. 

 
Index Terms—Plagiarism detection, machine learning, 

source code, naïve bayes classifier, k-nearest neighbor  

 

I. INTRODUCTION 

Detection of source code plagiarism is valuable for both 

the academia and industry. Zobel [1] has pointed out that, 

“students may plagiarize by copying code from friends, the 

Web or so called „private tutors‟”. Most programming 

courses in universities evaluate the students based on the 

marks of programming assignments. Therefore, it is essential 

to detect and prevent plagiarism at universities. Moreover Liu 

and et al [2] have mentioned that, “A quality plagiarism 

detector has a strong impact to law suit prosecution”. 

Therefore, there is a huge demand for accurate source code 

plagiarism detection systems from both the academia and 

industry. 

Woo and Cho [3] have mentioned two methods for 

plagiarism detection. 

1) Structured Based Method: this method considers the 

structural characteristics of documents when developing 

plagiarism detection algorithms. 

2) Attribute Counting Method: this method extracts various 

measurable features (or metrics) from documents. 

Extracted metrics are used as input for similarity 

detection algorithms. 

Presently most of the source code plagiarism detection 

algorithms are based on the structured method [3], [4], [2]. In 
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addition to that there are few attempts which are based on the 

attribute counting method [5], [6]. 

Faidhi and Robinson [7] have defined a spectrum of six 

levels in program plagiarism. Level 0 is the lowest level of 

plagiarism, which represents copying someone else‟s 

program without modifying it. Level 6 represents the highest 

level of plagiarism, which is modifying the program‟s control 

logic in order to achieve the same operation. It is to be noted 

that when moving from level 0 to level 6, structural 

characteristics of the plagiarized program varies from the 

original program. Moreover, Arwin and Tahaghoghi [4] have 

mentioned that plagiarism detection systems which use the 

structured techniques rely on the belief that, the similarity of 

two programs can be estimated from the similarity of their 

structures. Since structured properties of plagiarized 

documents vary from its original document, it is difficult to 

detect plagiarism when level is four or higher. 

On the other hand plagiarism detection systems which are 

based on the attribute counting techniques do not rely on the 

structural properties of the source program. Therefore, they 

are not affected from the problem mentioned above. 

Presently systems which are based on the attribute counting 

technique are not accurate enough for practical applications 

[5], [6]. 

Therefore, we have proposed a new system which is based 

on the attribute counting technique and uses machine 

learning approach in order to detect similarities between 

source codes. Ethem Alpapaydin [8] has pointed out that, 

“There is no single learning algorithm that in any domain 

always induces most accurate leaner”. Further, he has 

mentioned that by combining multiple base learners in a 

suitable way the prediction performance can be improved. 

Therefore, instead of using just one learning algorithm, we 

have used three learning algorithms for training our system. 

We tested our system with source codes belonging to ten 

developers. During the training period we found out that not a 

single algorithm was capable of identifying the source code 

files belong to all the developers with adequate accuracy. But 

one interesting observation was that the results generated by 

the three algorithms were complementing each other. 

Therefore, we decided to use a meta-learning algorithm in 

order to combine the results generated by the three learning 

algorithms. More details about the learning algorithms and 

the meta-learning algorithm are given in the Research Design 

section. 

The rest of the paper is organized as follows. Section II we 

will be presenting plagiarism detection methods based on the 

attribute counting techniques. Section III we will be 

discussing machine learning algorithms for plagiarism 

detection. Section IV we will discuss training and testing our 

system. Finally, we will conclude our paper by discussing the 
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final results and future works of our system in Section V. 

 

II. RELATED WORK 

Few research papers have been written on source code 

plagiarism detection using attribute counting techniques. 

Steve Engels and et al [5] describe code metrics and feature 

based neural network for detecting plagiarism. Initially, this 

method extracts metrics from software source codes. The 

extracted metrics were used as the input for a feature-based 

neural network. The output of the feature-based neural 

network was presented in terms of precision and recall. The 

precision for cheating cases was 0.6464 and the recall for 

cheating cases was 0.4158. 

Dian and Samadzadeh [9] have published a paper on 

“identification of source code authors using source code 

metrics”. This technique is based on extracting a large 

number of source code metrics and in this instance they have 

used 56 source code metrics. The extracted source code 

metrics are subjected to various statistical techniques in order 

to identify the authors of each source code. In our research we 

were able to gain better results than mentioned in this paper 

using very few metrics. 

Lange and Mancoridis [6] have proposed a source code 

plagiarism detection method, which uses source code metric 

histograms and genetic algorithms. Initially, they have 

extracted source code metrics from software source code files. 

Then they generated the normalized histogram for each 

source code metric. The normalized histograms were used as 

the input for the nearest neighbor classifier. One interesting 

feature of this research is that, they have used genetic 

algorithm in order to identify the optimized set of source code 

metrics. According to their research paper their system is 

capable of identifying the true author of each source code file 

with 55 percent accuracy. We feel that 55 percent accuracy is 

not adequate for real-world applications. 

 

III. MACHINE LEARNING ALGORITHMS FOR SOURCE CODE 

AUTHOR IDENTIFICATION 

Most of the machine learning algorithms which are 

suitable for pattern recognition can be used for source code 

author identification. In this section we will be discussing 

three such algorithms we used for our research. 

A. Naïve Bayes Classifier 

This classifier is based on Bayes theorem. When 𝐶 with 

small number of classes or outcomes conditional on several 

features denoted by 𝐹1, 𝐹2, … , 𝐹𝑛  using Bayes theorem: 

𝑝 𝐶 𝐹1 , … , 𝐹𝑛) =
𝑝 𝐶 𝑝(𝐹1, … , 𝐹𝑛 |𝐶)

𝑝(𝐹1, … 𝐹𝑛)
 

Using conditional probability: 

𝑝 𝐶, 𝐹1, … , 𝐹𝑛 = 𝑝 𝐶 𝑝 𝐹1, … , 𝐹𝑛  𝐶  

Using chain rule: 

𝑝 𝐶, 𝐹1, … , 𝐹𝑛 
= 𝑝 𝐶 𝑝(𝐹1 𝐶)𝑝(𝐹2

  𝐶, 𝐹1)…𝑝(𝐹𝑛  |𝐶, 𝐹1, 𝐹2, 𝐹3, … , 𝐹𝑛−1) 

Using naïve property: 

𝐹𝑖  is conditionally independent of every other 𝐹𝑗  for all 

𝑖 ≠ 𝑗 this means  

𝑝 𝐹𝑖 𝐶, 𝐹𝑗   =  𝑝(𝐹𝑖 𝐶 ) 

Therefore Naïve Bayes model can be written as: 

𝑝 𝐶 𝐹1
 , 𝐹2, … 𝐹𝑛 =

1

𝑍
𝑝(𝐶) 𝑝(𝐹𝑖

𝑛

𝑖=1

 𝐶)  

Z is a constant which is dependent only on 𝐹1, … , 𝐹𝑛  

We can directly use the Naïve Bayes classifier for our 

research. In our research 𝐶 means the number of authors in 

the experiment and 𝐹1, 𝐹2, … , 𝐹𝑛  means a set of code metrics 

extracted from the source code. 

Christopher and et al [10] have mentioned two methods to 

construct the Naïve Bayes classifier as enumerated below. 

1) Multinomial Naïve Bayes classifier 

2) Bernoulli Naïve Bayes classifier 

The main difference between the above two variations is 

the way they calculate the posterior probability or 𝑝(𝐹𝑖|𝐶). 

Christopher and et al [10] have described in-depth the details 

about the Naïve Bayes classifier. For this research we will be 

using both variations of the Naïve Bayes classifier. 

B. k-Nearest Neighbor (kNN) Algorithm 

The k Nearest Neighbor Algorithm is one of the simplest 

machine learning algorithms that is suitable for pattern 

recognition. The k-Nearest Neighbor (kNN) algorithm often 

performs well in most pattern recognition applications [11]. 

„k‟ is a parameter in the kNN algorithm. It is necessary to 

select the correct k value for the kNN algorithm by 

conducting several tests with various k values. The kNN 

algorithm is based on the “Euclidian Distance”.  

Let 𝑋 𝑖 =  𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑝  be a source code file with 𝑝 

features or metrics. The Euclidian distance between source 

code files 𝑋𝑖  and 𝑋𝑗  is defined as given below: 

𝑑 𝑋𝑖 , 𝑋𝑗  =     𝑥𝑖1 − 𝑥𝑗1 
2

+ ⋯+  𝑥𝑖𝑝 − 𝑥𝑗𝑝  
2
   

kNN assigns source code files in the testing dataset to the 

majority class of its k nearest neighbors in the training data 

set. 

kNN simply memorizes all the documents in the training 

dataset and compares the test document against the training 

dataset. For this reason the kNN is also known as 

“memory-based learning” or “instance-based learning”. 

C. AdaBoost Meta-Learning Algorithm 

Boosting is used to boost the accuracy of any given 

learning algorithm [12]. There are many different kind of 

boosting algorithms available in the research literature. For 

this research we used the AdaBoost meta-learning algorithm. 

According to Russell and Norvig [11], AdaBoost possess a 

very important property: if the learning algorithms are weak 

leaning algorithms, AdaBoost will classify the testing dataset 

perfectly for large number of weak learners. 

In AdaBoost each data point in the training dataset is 

associated with a weight. Initially, an equal weight is 

assigned to all data points in the training dataset. The first 

iteration starts with the first weak leaner. After the first 

iteration, weights of misclassified data points are increased. 
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Then the second iteration is stared with the second weak 

learner. Furthermore, the second iteration is carried out with 

newly calculated weights. This process is repeated until all 

the classifiers are trained. During the training process, a score 

is given for each classifier, and the final classifier will be the 

liner combination of the weak classifier used in the iteration. 

The AdaBoost algorithm can be implemented in different 

ways. Different algorithms calculate the weights associated 

with each data point in various ways. For this research we 

used the AdaBoost algorithm described by Russell and 

Norvig [11]. 

 

IV. TRAINING AND EVALUATION
 

Ding and Samadzadeh [9] have mentioned that not all 

source code metrics contribute equally for source code author 

identification. According to Ding and Samadzadeh [9] layout 

metrics perform a much important role than the other metrics. 

In addition to that, Lange and Mancoridis [6] have identified 

and listed source code metrics that perform well for source 

code identification. Therefore, we have identified the 

following nine metrics shown in Table I, which perform well 

for source code identification 

TABLE
 

I:
 

SOURCE CODE METRICS FOR SOURCE CODE AUTHOR 

IDENTIFICATION

 

Metric Name

 

Description

 

LineLengthCalculator

 

This metric measures the number of 

characters in one source code line. 

 

LineWordsCalculator

 

This metric measures the number of 

words in one source code line.

 

AccessCalculator

 

Java uses the four levels of access 

control: public, protected, default and 

private. This metric calculates the 

relative frequency of these access 

levels used by the programmers.

 

CommentsFrequencyCalculat

or

 Java uses three types of comments. 

This metric calculates the relative 

frequency of those comment types 

used by the programmers.

 

IndentifiersLengthCalculator

 

This metric calculates the length of 

each identifier of Java programs. 

 

InLineSpaceInlineTabCalcula

tor

 This metric calculates the whitespaces 

that occurs on the interior areas of 

non-whitespace lines.  

 

TrailTabSpaceCalculator

 

This metric measures the whitespace 

and tab occurrence at the end of each 

non-whitespace line.

 

UnderscoresCalculator

 

This metric measures the number of 

underscore characters used in 

identifiers.

 

IndentSpaceTabCalculator

 

This metric calculates the indentation 

whitespaces used at the beginning of 

each non-whitespace line.

 

In order to extract some of the metrics, it was essential to 

parse source

 

codes files according to the syntactic rules of the 

programming language which was used to write that source 

code. Since our dataset consisted only Java [13] source code 

files, we used ANTLR [14] parser in order to extract some of 

the source code metrics.

 

For each code metric we gave a unique code as shown in 

Table II. Thereafter, we converted each source code file into 

a set of tokens together with token frequencies. This process 

is explained in the next section.

 

A. Generating a Set of Tokens from Source Code Files 

As we discussed in the previous section, for each source 

code metric we assign a three letter unique code as shown in 

Table II 

TABLE II:  CODING SYSTEM OF SOURCE CODE METRICS 

 Code Metric Coding System 

LineLengthCalculator LLC 

LineWordsCalculator LWC 

AccessCalculator ACL 

CommentsFrequencyCalculator CFC 

IndentifiersLengthCalculator ILC 

InLineSpaceInlineTabCalculator INT 

TrailTabSpaceCalculator TTS 

UnderscoresCalculator USC 

IndentSpaceTabCalculator IST 

For example consider “LineLengthCalculator” code metric 

generates the following metric as shown in Table III for a 

particular source code file. 

TABLE III: OUTPUT OF LINELENGTHCALCULATOR METRIC 

Length of the Line Number of Occurrences 

5 12 

8 20 

15 13 

20 9 

32 11 

38 3 

40 2 

Using the coding scheme introduced in Table II, we can 

deduce the token frequencies for the metric shown in Table 

III. The tokens with token frequencies are shown in Table IV. 

TABLE IV: TOKEN FREQUENCIES OF LINELENGTHCALCULATOR METRIC 

Token Token Frequency 

LLC_5 12 

LLC_8 20 

LLC_15 13 

LLC_20 9 

LLC_32 11 

LLC_38 3 

LLC_40 2 

As described above, we can represent each source code file 

as a set of tokens together with token frequencies. Those 

tokens and token frequencies are used as inputs for our 

learning algorithms. This process is almost identical to the 

use of word and word frequencies in document classification 

problems. 

B. Training Dataset 

We used the same dataset used by Lange and Mancoridis 

[6], which consists of Java source code files belonging to 10 

developers. We divided the dataset into two parts called the 

“training dataset” and “validation dataset”. The training 

dataset consisted of 904 source code files. Each developer 

has written at least 40 source code files. The validation 

dataset was used as a “hide-out” dataset and it was used only 

for the final evaluation of the system. The validation dataset 

consisted of 741 source code files. 

C. Training the System 

First, the system was trained by using multinomial naïve 
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bayes classifier. We started with 100 source code files with 

10 files per developer. We increased the number of files per 

training set by 100 files in each iteration. After checking the 

“confusion matrices” we found out that the multinomial 

naïve bayes classifier performed well when the training set 

consisted of 800 source code files. 

Thereafter, multinomial naïve bayes classifier tested with 

the hideout dataset According to the generated “confusion 

metric” the multinomial naïve bayes classifier‟s prediction 

performance is poor for Authors 5, 6 and 8. 

As the second step we trained the bernoulli naïve bayes 

classifier. Similar to the way we trained the multinomial 

naïve bayes classifier we increased the training dataset by 

100 source code files at a time. Moreover we have found out 

that the bernoulli naïve bayes classifier performs well when 

the training dataset consists of 800 source code files. 

According to the generated “confusion matric” for the 

Bernoulli naïve bayes classifier we gained some 

improvement for Authors 8 and 5. But Bernoulli naïve bayes 

was lacking of classifying source code files of Author 6. 

Thereafter, we investigated the k-Nearest Neighbor (kNN) 

classifier with the intension of improving the accuracy when 

classifying Author 6. Since k is a parameter in the kNN 

learner we needed to train the leaner for several k values. As 

in the previous two learners we trained the kNN leaner for 

various sample sizes. Finally, we identified the optimum k 

value and the sample size for the source code author 

identification problem. 

Further, we calculated the confusion matrices for various k 

values similar to the way we calculate for the naïve bayes 

classifier. Fig. 1 shows the variation of success rates for 

various k values. 

 

Fig. 1. Success rate vs. sample size of kNN algorithm for training dataset. 

According to Fig. 1 the optimum training data set size is 

800 documents and k value is 3. 

Finally we tested the kNN learning algorithm with the 

above configuration against the hideout data set. According 

to the final confusion matrix, the kNN leaner performed well 

for all developers except for developer number 8. As such we 

can consider the kNN leaner as a suitable weak leaner to 

construct an ensemble learner in the next section. 

After training the system with three different learning 

algorithms we have identified no single algorithm that 

satisfactorily classified the source code files of all the authors. 

But all the algorithms satisfactorily classified the source code 

files belonging to a subset of authors. Further the above three 

learning algorithms complemented each other. Since the 

three algorithms we trained above complement each other we 

can use the ensemble learning method to improve the overall 

accuracy of the process. As such we have used the AdaBoost 

algorithm for improving the accuracy of the process. 

For training the individual weak-learner we used 800 

source code files with no less than 40 source code files for 

each developer and for training the AdaBoost algorithm we 

used 800 source code documents with not less than 40 

documents per author. Fig. 2 shows the confusion matrix of 

running the AdaBoost for our validation dataset. 

We were able to achieve 86.64 percent accuracy by using 

the same dataset used by Lange and Mancoridis[6]. 

According to the research paper published by Lange and 

Mancoridis[6] their accuracy was 55 percent. 

 

Fig. 2. Confusion matrix of adaBoost algorithm for hideout dataset. 

 

V. CONCLUSION AND FUTURE WORK 

In this paper we discussed a machine learning based 

method for plagiarism detection. The main feature of our 

method is that, we used a meta-learning algorithm in order to 

improve the prediction accuracy of our system. 

In our research we investigated only three learning 

algorithms. However, it is interesting to see how other 

learning algorithms work in source code author identification 

problems. Furthermore, AdaBoost is not the only 

meta-learning algorithm we can use for combining several 

weak-learners. In the future we will be investigating other 

learning algorithms to combine with our weak-learners. 

Our system will not work correctly, if programmers follow 

some coding standard and source code formatting tools 

specified in their projects. Since our main target was 
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