

674



Abstract—Source code plagiarism is currently a severe

problem in academia. In academia’s programming assignments

are used to evaluate students in programming courses.

Therefore, checking programming assignments for plagiarism

is essential. If a course consists of a large number of students, it

is impractical for a human inspector to check each assignment.

Therefore, it is essential to have automated tools in order to

detect plagiarism in the programming assignments.

Majority of the current source code plagiarism detection

tools are based on structured methods. Structural properties of

a plagiarized program and the original program differ

significantly. Therefore, it is hard to detect plagiarized

programs with tools based on structural methods, when the

plagiarism level is four or above.

This paper proposes a new plagiarism detection method,

which is based on the attribute counting technique. Novelty of

our method is that, we have utilized a meta-learning algorithm

in order to improve the accuracy of our plagiarism detection

system.

Index Terms—Plagiarism detection, machine learning,

source code, naïve bayes classifier, k-nearest neighbor

I. INTRODUCTION

Detection of source code plagiarism is valuable for both

the academia and industry. Zobel [1] has pointed out that,

“students may plagiarize by copying code from friends, the

Web or so called „private tutors‟”. Most programming

courses in universities evaluate the students based on the

marks of programming assignments. Therefore, it is essential

to detect and prevent plagiarism at universities. Moreover Liu

and et al [2] have mentioned that, “A quality plagiarism

detector has a strong impact to law suit prosecution”.

Therefore, there is a huge demand for accurate source code

plagiarism detection systems from both the academia and

industry.

Woo and Cho [3] have mentioned two methods for

plagiarism detection.

1) Structured Based Method: this method considers the

structural characteristics of documents when developing

plagiarism detection algorithms.

2) Attribute Counting Method: this method extracts various

measurable features (or metrics) from documents.

Extracted metrics are used as input for similarity

detection algorithms.

Presently most of the source code plagiarism detection

algorithms are based on the structured method [3], [4], [2]. In

Manuscript received June 15, 2012; revised August 1, 2012.

U Bandara is with the Virtusa Corporation, Sri Lanka (e-mail:

upulbandara@ gmail.com).

G. Wijayarathna is with the Faculty of Science, University of Kelaniya,

Sri Lanka (e-mailgamini@kln.ac.lk).

addition to that there are few attempts which are based on the

attribute counting method [5], [6].

Faidhi and Robinson [7] have defined a spectrum of six

levels in program plagiarism. Level 0 is the lowest level of

plagiarism, which represents copying someone else‟s

program without modifying it. Level 6 represents the highest

level of plagiarism, which is modifying the program‟s control

logic in order to achieve the same operation. It is to be noted

that when moving from level 0 to level 6, structural

characteristics of the plagiarized program varies from the

original program. Moreover, Arwin and Tahaghoghi [4] have

mentioned that plagiarism detection systems which use the

structured techniques rely on the belief that, the similarity of

two programs can be estimated from the similarity of their

structures. Since structured properties of plagiarized

documents vary from its original document, it is difficult to

detect plagiarism when level is four or higher.

On the other hand plagiarism detection systems which are

based on the attribute counting techniques do not rely on the

structural properties of the source program. Therefore, they

are not affected from the problem mentioned above.

Presently systems which are based on the attribute counting

technique are not accurate enough for practical applications

[5], [6].

Therefore, we have proposed a new system which is based

on the attribute counting technique and uses machine

learning approach in order to detect similarities between

source codes. Ethem Alpapaydin [8] has pointed out that,

“There is no single learning algorithm that in any domain

always induces most accurate leaner”. Further, he has

mentioned that by combining multiple base learners in a

suitable way the prediction performance can be improved.

Therefore, instead of using just one learning algorithm, we

have used three learning algorithms for training our system.

We tested our system with source codes belonging to ten

developers. During the training period we found out that not a

single algorithm was capable of identifying the source code

files belong to all the developers with adequate accuracy. But

one interesting observation was that the results generated by

the three algorithms were complementing each other.

Therefore, we decided to use a meta-learning algorithm in

order to combine the results generated by the three learning

algorithms. More details about the learning algorithms and

the meta-learning algorithm are given in the Research Design

section.

The rest of the paper is organized as follows. Section II we

will be presenting plagiarism detection methods based on the

attribute counting techniques. Section III we will be

discussing machine learning algorithms for plagiarism

detection. Section IV we will discuss training and testing our

system. Finally, we will conclude our paper by discussing the

Detection of Source Code Plagiarism Using Machine

Learning Approach

Upul Bandara and Gamini Wijayrathna

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

675

final results and future works of our system in Section V.

II. RELATED WORK

Few research papers have been written on source code

plagiarism detection using attribute counting techniques.

Steve Engels and et al [5] describe code metrics and feature

based neural network for detecting plagiarism. Initially, this

method extracts metrics from software source codes. The

extracted metrics were used as the input for a feature-based

neural network. The output of the feature-based neural

network was presented in terms of precision and recall. The

precision for cheating cases was 0.6464 and the recall for

cheating cases was 0.4158.

Dian and Samadzadeh [9] have published a paper on

“identification of source code authors using source code

metrics”. This technique is based on extracting a large

number of source code metrics and in this instance they have

used 56 source code metrics. The extracted source code

metrics are subjected to various statistical techniques in order

to identify the authors of each source code. In our research we

were able to gain better results than mentioned in this paper

using very few metrics.

Lange and Mancoridis [6] have proposed a source code

plagiarism detection method, which uses source code metric

histograms and genetic algorithms. Initially, they have

extracted source code metrics from software source code files.

Then they generated the normalized histogram for each

source code metric. The normalized histograms were used as

the input for the nearest neighbor classifier. One interesting

feature of this research is that, they have used genetic

algorithm in order to identify the optimized set of source code

metrics. According to their research paper their system is

capable of identifying the true author of each source code file

with 55 percent accuracy. We feel that 55 percent accuracy is

not adequate for real-world applications.

III. MACHINE LEARNING ALGORITHMS FOR SOURCE CODE

AUTHOR IDENTIFICATION

Most of the machine learning algorithms which are

suitable for pattern recognition can be used for source code

author identification. In this section we will be discussing

three such algorithms we used for our research.

A. Naïve Bayes Classifier

This classifier is based on Bayes theorem. When 𝐶 with

small number of classes or outcomes conditional on several

features denoted by 𝐹1, 𝐹2, … , 𝐹𝑛 using Bayes theorem:

𝑝 𝐶 𝐹1 , … , 𝐹𝑛) =
𝑝 𝐶 𝑝(𝐹1, … , 𝐹𝑛 |𝐶)

𝑝(𝐹1, … 𝐹𝑛)

Using conditional probability:

𝑝 𝐶, 𝐹1, … , 𝐹𝑛 = 𝑝 𝐶 𝑝 𝐹1, … , 𝐹𝑛 𝐶

Using chain rule:

𝑝 𝐶, 𝐹1, … , 𝐹𝑛
= 𝑝 𝐶 𝑝(𝐹1 𝐶)𝑝(𝐹2

 𝐶, 𝐹1)…𝑝(𝐹𝑛 |𝐶, 𝐹1, 𝐹2, 𝐹3, … , 𝐹𝑛−1)

Using naïve property:

𝐹𝑖 is conditionally independent of every other 𝐹𝑗 for all

𝑖 ≠ 𝑗 this means

𝑝 𝐹𝑖 𝐶, 𝐹𝑗 = 𝑝(𝐹𝑖 𝐶)

Therefore Naïve Bayes model can be written as:

𝑝 𝐶 𝐹1
 , 𝐹2, … 𝐹𝑛 =

1

𝑍
𝑝(𝐶) 𝑝(𝐹𝑖

𝑛

𝑖=1

 𝐶)

Z is a constant which is dependent only on 𝐹1, … , 𝐹𝑛

We can directly use the Naïve Bayes classifier for our

research. In our research 𝐶 means the number of authors in

the experiment and 𝐹1, 𝐹2, … , 𝐹𝑛 means a set of code metrics

extracted from the source code.

Christopher and et al [10] have mentioned two methods to

construct the Naïve Bayes classifier as enumerated below.

1) Multinomial Naïve Bayes classifier

2) Bernoulli Naïve Bayes classifier

The main difference between the above two variations is

the way they calculate the posterior probability or 𝑝(𝐹𝑖|𝐶).

Christopher and et al [10] have described in-depth the details

about the Naïve Bayes classifier. For this research we will be

using both variations of the Naïve Bayes classifier.

B. k-Nearest Neighbor (kNN) Algorithm

The k Nearest Neighbor Algorithm is one of the simplest

machine learning algorithms that is suitable for pattern

recognition. The k-Nearest Neighbor (kNN) algorithm often

performs well in most pattern recognition applications [11].

„k‟ is a parameter in the kNN algorithm. It is necessary to

select the correct k value for the kNN algorithm by

conducting several tests with various k values. The kNN

algorithm is based on the “Euclidian Distance”.

Let 𝑋 𝑖 = 𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑝 be a source code file with 𝑝

features or metrics. The Euclidian distance between source

code files 𝑋𝑖 and 𝑋𝑗 is defined as given below:

𝑑 𝑋𝑖 , 𝑋𝑗 = 𝑥𝑖1 − 𝑥𝑗1
2

+ ⋯+ 𝑥𝑖𝑝 − 𝑥𝑗𝑝
2

kNN assigns source code files in the testing dataset to the

majority class of its k nearest neighbors in the training data

set.

kNN simply memorizes all the documents in the training

dataset and compares the test document against the training

dataset. For this reason the kNN is also known as

“memory-based learning” or “instance-based learning”.

C. AdaBoost Meta-Learning Algorithm

Boosting is used to boost the accuracy of any given

learning algorithm [12]. There are many different kind of

boosting algorithms available in the research literature. For

this research we used the AdaBoost meta-learning algorithm.

According to Russell and Norvig [11], AdaBoost possess a

very important property: if the learning algorithms are weak

leaning algorithms, AdaBoost will classify the testing dataset

perfectly for large number of weak learners.

In AdaBoost each data point in the training dataset is

associated with a weight. Initially, an equal weight is

assigned to all data points in the training dataset. The first

iteration starts with the first weak leaner. After the first

iteration, weights of misclassified data points are increased.

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

676

Then the second iteration is stared with the second weak

learner. Furthermore, the second iteration is carried out with

newly calculated weights. This process is repeated until all

the classifiers are trained. During the training process, a score

is given for each classifier, and the final classifier will be the

liner combination of the weak classifier used in the iteration.

The AdaBoost algorithm can be implemented in different

ways. Different algorithms calculate the weights associated

with each data point in various ways. For this research we

used the AdaBoost algorithm described by Russell and

Norvig [11].

IV. TRAINING AND EVALUATION

Ding and Samadzadeh [9] have mentioned that not all

source code metrics contribute equally for source code author

identification. According to Ding and Samadzadeh [9] layout

metrics perform a much important role than the other metrics.

In addition to that, Lange and Mancoridis [6] have identified

and listed source code metrics that perform well for source

code identification. Therefore, we have identified the

following nine metrics shown in Table I, which perform well

for source code identification

TABLE

I:

SOURCE CODE METRICS FOR SOURCE CODE AUTHOR

IDENTIFICATION

Metric Name

Description

LineLengthCalculator

This metric measures the number of

characters in one source code line.

LineWordsCalculator

This metric measures the number of

words in one source code line.

AccessCalculator

Java uses the four levels of access

control: public, protected, default and

private. This metric calculates the

relative frequency of these access

levels used by the programmers.

CommentsFrequencyCalculat

or

 Java uses three types of comments.

This metric calculates the relative

frequency of those comment types

used by the programmers.

IndentifiersLengthCalculator

This metric calculates the length of

each identifier of Java programs.

InLineSpaceInlineTabCalcula

tor

 This metric calculates the whitespaces

that occurs on the interior areas of

non-whitespace lines.

TrailTabSpaceCalculator

This metric measures the whitespace

and tab occurrence at the end of each

non-whitespace line.

UnderscoresCalculator

This metric measures the number of

underscore characters used in

identifiers.

IndentSpaceTabCalculator

This metric calculates the indentation

whitespaces used at the beginning of

each non-whitespace line.

In order to extract some of the metrics, it was essential to

parse source

codes files according to the syntactic rules of the

programming language which was used to write that source

code. Since our dataset consisted only Java [13] source code

files, we used ANTLR [14] parser in order to extract some of

the source code metrics.

For each code metric we gave a unique code as shown in

Table II. Thereafter, we converted each source code file into

a set of tokens together with token frequencies. This process

is explained in the next section.

A. Generating a Set of Tokens from Source Code Files

As we discussed in the previous section, for each source

code metric we assign a three letter unique code as shown in

Table II

TABLE II: CODING SYSTEM OF SOURCE CODE METRICS

 Code Metric Coding System

LineLengthCalculator LLC

LineWordsCalculator LWC

AccessCalculator ACL

CommentsFrequencyCalculator CFC

IndentifiersLengthCalculator ILC

InLineSpaceInlineTabCalculator INT

TrailTabSpaceCalculator TTS

UnderscoresCalculator USC

IndentSpaceTabCalculator IST

For example consider “LineLengthCalculator” code metric

generates the following metric as shown in Table III for a

particular source code file.

TABLE III: OUTPUT OF LINELENGTHCALCULATOR METRIC

Length of the Line Number of Occurrences

5 12

8 20

15 13

20 9

32 11

38 3

40 2

Using the coding scheme introduced in Table II, we can

deduce the token frequencies for the metric shown in Table

III. The tokens with token frequencies are shown in Table IV.

TABLE IV: TOKEN FREQUENCIES OF LINELENGTHCALCULATOR METRIC

Token Token Frequency

LLC_5 12

LLC_8 20

LLC_15 13

LLC_20 9

LLC_32 11

LLC_38 3

LLC_40 2

As described above, we can represent each source code file

as a set of tokens together with token frequencies. Those

tokens and token frequencies are used as inputs for our

learning algorithms. This process is almost identical to the

use of word and word frequencies in document classification

problems.

B. Training Dataset

We used the same dataset used by Lange and Mancoridis

[6], which consists of Java source code files belonging to 10

developers. We divided the dataset into two parts called the

“training dataset” and “validation dataset”. The training

dataset consisted of 904 source code files. Each developer

has written at least 40 source code files. The validation

dataset was used as a “hide-out” dataset and it was used only

for the final evaluation of the system. The validation dataset

consisted of 741 source code files.

C. Training the System

First, the system was trained by using multinomial naïve

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

677

bayes classifier. We started with 100 source code files with

10 files per developer. We increased the number of files per

training set by 100 files in each iteration. After checking the

“confusion matrices” we found out that the multinomial

naïve bayes classifier performed well when the training set

consisted of 800 source code files.

Thereafter, multinomial naïve bayes classifier tested with

the hideout dataset According to the generated “confusion

metric” the multinomial naïve bayes classifier‟s prediction

performance is poor for Authors 5, 6 and 8.

As the second step we trained the bernoulli naïve bayes

classifier. Similar to the way we trained the multinomial

naïve bayes classifier we increased the training dataset by

100 source code files at a time. Moreover we have found out

that the bernoulli naïve bayes classifier performs well when

the training dataset consists of 800 source code files.

According to the generated “confusion matric” for the

Bernoulli naïve bayes classifier we gained some

improvement for Authors 8 and 5. But Bernoulli naïve bayes

was lacking of classifying source code files of Author 6.

Thereafter, we investigated the k-Nearest Neighbor (kNN)

classifier with the intension of improving the accuracy when

classifying Author 6. Since k is a parameter in the kNN

learner we needed to train the leaner for several k values. As

in the previous two learners we trained the kNN leaner for

various sample sizes. Finally, we identified the optimum k

value and the sample size for the source code author

identification problem.

Further, we calculated the confusion matrices for various k

values similar to the way we calculate for the naïve bayes

classifier. Fig. 1 shows the variation of success rates for

various k values.

Fig. 1. Success rate vs. sample size of kNN algorithm for training dataset.

According to Fig. 1 the optimum training data set size is

800 documents and k value is 3.

Finally we tested the kNN learning algorithm with the

above configuration against the hideout data set. According

to the final confusion matrix, the kNN leaner performed well

for all developers except for developer number 8. As such we

can consider the kNN leaner as a suitable weak leaner to

construct an ensemble learner in the next section.

After training the system with three different learning

algorithms we have identified no single algorithm that

satisfactorily classified the source code files of all the authors.

But all the algorithms satisfactorily classified the source code

files belonging to a subset of authors. Further the above three

learning algorithms complemented each other. Since the

three algorithms we trained above complement each other we

can use the ensemble learning method to improve the overall

accuracy of the process. As such we have used the AdaBoost

algorithm for improving the accuracy of the process.

For training the individual weak-learner we used 800

source code files with no less than 40 source code files for

each developer and for training the AdaBoost algorithm we

used 800 source code documents with not less than 40

documents per author. Fig. 2 shows the confusion matrix of

running the AdaBoost for our validation dataset.

We were able to achieve 86.64 percent accuracy by using

the same dataset used by Lange and Mancoridis[6].

According to the research paper published by Lange and

Mancoridis[6] their accuracy was 55 percent.

Fig. 2. Confusion matrix of adaBoost algorithm for hideout dataset.

V. CONCLUSION AND FUTURE WORK

In this paper we discussed a machine learning based

method for plagiarism detection. The main feature of our

method is that, we used a meta-learning algorithm in order to

improve the prediction accuracy of our system.

In our research we investigated only three learning

algorithms. However, it is interesting to see how other

learning algorithms work in source code author identification

problems. Furthermore, AdaBoost is not the only

meta-learning algorithm we can use for combining several

weak-learners. In the future we will be investigating other

learning algorithms to combine with our weak-learners.

Our system will not work correctly, if programmers follow

some coding standard and source code formatting tools

specified in their projects. Since our main target was

REFERENCES

[1] J. Zobel, “Uni Cheats Racket: A case study in plagiarism investigation,”

Proceedings of the Sixth Conference on Australasian Computing

Education, vol. 30, 2004, pp. 357–365.

[2] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: detection of software

plagiarism by program dependence graph analysis,” Proceedings of the

12th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2006, pp. 881.

[3] J. H. Ji, G. Woo, and H. G. Cho, “A source code linearization technique

for detecting plagiarized programs,” ACM SIGCSE Bulletin, vol. 39,

2007, pp. 77.

[4] C. Arwin and S. M. M. Tahaghoghi, “Plagiarism detection across

programming languages,” Proceedings of the 29th Australasian

Computer Science Conference, vol. 48, 2006, pp. 286.

[5] S. Engels, V. Lakshmanan, and M. Craig, “Plagiarism detection using

feature-based neural networks,” Proceedings of the 38th SIGCSE

Technical Symposium on Computer Science Education, 2007, pp. 38.

[6] R. C. Lange and S. Mancoridis, “Using code metric histograms and

genetic algorithms to perform author identification for software

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

678

forensics,” Proceedings of the 9th Annual Conference on Genetic and

Evolutionary Computation, 2007, pp. 2089.

[7] J. A. W. Faidhi and S. K. Robinson, “An empirical approach for

detecting program similarity and plagiarism within a university

programming environment,” Computers and Education, vol. 11, 1987,

pp. 11–19.

[8] E. Alpaydin, Introduction to Machine Learning, Second Edition, the

MIT Press, 2010.

[9] H. Ding and M. H. Samadzadeh, “Extraction of Java program

fingerprints for software authorship identification,” Journal of Systems

and Software, vol. 72, 2004, pp. 49–57.

[10] M. C. D, R. Prabhakar and S. Hinrich, Introduction to Information

Retrieval, Cambridge University Press, 2008.

[11] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

Prentice Hall, 2002.

Upul Bandara received the B.Sc in Civil

Engineering and M.Sc.in IT from University of

Moratuwa, Sri Lanka in 2004 and 2011. His major

research interests include machine learning,

information retrieval and compiler construction.

Presently, he works for Virtusa Corporation, Sri

Lanka as a senior engineer.

Gamini Wijayarathna received Dr. Eng. degree

(specializing in Software Engineering) and M.Eng.

degree from the University of

Electro-Communications, Tokyo, Japan. He

graduated from the Faculty of Science, University

of Kelaniya with an Honors degree in 1984. He has

received special training in System Engineering by

the Center of the International Cooperation for

Computerization (CICC) in Tokyo, Japan and IBM

System 34/36 by IBM Sri Lanka. He has over twenty years of experience in

professional software development for various business and scientific

applications, conducting research in software engineering related fields, and

teaching Information Technology related subjects. His client base includes

private and public sector organizations in Sri Lanka, and few Japanese

companies. Dr. Wijayarathna worked as a Research Associate at the

Software Design Laboratory, Graduate School of Information Systems,

University of Electro-Communications, Tokyo, Japan before he joined the

Department of Industrial Management as a senior lecturer in year 2001.

During last few years, he has extended his services to other institutes in Sri

Lanka.

[12] R. E. Schapire, “A brief introduction to boosting,” in Proc. of

International Joint Conference on Artificial Intelligence, 1999, pp.

1401–1406.

[13] Developer Resources for Java Technology. [Online]. Available:

http://www.oracle.com/technetwork/java/index.html.

[14] ANTLR Parser Generator. [Online]. Available: http://www.antlr.org/

[Accessed: Jan 25, 2011].

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

