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Abstract—This paper considers a cognitive radio (CR) 

net-work, in which the unlicensed (secondary) users (SUs) are 

allowed to concurrently access the spectrum allocated to the 

licensed (primary) users provided that their interference to the 

primary users (PUs) satisfies certain constraints. It is more 

general and owns stronger challenge to ensure the quality of 

service (QoS) of the PUs as well as to maximize the weighted 

sum-rate of the SUs. By choosing the weighted coefficients, we 

can find any optimal boundary point of the capacity region. On 

the other hand, single-antenna mobile users are quite common due 

to the size and cost limitations of mobile terminals. Thus, we 

simply term this setting as single input multiple output multiple 

access channels (SIMO-MAC) in the CR Networks. Subject to 

the interference constraints of the SUs as well as peak power 

constraints of the SUs, the weighted sum-rate maximization 

problem is solved. To effectively and efficiently maximize the 

achievable weighted sum-rate of the SUs, a tight pair of upper 

and  lower  bounds,  as  an  interval,  of  the  optimal  Lagrange 

multiplier is proposed. It can avoid ineffectiveness or 

inefficiency when the dual decomposition is used. Therefore, not 

only is convergence of the proposed algorithm guaranteed, but 

efficient computation is also provided by the proposed 

algorithm.

Index Terms—Wireless communications, coganative radio 

(CR) network, weighted sum-rate, multiple acess channels 

(MAC), optimization methods.

I. INTRODUCTION

The radio spectrum is a precious resource that demands 

effective utilization as the currently licensed spectrum is 

severely underutilized [1]. Cognitive Radio (CR) [2], which 

adapts the radios operating characteristics to the real-time 

conditions, is the key technology that allows flexible, efficient 

and reliable spectrum utilization in wireless communications. 

This technology exploits the facts that the licensed spectrum 

is underutilized by the primary user(s) (PU) and it introduces 

the secondary user(s) (SU) to operate on the spectrum that is 

either opportunistically being available or concurrently being 

shared by the PU and the SU. The proposed paper focuses on

the latter case.

Since the multiple-input multiple-output (MIMO) 

technology uses multiple antennas at either the transmitter or 

receiver to significantly increase data throughput and link 

range without additional bandwidth or transmit power, it 

plays an important role in wireless communications today.
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  In our proposed paper, we will combine the CR network 

with the MIMO technology to fully ensure the quality of 

service (QoS) of the PUs as well as to maximize the weighted 

sum-rate of the SUs. This machinery may achieve flexibility 

and efficiency in spectrum sharing with principle of the CR. 

Note that by choosing the weighted coefficients, we can find 

any optimal boundary point. It is easily seen that as the 

weighted coefficients are all being unity, the above problem is 

reduced into a sum-rate optimization problem. Since the 

reduced problem has a simpler structure, it can be solved by 

the well-known water-filling, but the weighted sum-rate 

optimization problem cannot use water-filling to compute its 

solution.

On the other hand, since single-antenna mobile users are 

quite common due to the size and cost limitations of mobile 

terminals, we simply term this setting as a single input 

multiple output multiple access channel (SIMO-MAC) in the 

CR network, and confine the topic to the SIMO-MAC 

situation in the CR Networks. By exploiting structure of the 

weighted sum-rate optimization problem, although 

water-filling cannot be used, we can still propose an efficient 

algorithm to compute the optimal input policy and the 

maximum weighted sum-rate in the proposed paper.

For computing the maximum weighted sum-rate for a class 

of the Gaussian SIMO systems, [3] has presented some 

algorithms to provide the max-stability policy. In addition, 

[4]-[6] have set up the well known duality between the 

Gaussian broadcast channel and the sum-power constrained 

Gaussian dual multiple-access channel. Those meaningful 

works are applied to the non-CR case. For the MIMO MAC 

under the CR network, in order to compute the optimal input 

policy, the sum-rate maximization problem for the 

SIMO-MAC in the CR network is investigated in recent 

published papers, such as [7].

Motivated by the above work, in this paper, we set up 

mathematical models for the CR cases, which reflect the 

systems more practically than others. In addition, we propose 

a dual decomposition algorithm based on the water-filling 

principle. The proposed algorithm owns several 

improvements shown below. 

First, to avoid ineffectively using the dual decomposition 

algorithm and make the proposed algorithm more efficient, a 

tight pair of upper and lower bounds, asan interval, to the 

optimal Lagrange multiplier is proposed. Especially when the 

number of the users is great enough, the benefit to utilizing 

this interval can be sufficiently exploited. 

Second, we reduce the weighted sum-rate problem into 

solving a decoupled system. Each equation of the decoupled 

system only contains a scalar variable. Due to the 
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characteristics of both the objective function and the 

decoupled system with each of the equations containing a 

scalar variable, although the water-filling cannot be used, any 

one of the equations is solved by the proposed algorithm at 

least with exponential convergence rate. To guarantee a fast 

computation, we construct intervals, each of which contains a 

corresponding solution to each of the equations. 

To the best knowledge of the authors, the above two points 

have not yet been investigated in the existing literatures. 

In addition, convergence of the proposed algorithm can be 

guaranteed through a rigorous mathematical proof presented 

in this paper. As a result, the proposed algorithm offers fast 

convergence. It is important to note that convergence of the 

proposed algorithm is based on the theoretical advances from 

the fundamental results of the previously mentioned 

acclaimed papers. 

Key notations that are used in this paper are as follows: |A| 

and Tr (A) give the determinant and the trace of a square 

matrix A, respectively; E[X] is the expectation of the random 

variable X; the capital symbol I for a matrix denotes the 

identity matrix with the corresponding size; In addition, for 

any complex matrix, its superscript + denotes the conjugate 

transpose of the matrix.

II. SIMO MAC UNDER CR NETWORK AND ITS WEIGHTED 

SUM-RATE

For the SIMO-MAC in the CR network, assume that there 

are one base-station (BS) with Nr antennas, K SUs and N PUs, 

each of which is equipped with one single antenna. In this 

section, assume that the SIMO-MAC under the CR network is 

described as

y= 






 
N

i

i

i

i
K

i

i Zxhxh
11

ˆˆ

where ,,...,1,
1

KiCh rN

i 


and 

,,...,1,ˆ 1
NiCh rN

i 


are the given fixed channel 

vectors of the SUs and PUs, respectively. Like regular 

assumptions, such as those in  [7], the i-th entry xi of x ∈ C
N

r
×1

is a scalar complex input signal from the i-th SU and x is 

assumed to be a Gaussian random vector having zero mean 

with independent entries. The j-th entry ˆ
jx of x̂ is a scalar 

complex input signal from the j-th PU and x̂ is assumed to 

be a Gaussian random vector having zero mean with 

independent entries. Further, Z ∈ C
N

r
×1 

is an additive 

Gaussian noise random vector, i.e., ),0(~ 2INZ  . Thus, 

1
 rN

Cy is the received signal at the BS. Furthermore, 

.,...,2,1],)([ KixxES ii

i  

The mathematical model of the weighted sum-rate 

optimization problem for the SIMO-MAC in the CR network 

can be written as follows, by using the successive interference 

cancellation (SIC) principle [8]: Given a group of 

nonnegative real numbers, {α1, . . . , αK } , at least one of which 

is nonzero,

ax 1 1( ,..., ; ,..., ; )wm K K tf h h P P P  

                  max  
1 1

log
K k

k j j j

k j

I h h S 

 

                   (1)

where the constraint set is 

{ 1{ } : 0 ,K

k k k k k k tS S P g S P    }. The peak power 

constraints on the SUs are denoted by Pk (> 0), k = 1, …, K. In 

the constraint set, assume Pt > 0, and there exists 1≤j0 ≤K

such that 
0

0.jh  Further, without loss of generality, 

1

ˆ ˆ
N

i

i

i

h x Z





is assumed to have the identity covariance matrix in model 

(1). Note that αk is the difference, k , between  the k-th 

weighted coefficient and the (k + 1)-th weighted 

coefficient when the weighted coefficients are assumed to 

be ones in descending order (users can be arbitrarily 

renumbered to satisfy this condition). Further, the (K + 

1)-th weighted coefficient mentioned above is assumed to 

be zero to compute αK.

The constraint 

1

K

k k t

k

g S P




of the weighted sum-rate optimization problem (1) of the 

SIMO-MAC in the CR network is called the sum-power 

constraint with gains. The gains denoted by
1{ }K

k kg 
are 

defined as follows. Let

1 ,..., rN K

KH h h C     

and  

1
ˆ ˆˆ ,..., rN N

NH h h C    
 

Thus, y = Ĥ x̂ + (Hx + Z), where Hx + Z is the additive 

interference and noise to the transmitted signal Ĥ x̂ , which 

is transmitted to the BS. To guarantee the QoS for the PUs, 

the power of the interference and noise is less than the 

transmitted power by the PUs. That is to say, setting up a 

threshold Pt limits the power transmitted by the SUs and 

guarantee the QoS for the PUs. Its mathematical 

expression can be expressed as

Tr(HE(xx
†

)H
†

+ E(ZZ
†
)) ≤ Pt

Let gk = 
k kh h

, ∀k. Then we have: 

2

1

K

k k t r

k

g S P N 


 

Pt <= Pt − Nrσ
2
, where the symbol “⇐” means the 

assignment operation. 
1{ }K

k kg 
is called gains of the 

sum-power constraint, and Pt is called the sum-power 

constraint with the gains.

Further, based on the same principle, a better weighted 

sum-rate model can be also obtained. Our approach just 

reflects essence of the issue for the SIMO-MAC in the CR 

network, compared with others.
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In addition, assume that M = rank(H). Applying the QR 

decomposition, H = QR. Let

Q=[q1,··· ,qM]∈C
N

r
×M

have orthogonal and normalized column vectors. R ∈ C
M ×K

is 

an upper triangle matrix with rm,k  denoting the (m, k)-th entry 

of the matrix R. Q
†

is regarded as an equalizer to the received 

signal by the BS.

Thus, the i-th SU should have the rate:

 log 1 / ,A B where 
2

,i i iA r S

2
2

,

1 1

ˆ ˆ
N K

n i n i i j j

n j i

B S q R q r S 

  

   

ˆ ˆ ˆ( )n n

nS E x x     and ˆ ˆˆ , 1, ,n n nR h h n N  

Compared with [7], since the third term in the denominator 

above is ignored by the paper [7], thus our model is more 

complete.

Using the separating hyperplane theorem [9] in convex

optimization theory, we may obtain the following proposition.

Proposition II.1. The optimization problem (1) is 

equivalent to the following optimization problem:

 
1

0

1 1

min max logK

k k

K k

k j j jS
k j

I h h S 






 

 

1

( )
K

k k t

k

g S P



  




Subject to               0, ,k k kS S P k                       (2)

i.e., the optimal objective values of the optimization problems 

(1) and (2) are equal. Furthermore, with the exception of the 

part of the dual variable, the restriction of any optimal 

solution of (2) (to the part of original variable) is the same as 

the optimal solution of (1).

III. ALGORITHM ALW1

To extend the solution to the optimization problem (2) with 

the weighted sum-rate and more efficiently solve this problem 

(2) according to Proposition (II.1), a new method is to be 

proposed as follows.

Given λ ≥ 0 and the optimization problem:

 
1 1 1

max logK

k k

K k

k j j jS
k j

I h h S




 

 

1

( )
K

k k t

k

g S P


 

Subject to              0, ,k k kS S P k                       (3)

an efficient iterative algorithm is proposed here and the 

optimal objective function value for the problem (3) is 

denoted by g(λ). It is seen that g(λ) is a convex function over λ 

≥ 0, and λ is a scalar. Thus, we may use a line search to 

obtain the optimal solution λ∗ to the problem (2). Thus, since 

the range to search is quite important, a pair of the upper 

and lower bounds is proposed as follows.

Proposition III.1.  For the optimization problem (2), the 

optimal solution
* is in the interval (left open and right 

closed) from 0 to the sum of{ }k , summarized from 1 to K.

Tightness of the interval or pair of the upper and lower 

bounds means that there exists a set of channel gains such that 

its optimal Lagrange multiplier λ∗ touches either of the ends of 

the interval. For example, as K = 1, α1 = 1, Pt = 2, P1 = 1 and 

1 1,h  it is seen that 
*

1.  Let  in the interval 

mentioned above, and consider the evaluation of ( ).g  Note 

that the problem (3) has decoupled constraints. Therefore, the 

block coordinate ascend algorithm (BCAA)[10], [11] can be 

used to solve the problem efficiently. The iterative algorithm 

works as follows. In each step, the objective function is 

maximized over a single variable Sk, while keeping all other 

Sks fixed, k = 1, · · · , K and then repeating this process. Since 

the objective is nondecreasing with each iteration, the

algorithm must converge to a fixed point. Using the fixed point 

theory, the fixed point is an optimal solution to the problem (3). 

In the detail, let us consider an optimization problem below 

over Sk , k = 1, with respect to all other Sk s being fixed, as 

follows:

 
1 1 1

max logK

k k

K k

k j j jS
k j

I h h S




 

 

1

( )
K

k k t

k

g S P


 

Subject to                  0,k k kS S P                               (4)

If 1g  0, then 1h  0. Let h1 ⇐ h2. Repeating this 

process, we can obtain a non-zero h1. An optimal solution to 

the problem (4) satisfies the following relationships:

If             1 1

1

 , 0
K

k k

k

i g then S 


  

If              
1 1 1 11

1

,k k

k

K

S
k

g then S P









 

else              
1 11

1

k k

k

K

S
k

g











where          
1

1

2

( ) ,
k

k j j j j

j

h I h h S h k  



               (5)

Since the preceding two cases are trivial and are easy to 

solve, we will mainly discuss the third case mentioned above 

without a specific claim. For acquiring fast computation of the 

solution to the optimality condition (5), Jacobian-Newton 

method can obtain the exponential convergence at least, 

resulting from the characteristics of the objective function and 

the decoupled system with only one equation and a scalar 
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variable. At the same time, efficiency of the fast computation 

mentioned above stems from choice of an initial point or 

interval.

Proposition III.2.  For the optimality condition (5), the 

Jacobian-Newton method [9] can obtain the exponential 

convergence, at least.

Proof: The error between the n-th iterative solution 
1

nS and 

the true solution 
*

1S is denoted by ne . Then 

2

1 , 0 1n ne e where    

If |e0| < 1 is chosen, it implies that 
1{ }nS exponentially 

converges at least and much faster the bisection method. On 

the other hand, we may use the secant method to make |e0| < 1 

in a few iterations, which is much faster than the bisection 

method, especially when the initial interval is provided. #

According to the proposition above, assume e0 = 0.8. 

Then, e1 = 0.8
2
  = .64, e2  = 0.8

4
  = .41, e3  = .16, e4  = .028, e5

= .0008, e6 = .0000006, e7 = .0000000000004, e8

= .00000000000000000000000016. Therefore, the convergent 

rate is quite significant.

Such an interval is just provided by Proposition (III.3) 

below.

Proposition III.3.  For the optimization problem (4) or the 

optimality condition (5), if

11 11

1 1

k k

k

K K

k k P
k k

g and g


  




 

   

The optimal solution 1S 

1 11 1

1 1

min{ } max{ }
[max{0, },max{0, }]

k k

K K
k k k k

g g

 

 
  

  

For λ, given
( ) ( )

1{ ,..., }n n

KS S , the BCAA is used from the 

first variable to the K-th variable, and we obtain 

( 1) ( 1)

1{ ,..., }n n

KS S 

Thus there is a mapping which projects 
( ) ( )

1{ ,..., }n n

KS S to 

( 1) ( 1)

1{ ,..., }, .n n

KS S n   This mapping is denoted by f.

With the assumptions and the concepts introduced, a new 

iterative-water-filling-like algorithm, AlW1, is concisely 

proposed as follows.

Algorithm AlW1:

1) Given ε > 0, initialize 
(0) (0)

1{ 0,..., 0}KS S  , λmin

and λmax. 

2) Set λ = (λmin + λmax)/2.

3) Compute
( 1) ( )

1 1{ } ({ } ).n K n K

k k k kS f S

  Then n <= n + 

1. Repeat the procedure 3) mentioned above until the 

optimal solution to the problem (3) is reached.

4) If  
* 0k k tS P   , then λmin is assigned by λ;

    If  
* 0k k tS P   , then λmax is assigned by λ;

    If  
* 0k k tS P   , stop. 

5) If |λmin − λmax| ≤ ε, stop. Otherwise, go to step 2). Note

that the initial λmin is chosen as 0, and λmax is chosen as 

k respectively. If the initial values λmin ≥ 0 and 

λmax ≥ 0 are chosen as two points at outside of the 

available range of the λ∗, there exists an example to 

account for the fact that algorithms via dual 

decomposition principle cannot find any optimal 

solution.

Example 1. If K = 2, P1 = P2 = Pt = 2, α1 = α2 = 1/3 and h1

= h2 = g1= g2=1, the problem (3) is instanced.

Let the initials λmin = 6 and λmax = 8. Dual decomposition 

algorithms cannot be used to find any optimal solution to the 

weighted sum-rate maximization problem.

If 
1 11

1

,k k

k

K

P
k

g









 then S1=P1; if 1

1

,
K

k k

k

g 


  then 

S1=0; else, it is seen that 1 0.g   Thus we utilize the 

interval 

1 1

1 11 1

1 1

min{ } max{ }
[max{0, },max{0, }]

K K

k k

k k

K K
k k k k

g g

 

 
 

  

 
 

with the left end and the right end of the interval mentioned 

above being denoted by Smin and Smax, respectively. The 

secant method may be applied due to existence of the interval 

above. It can be proven that this secant method owns a faster 

convergence.

IV. CONVERGENCE OF ALGORITHM ALW1

First, we will prove the system (5) to be a group of the 

sufficient and necessary optimality conditions to the 

optimization problem (4).

Proposition IV.1. The system (5) is a group of the sufficient 

and necessary optimality conditions to the optimization 

problem (4).

Proof: For any λ, k and the optimization problem (4), it 

has been known that the objective function is maximized 

over a single variable Sk , while keeping all other Sk s fixed. 

Without loss of generality, assume k = 1. It is seen that the 

optimization problem (4) is equivalent to the following 

problem:

1 1 1:0 1 1 1

1 1

max log(1 )
K K

S S P k k

k k

S g S  

 

          (6)

Since the Hessian matrix of the objective function of the 

optimization problem (6) is strictly negative definite, the 

objective function is strictly concave with a convex feasible 

set. Derivative of the objective function is

1 11
.k k

k P
g







 If 1k k g   and 

1 11

1

,k k

k

K

P
k

g









 S1 = 0 and S1 = P1, respectively, if 

and only if S1 is the optimal solution to the problem (6); 

else, 
1 11

1

0k k

k

K

P
k

g









  if and only if S1 is the optimal

solution to the problem (6). #
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Second, convergence for the algorithm AlW1 is discussed 

as follows.

Theorem IV.2. For the weighted sum-rate problem (1), 

AlW1 is convergent.

Proof: Due to construction of the tight interval or bounds 

for the optimal Lagrange multiplier λ∗, convexity of both 

the optimization problem (2) and g(λ), and characteristic the 

sub-gradient method, the Lagrange multiplier obtained by 

iterations of the outer loop computation can approximate to 

λ∗  only when the inner loop can guarantee convergence. It is 

seen that the cyclic coordinate ascent algorithm [11] is 

used by the inner loop computation and it is convergent if 

the solved problem is a convex optimization problem with a 

compact Cartesian direct product set as the feasible set and a 

continuously differential objective function. The problem (1) 

guarantees the conditions mentioned above. Therefore, AlW1 

is convergent. #

V. PERFORMANCE RESULTS AND COMPARISION

We end our discussion with some numerical examples to 

illustrate the simplification and effectiveness of the proposed 

algorithm. For a clear understanding, the 

iterative-water-filling-like algorithm in [3] is called 

Algorithm AW in this paper and can be used to solve the 

problem (1). The performance for AW was better than others 

(refer to [3]). Thus, the proposed AlW1 only compares with 

AW under the same assumption.

Example V.1. The performance of Algorithm AlW1, 

compared with Algorithm AW of [3], is presented in Fig. 1, 

where Nr = 8. Random data are generated for the channel gain 

vectors and the number of the PUs. The number, denoted by 

K, of the SUs is 158, and the number of the PUs is 258. The 

sum-power constraint with the gains is Pt = 8 and the peak 

constraints are chosen at random.

For Fig. 1, the solid curves and the cross markers represent 

the results of our proposed algorithm AlW1 and the algorithm 

AW, respectively. These results show that our proposed 

algorithm AlW1 exhibits faster convergence, although the 

number of the SUs is great. On the other hand, not only 

AlW1 guarantees effective and efficient convergence, but it 

also has a lower computation complexity. Each iteration of 

AlW1 scales linearly with K, the computation complexity of 

the inner loop is at most cK × O(log(1/ϵ1)), where c denotes 

the number of the inner loop iterations, and ϵ1 denotes the error 

tolerance for computing Sk. The outer loop undergoes 

O(log(1/ϵ2)) iterations to satisfy the error tolerance ϵ2. 

Compared with complexity O(K
3.5

log (1/ϵ3)) of the interior 

point algorithm, the complexity of AlW1 is significantly 

reduced.

VI. CONCLUSION

For the model of the SIMO-MAC in the CR network, 

through the efficient iterative with two sets of the determined

bounds, the proposed algorithm exhibits improved 

convergence rate.
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Fig. 1.   Algorithm AlW1 compared with algorithm AW, as K=158
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