

Abstract— Portable executable or PE file features play a key

role in detection of packed executables. Packing performs a lot

of changes to the internal structure of PE files in such a way that

it makes it very difficult for any Reverse Engineering

Technique, Anti-Virus (AV) scanner or similar kind of

programs to figure out whether the executable is malware or

benign. Therefore, it is very important to figure out whether a

given executable is packed or non-packed before detecting it as

malicious or benign. Once a binary is detected as packed, it can

be unpacked and can be given to AV or similar kind of

programs. In this paper we have included a brief description of

Portable Executable file format as we need to know the internal

structure of PE before figuring out Packed Portable

Executables. We have considered the packed executable by

UPX packer only, and hence mentioned the functioning of UPX

packer very briefly. Our approach basically works in two

phases. In the first phase, it extracts various features of portable

executables and in the second phase it analyses the extracted

features and comes up with best set of features, which can be

used to identify whether a given binary is packed or not by UPX

Packer. Experimental results are shown to the end of this paper.

We figure out the key feature set with proper justifications to

show differences between packed and non-packed executable by

UPX packer.

Index Terms—Malware, non-packed, packed, portable

executable.

I. INTRODUCTION

Pcking technique makes it easier for the writer of the

malicious softwares to hide their malicious code from

Anti-Virus or similar kind of a program. This is one of the

most popular obfuscation techniques among all obfuscation

techniques available, as in [1]. It is easier to collect packer

softwares since several open source and commercial

executables packers are available in the market. In a very

simple way, we can define packing as an executable inside

another executable. A Packer is basically a software which

produces a number of data blocks that form the compressed

and/or encrypted version of the original executable, as in [2].

A packer always inserts one unpacker stub inside the

resultant executable itself to unpack the packed original

executable at the time of runtime, as in [1]. The packing

techniques vary from packer to packer. It is because different

types of writer have different types of motivation for writing

source code of his/her own packer.

Some of the packers uses more sophisticated technique to

eavade detection. Multilayer-packing, Anti-unpacking are

some of these techniques, as in [3]. Examples of such packers

are Enigma, as in [3], Themida, as in [4] etc.

Manuscript received March 8, 2012; revised May 10, 2012.

Dhruwajita Devi, Sukumar Nandi, Indian Institute of Technology

Guwahati, Assam India (e-mail: {dhruwajita.devi, sukumar} @ iitg.ernet.in).

Here, in this paper section II briefly describes the Portable

Executable file format. Section III explains functioning of

UPX packer in a nutshell. Section IV describes our approach

followed by section V that includes the experimental part.

Section VI finally concludes the paper which is followed by

various references.

II. PORTABLE EXECUTABLE FILE STRUCTURE

Before going to experimental section, here we give a very

brief description about the portable executable file structure.

We know that the PE layout itself is a huge structure. But

briefly it is given as follows.

This section starts out with familiar MS dos header

followed by PE header. The PE Header itself contains three

sections namely File header, Optional header and Section

header, as in [5], [6], [7]. Code and Data sections are for

holding the code of the program and initialized data. Import

is for importing functions needed by programs at the time of

run time. Some of the most common resources are Icons,

Version information, GUI resources etc.

 At a minimum, a PE file will have two sections, one for

code and the other for data. The predefined and the most

commonly present sections for an application of Windows

NT are: Executable Code Section, named .text, Data Sections,

named .data, .rdata, or .bss, Resources Section, named .rsrc,

Export Data Section, named .edata, Import Data Section,

named .idata, Debug Information Section, named .debug, as

in [8]. Moreover, two more sections which are common in

most of the times are .reloc for Relocation information

and .tls section, which stands thread local storage. Windows

supports this special storage class in which a data object is

not a stack variable, but is still local to each individual thread

that runs the code. Therefore, each thread can maintain a

different value for a variable declared by using TLS.

All the above mentioned sections are called standard sections.

If there are sections rather than the standard sections, are

called nonstandard sections, as in [9]. Each and every section

has its own header structure. The data items of the structures

are the key feature for analyzing any executable as packed or

non-packed.

III. FUNCTIONING OF UPX PACKER IN A NUTSHELL

UPX is the most popular among all the packer softwares.

Compression and/or Encryption techniques of all the packers

vary based on the code of their writers. UPX packer packs all

the sections present in the input binary into a single section

called packed data. It also includes unpacker code along with

the packed data forming one nonstandard section in the

resulting binary called UPX1. UPX0 is one more section in

the resulting output binary. It is empty and reserves an

PE File Features in Detection of Packed Executables

Dhruwajita Devi and Sukumar Nandi

International Journal of Computer Theory and Engineering, Vol. 4, No. 3, June 2012

476

address range. The address range is needed by the packed

data when it gets unpacked by the unpacker code at the time

of runtime. If the input binary possessed a .rsrc section, the

resulting output binary will also have one .rsrc or resource

section and if the input binary did not have a .rsrc section, the

output binary also would not have it, as in [3].

IV. OUR APPROACH

We can devide our approach into two phases basically.

First phase is feature extraction and second is the analysis

phase. Based on our extraction mechanism and observation,

we come up with the best set of features with which we can

definitely differentiate the executables Packed and

non-Packed by UPX Packer. The pictorial representation of

our approach is as follows :

Fig. 1. Pictorial representation of our approach

We can visualize our approach by looking at the figure

given above. It is basically comprised of two steps Feature

Extraction and Analysis as mentioned.

V. EXPERIMENTS

Initially we did manual extraction of features to have an

idea about the features. We examine each of the portable

executables we had after and before packing by UPX packer.

For this purpose, we dump the files using Dumpbin Gui, as in

[10], which is freely available. We collected UPX packer, as

in [11] to pack the executable we collected.

We develop a C language program to extract features from

the portable executable files. We collected 4095 executables

files. Among them 2992 were malicious programs

downloaded from http://offensivecomputing.net/. 1103 were

benign executables collected from a newly installed windows

machine and some other common software applications. We

extract a lot many features from the executables before and

after packed by UPX packer.

Windows is mostly written in C and C++. Therefore it is

easier to extract the features of the portable executable files.

We have extracted most of the features through our program.

16 features from DOS Header are extracted. PE header

comprised of three parts, namely File header, optional header

and Section header. We extracted 6, 29 features from file

header and optional header respectively. Again, 10 features

from each section in the section header. We also calculate the

entropy of each and every file, after and before packing the

same.

After a lot many observations and analysis, we come up

with a feature set of four main features which can be used to

figure out packed executables by UPX packer. These features

are given in table.

TABLE I: LIST OF FEATURES

1 2 3 4

Entropy

(ENTP)

Size Of

Uninitialized

Data (SOUID)

Size Of Headers

(SOH)

Size of Raw Data

(SORD)

 The graphical representation of the difference between

the executables packed and non-packed by UPX packer are

also shown along with the justification of the features.

A. Entropy (ENTP)

Entropy can be considered as one of the major feature in

classification of packed and non-packed executables. It is a

measure of the inherent randomness in a probability

distribution. Packing method conceals malicious

executables’ string, data and code. These methods transform

some or all of the original bytes into a series of

random-looking data bytes. That is why entropy of a packed

executable is always higher than a non-packed executable.

Fig. 2. Entropy

B. Size of Uninitialized Data (SOUID):

Compressed sections usually have the UNINITIALIZED

DATA flag enabled. It is because of the null size on disk. The

loader takes the compressed sections and unpacks them to

their original memory locations at the time of execution.

Fig. 3. Size of uninitialized data.

C. Size of Headers (SOH):

UPX packer wraps the whole exe into the packed data

along with the unpacker code in UPX1. We know that the

size of the header contains the size of the PE Header and the

section table. That is why the size of header of the resultant

PE after packed by UPX is generally greater than or

sometimes equal to the size of exe not packed by UPX.

Fig. 4. Size of headers.

International Journal of Computer Theory and Engineering, Vol. 4, No. 3, June 2012

477

D. Size of Raw Data (SORD):

UPX packer changes the RAWSIZE of each packed

section to 0. The size in memory remains unchanged, because

the program still has to execute normally and be unpacked at

its original location. If the RAWSIZE is null, it means the

section is non-existent on disk.

Fig. 5. Size of raw data (SORD).

Different packers have different key features. The features

vary packer to packer as it depends on the implementation

and the platform it is running on.

VI. CONCLUSION

In this paper, we present four features of portable

executable which are key feature to differentiate executables

packed and non-packed by UPX packer. It is always tedious

to figure out malicious or benign executable once a PE is got

packed. Therefore, our approach makes it easier to figure out

whether an executables is packed or not by UPX just by

extracting the feature set comprised of these four. Once an

executable is detected as packed, we can unpack using

universal unpacker for e.g. PolyUnpack. As soon as we

unpack it, we can give it to antivirus or equivalent softwares

to detect whether the file is malicious or benign. Hence, we

can conclude that it is making life easier for traditional

signature-based softwares to detect malicious executables.

ACKNOWLEDGMENT

The authors would like to thank Mr. Neminath Hubballi

for his contribution during discussion related to this work.

REFERENCES

[1] R. Lyda and J. Hamrock, “Using Entropy Analysis to Find Encrypted

and Packed Malware,” IEEE Security and Privacy, March/April 2007.

[2] M. Howard, “Revealing Packed malware,” IEEE Security and Privacy,

September/October 2008.

[3] F. Guo, P. Ferrie, and T. Chiueh, “A Study of the Packer Problem and

Its Solutions,” RAID 2008, LNCS 5230, pp. 98–115.

[4] L. Sun, S. Versteeg, S. Boztas, and T. Yann, “Pattern Recognition

Techniques for the Classification of Malware Packers,” ACISP 2010,

LNCS 6168, pp. 370–390.

[5] M. Pietrek, Peering Inside the PE: A Tour of the Win32 Portable

Executable File Format, 25th of Nov 2010.

[6] G. Erdelyi, Reverse Engineering III: PE Format.

[7] Loading a DLL from memory. [Online]. Available:

http://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/

[8] Goppit, Portable Executable File Format – A Reverse Engineer View,

2006.

[9] R. Perdisci, A. Lanzi, and W. Lee, “Classification of Packed

Executables for Accurate Computer Virus Detection,” Elsevier, vol. 25

June 2008.

[10] DumpbinGUI. [Online]. Available:

http://www.cheztabor.com/dumpbinGUI/

[11] Softpedia. [Online]. Available:

http://www.softpedia.com/dyn-postdownload.php?p=90710andt=4and

i=1

International Journal of Computer Theory and Engineering, Vol. 4, No. 3, June 2012

478

