

Abstract—This paper describes the contribution to the Near

real time ETL process, which shows way, how to maintain real

time ETL process automated (without human – database

administrator interference), in cost of reduced accuracy

rendered by level of trust. First we described ETL as a part of

KDD, what is Real time ETL and problem how to achieve real –

time in real world. In next part we give several (near) real time

approaches with their advantages and disadvantages and then

we present our contribution to near real time ETL with new

architecture containing equation for calculation the level of

trust. Result is showed on real data of a small company engaged

in the sale of computer components, which expands the market

for Internet sales and there is need for fresh data using business

data warehouse containing real trade data.

Index Terms—

warehouse.

I. INTRODUCTION

Our research is about finding new methods and tools using

in different stages of Knowledge Discovery in Databases. In

the early stages of the KDD it is necessary to collect and

preprocess data [1]. Especially, we improved the Near Real

Time ETL phase (Extraction Transformation Loading), using

the new architecture.

Near real time ETL deviates from the traditional

conception of data warehouse refreshment, which is

performed off-line in a batch mode, and adopts the strategy of

propagating changes that take place in the sources towards

the data warehouse to the extent that both the sources and the

warehouse can sustain the incurred workload.

The demand for fresh data in data warehouses has always

been a strong desideratum from the part of the users.

Traditionally, the refreshment of data warehouses has been

performed in an off-line fashion. In such a data warehouse

setting, data are extracted from the sources, transformed,

cleaned, and eventually loaded to the warehouse. This set of

activities takes place during a loading window, usually

during the night, to avoid overloading the source production

systems with the extra workload of this work flow.

Interestingly, the workload incurred by this process has been

one of the fundamental reasons for the establishment of data

warehouses, since the immediate propagation of the changes

that take place at the sources was technically impossible,

either due to the legacy nature of the sources involved or

simply due to the overhead incurred, mainly for the

operational source systems but also for the warehouse. In

most cases, a data warehouse is typically updated every 24

Manuscript received April 13, 2012; revised May 14, 2012.

Robert Halenar is with the University of SS Cyril and Methodius in

Trnava, Nam. J. Herdu 2, 917 01 Trnava, Slovak Republic (e-mail:

Robert.halenar@ucm.sk).

hours.

Nowadays, new types of sources enter into the scene. In

several applications, the Web is considered as a source. In

such a case, the notion of transaction at source side becomes

more flexible, as the data that appear at a source web site are

not always available later; therefore, if instant reaction to a

change is not taken, it is possible that important information

will not be gathered later, by the off-line refreshment of the

warehouse. At the same time, business necessities – e.g.,

increasing competition, need for bigger sales, better

monitoring of a customer or a goal, precise monitoring of the

stock market, and so on - result in a demand for accurate

reports and results based on current data and not on their

status as of yesterday.

The usual process of ETL-ing the data during the night in

order to have updated reports in the morning is getting more

complicated if we consider that an organization’s branches

may be spread in places with totally different time-zones.

Based on such facts, data warehouses are evolving to

“active” or “live” data producers for their users, as they are

starting to resemble, operate, and react as independent

operational systems. In this setting, different and advanced

functionality that was previously unavailable (for example,

on-demand requests for information) can be accessible to the

end users. For now on, the freshness is determined on a scale

of minutes of delay and not of hours or a whole day. As a

result, the traditional ETL processes are changing and the

notion of “real-time” or “near real-time” is getting into the

game. Less data are moving from the source towards the data

warehouse, more frequently, and at a faster rate. [2]

II. NEAR REAL TIME ETL

The ETL market has already made efforts to react to those

new requirements. The major ETL vendors have already

shipped “real time” ETL solutions with their traditional

platforms. In practice, such solutions involve software

packages that allow the application of light-weight

transformations on-the-fly in order to minimize the time

needed for the creation of specific reports. Frequently, the

delay between the moment a transaction occurs at the

operational site and the time the change is propagated to the

target site is a few minutes, usually, five to fifteen. Such a

response should be characterized more as “near real time”

reaction, rather than “real time”, despite how appealing and

promising can the latter be in business terms.

Traditionally, ETL processes have been responsible for

populating the data warehouse both for the bulk load at the

initiation of the warehouse and incrementally, throughout the

operation of the warehouse in an off-line mode. Still, it

appears that data warehouses have fallen victims of their

Real Time ETL Improvement

Robert Halenar

International Journal of Computer Theory and Engineering, Vol. 4, No. 3, June 2012

405

Knowledge discovery in databases,

extraction transformation loading, real time, business, data

success: users are no more satisfied with data that are one day

old and press for fresh data – if possible, with instant

reporting. This kind of request is technically challenging for

various reasons. First, the source systems cannot be

overloaded with the extra task of propagating data towards

the warehouse. Second, it is not obvious how the active

propagation of data can be implemented, especially in the

presence of legacy production systems. The problem

becomes worse since it is rather improbable that the software

configuration of the source systems can be significantly

modified to cope with the new task, due to (a) the down-time

for deployment and testing, and, (b) the cost to administrate,

maintain, and monitor the execution of the new environment.

The long term vision for near real time warehousing is to

have a self-tuning architecture, where user requirements for

freshness are met to the highest possible degree without

disturbing the administrators’ requirements for throughput

and availability of their systems. Clearly, since this vision is

founded over completely controversial goals, reconciliation

has to be made:

A more pragmatic approach involves a semi-automated

environment, where user requests for freshness and

completeness are balanced against the workload of all the

involved sub-systems of the warehouse (sources, data staging

area, warehouse, data marts) and a tunable, regulated flow of

data is enabled to meet resource and workload thresholds set

by the administrators of the involved systems [2].

The general ETL architecture of a near real time data

warehouse consists of database sources including extraction

tool, which pushes extracted data into temporary store. Then

it prepares data for transformation process into

transformation function – ready data format. Transformation

runs in DPA (Data processing area) where data are

transformed and cleaned and after then are data exported by

transformation function. Loader then loads data into data

warehouse fact and dimension tables. Whole process shows

Fig. 1.

On this architecture is based traditional ETL. In case of

Near real time ETL there are built in compensation structures,

which alleviates impact of high frequently refreshment. In a

real world this cannot be performed, due to many possible

reasons like high number of users, high rate refreshment or

too expansive software and hardware parts, and this situation

is solved by several technical and structural accessories.

Practically it leads to compensated schema which contains

complementary parts.

The difficulty of such a simple Transform function is to

keep it simple. As though they can exert a vacuum of

complexity, simple Transform functions attract additional

functions and complexity to them. Resist this temptation at all

costs. A simple Transform function is another beautiful and

elegant design, and should be allowed to remain that way [3].

Fig. 1. Near real time ETL.

III. (NEAR) REAL TIME ETL APPROACHES

As usual, different alternative approaches have been

proposed in the market to handle the need for freshness in a

data warehouse.

Enterprise Application Integration, EAI. These approaches

have the ability to link transactions across multiple systems

through existing applications by using software and

computer systems architectural principles to integrate a set of

enterprise computer applications. An EAI system is a push

system, not appropriate for batch transformations, whose

functionality entails a set of adapter and broker components

that move business transactions - in the form of messages -

across the various systems in the integration network. An

adapter creates and executes the messages, while a broker

routes messages, based on publications and subscription

rules.

The main benefit from an EAI system is fast extraction of

relevant data that must be pushed towards the data warehouse.

In general, an EAI solution offers great real time information

access among systems, streamlines business processes, helps

raise organizational efficiency, and maintains information

integrity across multiple systems. Usually, it is considered as

a good solution for applications demanding low latency

reporting and bidirectional synchronization of dimensional

data between the operational sources and the data warehouse.

International Journal of Computer Theory and Engineering, Vol. 4, No. 3, June 2012

406

However, as nothing comes without a cost, they constitute

extremely complex software tools, with prohibitively high

development costs, especially for small and mid-sized

businesses. Also, EAI implementations are time consuming,

and need a lot of resources. Often, many EAI projects usually

start off as point-to-point efforts, but very soon they become

unmanageable as the number of applications increase.

Fast transformations via Capture - Transform - Flow (CTF)

processes. This solution resembles a traditional ETL process

too. CTF approaches simplify the real time transportation of

data across different heterogeneous databases. CTF solutions

move operational data from the sources, apply light-weight

transformations, and then, stage the data in a staging area.

After that, more complex transformations are applied

(triggered by the insertions of data in the staging area) by

micro batch ETL and the data are moved to a real time

partition and from there, to static data stores in the data

warehouse. CTF is a good choice for near real time reporting,

with light integration needs and for those cases where core

operations may share periods of low activity and due to that,

they allow the realization of data synchronization with a

minimal impact to the system.

Fast loading via micro batch ETL. This approach uses the

idea of real time partitioning (described in section 2.3.3.1)

and resembles traditional ETL processes, as the whole

process is executed in batches. The substantial difference is

that the frequency of batches is increased, and sometimes it

gets as frequent as hourly. Several methods can be used for

the extraction of data - e.g., timestamps, ETL log tables,

DBMS scrapers, network sniffers, and so on. After their

extraction the data are propagated to the real time partition in

small batches and this process continuously runs. When the

system is idle or once a day, the real time partitions populate

the static parts of the data warehouse. The micro batch ETL

approach is a simple approach for real-time ETL and it is

appropriate for moderate volumes of data and for data

warehouse systems tolerant of hourly latency. The main

message it conveys, though, is mainly that dealing with new

data on a record-by-record basis is not too practical and the

realistic solution resolves to finding the right granule for the

batch of records that must be processed each time.

On-demand reporting via Enterprise Information

Integration (EII). EII is a technique for on-demand reporting.

The user collects the data he needs on-demand via a virtual

integration system that dispatches the appropriate queries to

the underlying data provider systems and integrates the

results. EII approaches use data abstraction methods to

provide a single interface for viewing all the data within an

organization, and a single set of structures and naming

conventions to represent this data. In other words, EII

applications represent a large set of heterogeneous data

sources as a single homogenous data source. Specifically,

they offer a virtual real time data warehouse as a logical view

of the current status in the OLTP systems. This virtual

warehouse is delivered on-the-fly through in-line

transformations and it is appropriate for analysis purposes. It

generates a series of (SQL) queries at the time requested, and

then it applies all specified transformations to the resulting

data and presents the result to the end user. EII applications

are useful for near-zero latency in real time reporting, but

mostly for systems and databases containing little or no

historical data. [2]

IV. OUR CONTRIBUTION OF NEAR REAL TIME ETL

Our research is focused on Near real time ETL

improvement, using new compensation parts, showed on

Fig.2.

Whole process in DPA runs automatically even there is no

reason for excluding the data, like reference error or the

system is overloaded due to high refreshment rate or high

number of users. Each situation should be tested first. [4]

There is situated also a file of flags, containing file of

conditions edited by administrator, that are used for

additional inspection. Excluded and marked data are

evaluated as well as reorganized, cleaned and transformed

data. After then is calculated level of trust all outgoing data,

which describes on how much valid the data are. It is showed

on Equation (1).

(1)

)

Of course, for each data row is also available the pertinent

time, so level of trust should be calculated for a certain time

interval.

This model of improved near real time ETL should be

applied on the either ETL approach, and also should be

applied on sequential, pipelining and partitioning execution

of ETL process too. Improved architecture is showed on Fig.

3.

Fig. 2. Near real time ETL with compensation parts

International Journal of Computer Theory and Engineering, Vol. 4, No. 3, June 2012

407

Fig. 3. Improved near real time ETL

V. APPLICATION IN BUSINESS DWH

In our research we applied the new Near real time ETL

architecture on Business data warehouse specified accord to

Fig. 4.

The principle is subject oriented, so data will be grouped

by subject, rather than author, department, or physical

location. So, all manufacturing data goes together, and the

sales data, and the promotions data, etc., regardless of where

it came from [5], [6].

Fig. 4. Business data warehouse architecture

Our Business DWH is focused on sales data, concretely

profit, depending on customer and product. It consists of

three dimension tables and one fact table. Time dimension is

represented by date table.

Source data are in Microsoft Database format, which are

exported to XLS sheets entering into DPA. Transformation

process is reorganizing data according to DWH needs,

transforming measuring units, performing reference

assignment, modifying key values, sorting products in

sections and so on. File of flags contains exceptions for

transformation process, like certain company (customer)

assignment, some product exceptions, which are stored in

“Exported data format for errors” (eDFE). Loading process

then pushes exported data into DWH as well as exported

“error” data, which are marked with flag in the fact table

(Profit).

If any data are needed for analyzing, level of trust is

calculated for specified data selection.

Table I and II show the appearance of Extracted data

format, which already contains modified

ID_Stock_Movement and prices, recalculated currency to

euro. References ID_PVP and ID_Storage_card are pointed

to another Extracted data formats, concretely to dial

companies and dial stock cards. In the last row of Table 1 is

ID_PVP pointing to not existing value in dial companies,

because stock movement has been done indiscriminately

Company (for example to my neighbor). Nevertheless, the

transformation process continues and populates values into

eDF (Exported data format), and then Loading process loads

data into Business data warehouse, with flag marked on the

given row of fact table Profit and set the appropriate

id_company value to NULL. Dimension and fact tables show

Table III, IV, V and VI. To provide anonymity of companies,

we use common products label terms.

TABLE I: MODIFIED EXTRACTED DATA FORMAT – PART I

ID_Stock

_moveme

nt

ID_

PVP

ID_

Srotage

_ Card

Amount_

of_intake

Amount_

of_expen

diture

Amount_

of_balanc

e

EUR

_Inta

ke

7088 731 237 0 1 1 0.00

7504 753 237 0 1 0 0.00

5840 612 237 1 0 1 42.51

6015 614 237 1 0 2 37.28

6105 618 237 0 1 1 0.00

6399 669 237 1 0 2 33.26

8372 801 237 1 0 1 29.63

9188 -1 237 0 1 0 0.00

TABLE II: MODIFIED EXTRACTED DATA FORMAT – PART II

Euro_

nubile

EUR_

Balanc

e

Unit_

price

ID_

Store

Sale_Price_

per_unit_e

xcluding_V

AT

Other_

costs
Date

37.28 33.26 37.28 1 39.83 0.00 22.7.2008

33.26 0.00 33.26 1 38.25 0.00 4.9.2008

0.00 42.51 42.51 1 0.00 0.00 1.1.2008

0.00 79.79 37.28 1 0.00 0.00 10.1.2008

42.51 37.28 42.51 1 48.13 0.00 14.1.2008

0.00 70.54 33.26 1 0.00 0.00 7.4.2008

0.00 29.63 29.63 1 0.00 0.00 21.10.2008

29.63 0.00 29.63 1 29.68 0.00 31.12.2008

TABLE III: DIMENSION TABLE PRODUCT

id_product section Product

237 Hard disc

IBM 160GB S - ATA 2, 8MB cache,

7200rpm

International Journal of Computer Theory and Engineering, Vol. 4, No. 3, June 2012

408

TABLE IV: DIMENSION TABLE DATE

id_date day month quarter year date_name

834 22 July 3 2008 22.7.2008

634 4 September 3 2008 4.9.2008

561 14 January 1 2008 14.1.2008

810 31 December 4 2008 31.12.2008

TABLE V: DIMENSION TABLE COMPANY

id_company name

34 Company A

165 Company B

TABLE VI: TABLE OF FACT PROFIT

Id

id_produc

t id_date

id_compa

ny profit Flag

7088 237 834 34 2.56 0

7504 237 634 165 4.99 0

6105 237 561 165 5.62 0

9188 237 810 NULL 0.05 1

VI. CONCLUSION

In table Profit, there is made a data selection of sold

product (hard disc IBM 160GB S - ATA 2, 8MB cache,

7200rpm). This item was sold to Company A on July 22 2008

with profit 2.56 EUR and to Company B on January 14 and

also in September 4 with profit 5.62 EUR and 4.99 EUR.

There was made one more sold on December 31 2008, but

without name of the company because of sale for my

neighbor. So there is missing record due to my neighbor is

not a company to do business. Original data source does not

contain appropriate record in table Company, so this absence

is transferred to DWH. Normally transfer function discarded

record and human assistance is needed, but in new

architecture of near real time ETL is this record transferred

with mark, for later administrator assistance and meanwhile

we operate with profit records with permissible error

expressed by Level of trust. This level we calculate according

to Equation (1) as follows in Equation (2).

59.99
62.599.456.2

100*05.00
100%

 (2)

Value of the profit in the fact table Profit is 0.05, so for

data selection showed in table Profit we can calculate Level

of trust equal to 99.59%. This way we can determine the level

of trust for analyzing data, while the (near) real time ETL

process is maintained.

REFERENCES

[1] M. Kebisek, P. Schreiber, and P. Halenar, “Knowledge Discovery in

Databases and its application in manufacturing,” in proc. International

workshop Innovation Information Technologies – Theory and Practice;

2010 September 06-10, Dresden, Germany, pp. 204-207.

[2] S. Kozielski and R. Wrembel, “New Trends in Data Warehousing and

Data Analysis,” Springer, 2009.

[3] L. Reeves, “A Manager’s Guide to Data Warehousing,” Published by

Wiley Publishing, Inc., 2009.

[4] J. Zeman, P. Tanuska, and M. Kebisek, “The Utilization of Metrics

Usability To Evaluate The Software Quality,” in proc. ICCTD 2009

International Conference on Computer Technology and Development,

13-15 November 2009, Kota Kinabalu, Malaysia. IEEE Computer

Society, 2009.

[5] F. Sivers, “Building and Maintaining a Data Warehouse,” CRC Press,

2008.

[6] A. Trnka “Market basket analysis with data mining methods,” in proc.

ICNIT 2010: International Conference on Networking and Information

Technology; 11-12 June 2010, Manila, Philippines. ISBN

978-1-4244-7578-0

Robert Halenar, Ph.D. is with University of SS Cyril

and Methodius in Trnava, Slovak Republic. He is a

member of IAENG and IACSIT. He received Ph.D.

degree (2009) in area of informatics and automation

from Slovak University of Technology, Faculty of

Material Science and Technology Trnava, Slovak

Republic. His research includes the field of

Information Systems, Data warehouse, Health

information and Data mining. He published papers in

national and international conference proceedings and journals.

International Journal of Computer Theory and Engineering, Vol. 4, No. 3, June 2012

409

