
  

 

Abstract—This paper describes the contribution to the Near 

real time ETL process, which shows way, how to maintain real 

time ETL process automated (without human – database 

administrator interference), in cost of reduced accuracy 

rendered by level of trust. First we described ETL as a part of 

KDD, what is Real time ETL and problem how to achieve real – 

time in real world. In next part we give several (near) real time 

approaches with their advantages and disadvantages and then 

we present our contribution to near real time ETL with new 

architecture containing equation for calculation the level of 

trust. Result is showed on real data of a small company engaged 

in the sale of computer components, which expands the market 

for Internet sales and there is need for fresh data using business 

data warehouse containing real trade data. 

 
Index Terms—

warehouse.  

I. INTRODUCTION 

Our research is about finding new methods and tools using 

in different stages of Knowledge Discovery in Databases. In 

the early stages of the KDD it is necessary to collect and 

preprocess data [1]. Especially, we improved the Near Real 

Time ETL phase (Extraction Transformation Loading), using 

the new architecture. 

Near real time ETL deviates from the traditional 

conception of data warehouse refreshment, which is 

performed off-line in a batch mode, and adopts the strategy of 

propagating changes that take place in the sources towards 

the data warehouse to the extent that both the sources and the 

warehouse can sustain the incurred workload.  

The demand for fresh data in data warehouses has always 

been a strong desideratum from the part of the users. 

Traditionally, the refreshment of data warehouses has been 

performed in an off-line fashion. In such a data warehouse 

setting, data are extracted from the sources, transformed, 

cleaned, and eventually loaded to the warehouse. This set of 

activities takes place during a loading window, usually 

during the night, to avoid overloading the source production 

systems with the extra workload of this work flow. 

Interestingly, the workload incurred by this process has been 

one of the fundamental reasons for the establishment of data 

warehouses, since the immediate propagation of the changes 

that take place at the sources was technically impossible, 

either due to the legacy nature of the sources involved or 

simply due to the overhead incurred, mainly for the 

operational source systems but also for the warehouse. In 

most cases, a data warehouse is typically updated every 24 
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hours. 

Nowadays, new types of sources enter into the scene. In 

several applications, the Web is considered as a source. In 

such a case, the notion of transaction at source side becomes 

more flexible, as the data that appear at a source web site are 

not always available later; therefore, if instant reaction to a 

change is not taken, it is possible that important information 

will not be gathered later, by the off-line refreshment of the 

warehouse. At the same time, business necessities – e.g., 

increasing competition, need for bigger sales, better 

monitoring of a customer or a goal, precise monitoring of the 

stock market, and so on - result in a demand for accurate 

reports and results based on current data and not on their 

status as of yesterday.  

The usual process of ETL-ing the data during the night in 

order to have updated reports in the morning is getting more 

complicated if we consider that an organization’s branches 

may be spread in places with totally different time-zones. 

Based on such facts, data warehouses are evolving to 

“active” or “live” data producers for their users, as they are 

starting to resemble, operate, and react as independent 

operational systems. In this setting, different and advanced 

functionality that was previously unavailable (for example, 

on-demand requests for information) can be accessible to the 

end users. For now on, the freshness is determined on a scale 

of minutes of delay and not of hours or a whole day. As a 

result, the traditional ETL processes are changing and the 

notion of “real-time” or “near real-time” is getting into the 

game. Less data are moving from the source towards the data 

warehouse, more frequently, and at a faster rate. [2] 

 

II. NEAR REAL TIME ETL 

The ETL market has already made efforts to react to those 

new requirements. The major ETL vendors have already 

shipped “real time” ETL solutions with their traditional 

platforms. In practice, such solutions involve software 

packages that allow the application of light-weight 

transformations on-the-fly in order to minimize the time 

needed for the creation of specific reports. Frequently, the 

delay between the moment a transaction occurs at the 

operational site and the time the change is propagated to the 

target site is a few minutes, usually, five to fifteen. Such a 

response should be characterized more as “near real time” 

reaction, rather than “real time”, despite how appealing and 

promising can the latter be in business terms.  

Traditionally, ETL processes have been responsible for 

populating the data warehouse both for the bulk load at the 

initiation of the warehouse and incrementally, throughout the 

operation of the warehouse in an off-line mode. Still, it 

appears that data warehouses have fallen victims of their 
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success: users are no more satisfied with data that are one day 

old and press for fresh data – if possible, with instant 

reporting. This kind of request is technically challenging for 

various reasons. First, the source systems cannot be 

overloaded with the extra task of propagating data towards 

the warehouse. Second, it is not obvious how the active 

propagation of data can be implemented, especially in the 

presence of legacy production systems. The problem 

becomes worse since it is rather improbable that the software 

configuration of the source systems can be significantly 

modified to cope with the new task, due to (a) the down-time 

for deployment and testing, and, (b) the cost to administrate, 

maintain, and monitor the execution of the new environment. 

The long term vision for near real time warehousing is to 

have a self-tuning architecture, where user requirements for 

freshness are met to the highest possible degree without 

disturbing the administrators’ requirements for throughput 

and availability of their systems. Clearly, since this vision is 

founded over completely controversial goals, reconciliation 

has to be made: 

A more pragmatic approach involves a semi-automated 

environment, where user requests for freshness and 

completeness are balanced against the workload of all the 

involved sub-systems of the warehouse (sources, data staging 

area, warehouse, data marts) and a tunable, regulated flow of 

data is enabled to meet resource and workload thresholds set 

by the administrators of the involved systems [2]. 

The general ETL architecture of a near real time data 

warehouse consists of database sources including extraction 

tool, which pushes extracted data into temporary store. Then 

it prepares data for transformation process into 

transformation function – ready data format. Transformation 

runs in DPA (Data processing area) where data are 

transformed and cleaned and after then are data exported by 

transformation function. Loader then loads data into data 

warehouse fact and dimension tables. Whole process shows 

Fig. 1. 

On this architecture is based traditional ETL. In case of 

Near real time ETL there are built in compensation structures, 

which alleviates impact of high frequently refreshment. In a 

real world this cannot be performed, due to many possible 

reasons like high number of users, high rate refreshment or 

too expansive software and hardware parts, and this situation 

is solved by several technical and structural accessories. 

Practically it leads to compensated schema which contains 

complementary parts. 

The difficulty of such a simple Transform function is to 

keep it simple. As though they can exert a vacuum of 

complexity, simple Transform functions attract additional 

functions and complexity to them. Resist this temptation at all 

costs. A simple Transform function is another beautiful and 

elegant design, and should be allowed to remain that way [3]. 

 

Fig. 1. Near real time ETL. 

 

III. (NEAR) REAL TIME ETL APPROACHES 

As usual, different alternative approaches have been 

proposed in the market to handle the need for freshness in a 

data warehouse.  

Enterprise Application Integration, EAI. These approaches 

have the ability to link transactions across multiple systems 

through existing applications by using software and 

computer systems architectural principles to integrate a set of 

enterprise computer applications. An EAI system is a push 

system, not appropriate for batch transformations, whose 

functionality entails a set of adapter and broker components 

that move business transactions - in the form of messages - 

across the various systems in the integration network. An 

adapter creates and executes the messages, while a broker 

routes messages, based on publications and subscription 

rules.  

The main benefit from an EAI system is fast extraction of 

relevant data that must be pushed towards the data warehouse. 

In general, an EAI solution offers great real time information 

access among systems, streamlines business processes, helps 

raise organizational efficiency, and maintains information 

integrity across multiple systems. Usually, it is considered as 

a good solution for applications demanding low latency 

reporting and bidirectional synchronization of dimensional 

data between the operational sources and the data warehouse. 
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However, as nothing comes without a cost, they constitute 

extremely complex software tools, with prohibitively high 

development costs, especially for small and mid-sized 

businesses. Also, EAI implementations are time consuming, 

and need a lot of resources. Often, many EAI projects usually 

start off as point-to-point efforts, but very soon they become 

unmanageable as the number of applications increase. 

Fast transformations via Capture - Transform - Flow (CTF) 

processes. This solution resembles a traditional ETL process 

too. CTF approaches simplify the real time transportation of 

data across different heterogeneous databases. CTF solutions 

move operational data from the sources, apply light-weight 

transformations, and then, stage the data in a staging area. 

After that, more complex transformations are applied 

(triggered by the insertions of data in the staging area) by 

micro batch ETL and the data are moved to a real time 

partition and from there, to static data stores in the data 

warehouse. CTF is a good choice for near real time reporting, 

with light integration needs and for those cases where core 

operations may share periods of low activity and due to that, 

they allow the realization of data synchronization with a 

minimal impact to the system. 

Fast loading via micro batch ETL. This approach uses the 

idea of real time partitioning (described in section 2.3.3.1) 

and resembles traditional ETL processes, as the whole 

process is executed in batches. The substantial difference is 

that the frequency of batches is increased, and sometimes it 

gets as frequent as hourly. Several methods can be used for 

the extraction of data - e.g., timestamps, ETL log tables, 

DBMS scrapers, network sniffers, and so on. After their 

extraction the data are propagated to the real time partition in 

small batches and this process continuously runs. When the 

system is idle or once a day, the real time partitions populate 

the static parts of the data warehouse. The micro batch ETL 

approach is a simple approach for real-time ETL and it is 

appropriate for moderate volumes of data and for data 

warehouse systems tolerant of hourly latency. The main 

message it conveys, though, is mainly that dealing with new 

data on a record-by-record basis is not too practical and the 

realistic solution resolves to finding the right granule for the 

batch of records that must be processed each time. 

On-demand reporting via Enterprise Information 

Integration (EII). EII is a technique for on-demand reporting. 

The user collects the data he needs on-demand via a virtual 

integration system that dispatches the appropriate queries to 

the underlying data provider systems and integrates the 

results. EII approaches use data abstraction methods to 

provide a single interface for viewing all the data within an 

organization, and a single set of structures and naming 

conventions to represent this data. In other words, EII 

applications represent a large set of heterogeneous data 

sources as a single homogenous data source. Specifically, 

they offer a virtual real time data warehouse as a logical view 

of the current status in the OLTP systems. This virtual 

warehouse is delivered on-the-fly through in-line 

transformations and it is appropriate for analysis purposes. It 

generates a series of (SQL) queries at the time requested, and 

then it applies all specified transformations to the resulting 

data and presents the result to the end user. EII applications 

are useful for near-zero latency in real time reporting, but 

mostly for systems and databases containing little or no 

historical data. [2] 

 

IV. OUR CONTRIBUTION OF NEAR REAL TIME ETL 

Our research is focused on Near real time ETL 

improvement, using new compensation parts, showed on 

Fig.2. 

Whole process in DPA runs automatically even there is no 

reason for excluding the data, like reference error or the 

system is overloaded due to high refreshment rate or high 

number of users. Each situation should be tested first. [4]  

There is situated also a file of flags, containing file of 

conditions edited by administrator, that are used for 

additional inspection. Excluded and marked data are 

evaluated as well as reorganized, cleaned and transformed 

data. After then is calculated level of trust all outgoing data, 

which describes on how much valid the data are. It is showed 

on Equation (1). 

 

 

(1) 

) 

Of course, for each data row is also available the pertinent 

time, so level of trust should be calculated for a certain time 

interval. 

This model of improved near real time ETL should be 

applied on the either ETL approach, and also should be 

applied on sequential, pipelining and partitioning execution 

of ETL process too. Improved architecture is showed on Fig. 

3. 

 
 

Fig. 2. Near real time ETL with compensation parts 
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Fig. 3. Improved near real time ETL 

 

V. APPLICATION IN BUSINESS DWH 

In our research we applied the new Near real time ETL 

architecture on Business data warehouse specified accord to 

Fig. 4. 

The principle is subject oriented, so data will be grouped 

by subject, rather than author, department, or physical 

location. So, all manufacturing data goes together, and the 

sales data, and the promotions data, etc., regardless of where 

it came from [5], [6]. 

 
Fig. 4. Business data warehouse architecture 

Our Business DWH is focused on sales data, concretely 

profit, depending on customer and product. It consists of 

three dimension tables and one fact table. Time dimension is 

represented by date table.  

Source data are in Microsoft Database format, which are 

exported to XLS sheets entering into DPA. Transformation 

process is reorganizing data according to DWH needs, 

transforming measuring units, performing reference 

assignment, modifying key values, sorting products in 

sections and so on. File of flags contains exceptions for 

transformation process, like certain company (customer) 

assignment, some product exceptions, which are stored in 

“Exported data format for errors” (eDFE). Loading process 

then pushes exported data into DWH as well as exported 

“error” data, which are marked with flag in the fact table 

(Profit). 

If any data are needed for analyzing, level of trust is 

calculated for specified data selection. 

Table I and II show the appearance of Extracted data 

format, which already contains modified 

ID_Stock_Movement and prices, recalculated currency to 

euro. References ID_PVP and ID_Storage_card are pointed 

to another Extracted data formats, concretely to dial 

companies and dial stock cards. In the last row of Table 1 is 

ID_PVP pointing to not existing value in dial companies, 

because stock movement has been done indiscriminately 

Company (for example to my neighbor). Nevertheless, the 

transformation process continues and populates values into 

eDF (Exported data format), and then Loading process loads 

data into Business data warehouse, with flag marked on the 

given row of fact table Profit and set the appropriate 

id_company value to NULL. Dimension and fact tables show 

Table III, IV, V and VI. To provide anonymity of companies, 

we use common products label terms. 

TABLE I: MODIFIED EXTRACTED DATA FORMAT – PART I 

ID_Stock

_moveme

nt 

ID_ 

PVP 

ID_ 

Srotage

_ Card 

Amount_ 

of_intake 

Amount_ 

of_expen

diture 

Amount_ 

of_balanc

e 

EUR

_Inta

ke 

7088 731 237 0 1 1 0.00 

7504 753 237 0 1 0 0.00 

5840 612 237 1 0 1 42.51 

6015 614 237 1 0 2 37.28 

6105 618 237 0 1 1 0.00 

6399 669 237 1 0 2 33.26 

8372 801 237 1 0 1 29.63 

9188 -1 237 0 1 0 0.00 

TABLE II: MODIFIED EXTRACTED DATA FORMAT – PART II 

Euro_ 

nubile 

EUR_ 

Balanc

e 

Unit_ 

price 

ID_ 

Store 

Sale_Price_ 

per_unit_e

xcluding_V

AT 

Other_ 

costs 
Date 

37.28 33.26 37.28 1 39.83 0.00 22.7.2008 

33.26 0.00 33.26 1 38.25 0.00 4.9.2008 

0.00 42.51 42.51 1 0.00 0.00 1.1.2008 

0.00 79.79 37.28 1 0.00 0.00 10.1.2008 

42.51 37.28 42.51 1 48.13 0.00 14.1.2008 

0.00 70.54 33.26 1 0.00 0.00 7.4.2008 

0.00 29.63 29.63 1 0.00 0.00 21.10.2008 

29.63 0.00 29.63 1 29.68 0.00 31.12.2008 

TABLE III: DIMENSION TABLE PRODUCT 

id_product section Product 

237 Hard disc 

IBM 160GB S - ATA 2, 8MB cache, 

7200rpm 
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TABLE IV: DIMENSION TABLE DATE 

id_date day month quarter year date_name 

834 22 July 3 2008 22.7.2008 

634 4 September 3 2008 4.9.2008 

561 14 January 1 2008 14.1.2008 

810 31 December 4 2008 31.12.2008 

TABLE V: DIMENSION TABLE COMPANY 

id_company name 

34 Company A 

165 Company B 

 

TABLE VI: TABLE OF FACT PROFIT 

Id 

id_produc

t id_date 

id_compa

ny profit Flag 

7088 237 834 34 2.56 0 

7504 237 634 165 4.99 0 

6105 237 561 165 5.62 0 

9188 237 810 NULL 0.05 1 

 

VI. CONCLUSION 

In table Profit, there is made a data selection of sold 

product (hard disc IBM 160GB S - ATA 2, 8MB cache, 

7200rpm). This item was sold to Company A on July 22 2008 

with profit 2.56 EUR and to Company B on January 14 and 

also in September 4 with profit 5.62 EUR and 4.99 EUR. 

There was made one more sold on December 31 2008, but 

without name of the company because of sale for my 

neighbor. So there is missing record due to my neighbor is 

not a company to do business. Original data source does not 

contain appropriate record in table Company, so this absence 

is transferred to DWH. Normally transfer function discarded 

record and human assistance is needed, but in new 

architecture of near real time ETL is this record transferred 

with mark, for later administrator assistance and meanwhile 

we operate with profit records with permissible error 

expressed by Level of trust. This level we calculate according 

to Equation (1) as follows in Equation (2). 

 
 

59.99
62.599.456.2

100*05.00
100% 




     (2) 

Value of the profit in the fact table Profit is 0.05, so for 

data selection showed in table Profit we can calculate Level 

of trust equal to 99.59%. This way we can determine the level 

of trust for analyzing data, while the (near) real time ETL 

process is maintained. 
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