



Abstract—Successful software systems must be prepared to

evolve or they will die. Although object-oriented software

systems are built to last, over time they degrade as much as any

legacy software system. As a consequence, one may identify

various reengineering patterns that capture best practice in

reverse- and re-engineering object-oriented legacy systems.

Software re-engineering is concerned with re-implementing

older systems to improve them or make them more

maintainable, while Refactoring is re-engineering with-in an

Object-Oriented context. In this paper, given object-oriented

refactoring opportunities, the cost of refactoring is resembled

using FRCR. The opportunities are class misuse, violation of the

principle of encapsulation, lack of use of inheritance concept,

misuse of inheritance, misplaced polymorphism.

Index Terms—Fuzzy, FRCR, refactoring.

I. INTRODUCTION

Software re-engineering is the transformation from one

representation from to another at the relative abstraction level,

while preserving the systems’ external behavior.

Reengineering a software system has two key advantages

over more radical approaches to system evolution i. reduced

risk: There is a high risk in redeveloping software, which is

presently an essential backbone of the organization. Errors

may be made in system specification; development problems;

financial risk may be high; etc. ii. Reduced cost: The cost of

re-engineering is significantly less than the cost of

developing new software. Refactoring is reengineering

within the object oriented context. Software refactoring can

be defined as “the process of changing a software system in

such a way that it does not alter the external behavior of the

code yet improves its internal structure” [1]-[3].

In our previous paper various refactoring opportunities

were discussed in detail. For the completeness here all five

opportunities are redefined. i. Class misuse (CM): The most

fundamental mistake done in developing a program in OOP

context is not designing a class properly. Even if one class is

not designed properly the entire program is spoiled. One bad

class design has a cumulative effect on all other classes in the

entire software. So the first step in developing good software

is to design the basic construct, i.e. the class, correctly. The

class has to be designed taking into consideration of UML

(Unified Modeling Language) concepts. Moreover its

Manuscript received February 17, 2012; revised March 31, 2012.

Ankit B. Desai is with the M. Tech (Computer Engineering) at

Dhramsinh Desai University, Nadiad and Assistant Professor at Charotar

University of Science Technology (CHARUSAT), Education Campus,

Changa, Gujarat, India (e-mail: desaiankitb@gmail.com).

Amit P. Ganatra is with the Charotar University of Science Technology

(CHARUSAT), Education Campus, Changa, Gujarat, India (e-mail:

amitganu@yahoo.com).

members, i.e. data and behaviors to be defined adequately,

the interfaces properly laid down and the relationships

between different classes correctly defined. ii. Violation of

the principal of encapsulation (VPE): Encapsulation is the

mechanism that binds together code and the data it

manipulates, and keeps both safe from outside interface and

misuse. If the design is poor then objects of other class may

peep into a poorly designed class. iii. .Lack of use of

Inheritance concept (LUIC): Inheritance may not be properly

used. Programmers tend to define their classes right from the

scratch. So the same code gets duplicated in more than one

class. If any change has to be made to any one method, then

the changes have to be made in all the classes which contain

the code, thus duplicating effort. If inheritance has been

implemented, then the changes will have to be made in only

one of the classes in which it is defined. As the concept of

inheritance can be extended to many generations, this code

replication can be avoided. iv. Misuse of Inheritance (MI): A

base class should be inherited by the derived class when all

the contents of the base class are used fully and at the same

time distinct in the derived class. Often inheritance is

implemented for code reuse rather than polymorphism.

Inheritance is more to achieve Polymorphism rather to code

reuse. v. Misplaced Polymorphism (MP): Polymorphism is

the attribute that allows one interface to control access to a

general class of actions. The specific action selected is

determined by the exact nature of the situation. Function

overloading is the process of using the same name for two or

more functions. The secret to overloading is that each

redefinition of the function must use either different types of

parameters or a different number of parameters. Functions

performing the same action on different data types should be

given the same name. Polymorphism helps reduce

complexity allowing the same interface to be used to access a

general class of actions. Table 1. Shows the conclusion

derived in [4].

Fuzzy logic can be defined as “It is super-set of

conventional (Boolean) logic that has been extended to

handle the concept of partial truth.” Central notion of fuzzy

systems is that truth values (in fuzzy logic) or membership

values (in fuzzy sets) are indicated by a value on the range

[0.0, 1.0], with 0.0 representing absolute Falseness and 1.0

representing absolute Truth [5]. It is developed to deals with

real world vagueness.

These fuzzy system has an ability to take the linguistic

values as an input then to convert it in to the fuzzy values, this

process of converting crisp values in to fuzzy set values is

termed fuzzification, where as once the fuzzy inputs are

converted in to fuzzy outputs, these output is also converted

in to crisp values by defuzzifiction process [6].

The objective of this paper is to use both of these concepts

Fuzzy Based Refactoring Cost Resembler (FRCR) Model

for Object Oriented Systems

Ankit Desai and Amit Ganatra

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

251

and to build a Fuzzy based Refactoring cost resembler, FRCR

model with the use of the fuzzy set theory and to show how

actually refactoring opportunities can be intended from the

given project code samples or UML documentations [7]-[8].

Subsequently opportunities will be transformed in to the

required format i.e. count of each, supplied as an input to

resemble the actual cost to demonstrate the presumption

model in practice[9]-[11].

Refactoring deals with code changes in any software

system. These changes do not necessarily make any

functional changes to the corresponding code. However, it

improves it internal structure [12].

Refactoring is basically a transformation process which

can be applied in series of small but behavior preserving

transformations. Do not necessarily each transformation

bring a significant restructuring, but each refactoring does a

little. Advantage of such small refactoring (transformation) is,

since each of them is small, it’s less likely to go wrong. This

process once applied the system will behave more robust as it

has been restructured. To apply refactoring many tools exist

to automate the process [13].

Refactoring, if applied on the working software than it

ameliorates the performance of the support contrasting with

the principal of “If Its Working Don’t Change”. Refactoring

can be applied on the poorly working program that is having

some bugs to be fixed. If you have a poorly factored program

that does what the customer wants and has no serious bugs,

then you may feel not to apply refactoring on it. When you

need to fix a bug or add a feature, you Refactor mercilessly

the code that you encounter in your efforts. Thus, Refactor

mercilessly can live in harmony with “If It Is Working Don’t

Change”.

“If It Is Working Don’t Change” applies to the

maintenance programmers, too. If the first spike winds up

being some ugly piece of spaghetti, for whatever reason, then

we should be allowed to untangle it when the opportunity

presents itself. Code stops working when the customer

changes their mind. If we have an agile process, the artifacts

can change quickly and frequently. 'Refactoring' is about

some ways this is done correctly.

Tool support for refactoring is highly desirable because

checking the preconditions for a given refactoring often

requires nontrivial program analysis, and applying the

transformations may affect many locations throughout a

program. In recent years, the emergence of light-weight

programming methodologies such as Extreme Programming

has generated a great amount of interest in refactoring, and

refactoring support has become a required feature in

modern-day IDEs. The key insight is that it's easier to

rearrange the code correctly if you don't simultaneously try to

change its functionality. The secondary insight is that it's

easier to change functionality when you have clean

(refactored) code. The existing tools provides only the feature

of transformation from existing to the new design where as

the proposed model in this paper can be used along with the

tool support for the calculation of the cost (amount of efforts)

required to perform refactoring provided that we have

proposed five opportunities to be refactored.

TABLE I: EFFECT OF VARIOUS OPPORTUNITIES OF REFACTORING ON COMPLEXITY MEASURES

 Complexity Measures Before Applying Refactoring

Refactoring Cost Refactoring

Opportunities
Space Time Design

CM Very High High High Low

VPE Not Applicable Very High Very High Very High

LUIC Very High Medium Very High High

MI Not Applicable High High Medium

MP High Very Low High Very Low

II. FUZZY BASED REFACTORING COST RESEMBLER (FRCR)

MODEL FOR OBJECT ORIENTED SYSTEM

An approach to build the refactoring cost resembler model

is to get proposed parameter’s values as an input from the

user, then processes the input and estimates the cost of

refactoring based on the pre-identified rule base. The fuzzy

model can be constructed using following steps: 1. Model

input and output Membership Functions: identify the

refactoring opportunities and identify the particular

opportunity’s vague values by analyzing the projects or

studying the projects on which there is a possibility of

applying refactoring. An example of such identification; i.e.

consider a refactoring opportunity named number of class

misused (NCM). NCM is studied over more than fifty

medium and large size projects and we have concluded that

on an average, probability of class misuse found is high but at

the same time it is very easy to identify such misused classes

from the project’s documents, UML analysis or even from

the code; provided that the system is medium sized. This

leads us to conclusion that the cost of refactoring will be less

as identification is faster and less complex compared to other

opportunities and at the same time we can estimate the input

in terms of fuzzy vagueness i.e. for NCMC is divided into

five vague values in accordance to its effect on refactoring

cost. NCMC = {VL, L, M, H, VH}. These set elements

individually are called as membership function. To sum up,

the inputs are crisp non-fuzzy numbers limited to a specific

range. 2. Model rule base: Once the membership functions

for all opportunities are identified, next is to identify

individual membership function’s effect on the output. This

process in summed up in terms of the rule base; rule base is

the rules on membership function to form the output. These

rules most commonly take the form ‘if-then-else’. In our case

input values are ‘and’ with each other. An example of such

rule formation; i.e. if NCMC is VL and NVPEC is L and

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

252

NLUIC is VL and NMIC is VL and NMPC is L then RC is

VL. This rule is formed by simply identifying the final cost of

the project when all MFs take the input which is considered

according to the given range for MF.

In FRCR model we have considered a few assumptions i.e.

apart from five opportunities considered in FRCR as an input

there are other factors which may affect the cost of

refactoring but we are showing cost estimation based on these

selected five.

The preferred inference method to implement this

proposed system is mamdani – type fuzzy inference method;

as the output to this system does not take the linear form; if it

would have been linear then we would have chosen Sugeno -

Type Fuzzy Inference method. Furthermore membership

functions are proposed to be of the shape triangular and

sigmoid; i.e. considering the example cited in previous

paragraph step 1. where NCM takes five MFs in its set. To

justify the shape consider the figure 2. where VL is taken

triangular because it seems more beneficial to use linear

membership function and it is already been normalized with

log function: log (N / n). Same reasoning is applicable to

other triangular membership functions used in the system. To

consider the positive infinity values of inputs sigmoid shape

of MF is most suitable. For the purpose of “and” MFs product

can be used by default. Aggregation of the inputs to form the

one output “sum” is used moreover defuzzification method is

centroid.

III. COST COMPUTING USING FRCR MODEL

The FRCR (Figure 1) is implemented in MATLAB using

the fuzzy logic toolbox. This toolbox allows for the

development of input membership functions, fuzzy control

rules, and output membership functions.

To implement this system we need to have five different

inputs: number of class misuse count (NCMC), number of

violation of the principle of encapsulation count (NVPEC),

number of lack of use of inheritance count (NLUIC), number

of misuse of inheritance count (NMIC), number of misplaced

polymorphism count (NMPC). These five inputs will then be

processed by a fuzzy logic controller that will output a

percentage cost of refacoring (RC). This degree of

refactoring is then decoded into one of five possible outputs:

very low, low, medium, high and very high.

The first input membership function for number of class

misuse count (Figure 2) will have five different Membership

functions: very low (0-5-10), low (5-10-15), medium

(10-15-20), high (15-20-25), and very high (25-inf). The

second input membership function for number of number of

violation of encapsulation (Figure 3) will have two different

Membership functions: low, high. Where low is considered

between [0 3] violation and beyond that any number of

violations found is considered as high. The third input

membership function for number of number of lack in use of

inheritance (Figure 4) will have five different Membership

functions: very low (0-1-2), low (1-2-3), medium (2-3-4),

high (3-4-5), and very high(5-inf). The fourth input

membership function for number of misuse of inheritance

(Figure 5) will have five different Membership functions:

very low (0-1-2), low (1-2-3), medium (2-3-4), high (3-4-5),

and very high (4-inf). The ranges of these functions are 0 to

10; these are the possible input values. The very high/high

membership function continues on to infinity in positive

direction to include any number of faults found. The output

has four membership functions; very low, low, medium, high,

very high (Figure 7). These membership functions are all

triangular and are spread evenly on a range of 0 to 1.Once all

of the input and output membership functions have been

defined the heart of the control can now be defined; the rules.

The fuzzy rules are in the form of if-then statements. These

statements look at both inputs and determine the desired

output. In this system increase in number, of any of five

inputs will lead to gradual increase in cost. The rules defined

for this system are in Table 2.The simulink modeled can be

prepared in MATLAB for the FRCR; an example model is

shown in figure 8. and the result graph for rule base is along

with the test cases is shown in Table3.

Fig. 1. FRCR – Fuzzy model

The inputs for this example system have been presented

in Table 3. Column TC, they are randomly generated data

within a valid range of the rule Ri. The system is simulated

using such valid range of inputs for each rule Ri. Particular

test case takes a specific format i.e. [a b c d e] where a, b, c,

d and e are NCMC, NVPEC, NLUIC, NMIC and NMPC

are respectively. In table cost column is the resembled cost

for the particular test case. It can be interpreted as e.g. if

cost is resembled 40% by our FRCR Model then the

refactoring cost of the project is considered as 40% cost of

its original development cost.

Inputs

Refactoring
Cost

N M I C

N M I C

N L U I C

N V P E C

N C M C

Refactor

(mamdani)

Output

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

253

Fig. 2. NCMC – input membership function.

Fig. 3. NVPEC – input membership function

Fig. 4. NLUIC – input membership function

Fig. 5. NMIC – input membership function

Fig. 6. NMPC – input membership function

Fig. 7. RC – output membership function

TABLE II: MEMBERSHIP RULES

NCMC NVPEC NLUIC NMIC NMPC RC

VL L VL VL L VL

VL H VL VL M L

VL L VL VL H L

VL H VL VL L M

VL L VL VL M VL

L H L L H M

L L L L L VL

L H L L M L

L L L L H M

L H L L L M

M L M M M M

M H M M H H

M L M M L L

M H M M M M

M L M M H M

H H H H L H

H L H H M M

H H H H H VH

H L H H L M

H H H H M VH

VH L VH VH H H

VH H VH VH L VH

VH L VH VH M H

VH H VH VH H VH

VH L VH VH L H
(VL = Very Low; L = Low; M = Medium; H = High; VH = Very High.

NCMC: Number of class misuse count; NVPEC: Number of violation of

the principle of encapsulation count; NLUIC: Number of lack of use of

inheritance concept count; NMIC: Number of misuse of inheritance count;

NMPC. Number of misplaced polymorphism count; RC: Refactoring cost)

Fig. 8. Simulink Model for FRCR

IV. EXAMPLE SHOWING WORKING OF FRCR MODEL

For the sake of simplicity here we have consider a simple

Employee Management System (EMS) for analysis and a few

snippets of the code written in java programming language

are taken as a part of example along with their UML

specifications. If one wants to apply same kind of logic in

other object oriented language than it can be applied without

much modification. Furthermore, applicability of these

concepts is not limited to the examples stated in this section

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

254

as examples of these five refactoring opportunities acquire a wide scope[14]-[16].

TABLE III: SIMULATION OF THE RULE VIEWER WITH TEST CASES AND RESEMBLED COST USING FRCR

R i NCMC NVPEC NLUIC NMIC NMPC RC TC* Cost
#

1

[1 1 1 1 1] 4.26

2 [2 3 1 1 3] 20

3 [3 1 1 1 6] 20

4 [4 4 1 1 2] 40

5 [5 1 1 1 4] 3.34

6 [6 4 2 1 6] 40

7 [7 1 2 2 1] 23.4

8 [8 3 2 3 4] 22

9 [10 1 2 2 1] 42

10 [12 3 2 2 1] 45.29

11 [15 1 3 2 3] 50

12 [16 3 3 3 6] 60

13 [13 1 3 3 2] 20

14 [17 4 2 3 4] 52

15 [14 1 3 2 6] 43

16 [20 5 4 4 1] 62

17 [21 1 4 4 4] 41.9

18 [18 3 4 4 5] 85

19 [22 1 4 4 1] 44.86

20 [18 3 4 4 3] 85

21 [25 1 7 9 6] 62.7

22 [26 5 7 5 1] 85

23 [27 4 8 7 4] 70.3

24 [30 3 6 5 6] 85

25 [32 1 9 8 1] 63.4

*TC: Test Case

Cost here is calculated in % cost for given input values

CM: Consider Employee Management System (EMS)

relating to an organization. CM is applied between Employee,

EmpAddress, and EmpName of the prescribed code. The

basic mistake in design of above mansion classes is that all

the information pertains to a single Employee is spread across

many classes. All the information should be stored in a single

class. If an employee leaves the organization and his records

is to be destroyed, in the above design three different objects

pertaining to three different classes have to be destroyed

instead of one single class object. Besides, if information

about a particular employee is to be obtained, then one has to

access three different objects instead of one single object.

Class misuse instances are wonderful opportunities for

refactoring. Inheriting all the classes into a single class often

does not solve all the problems as between example classes

shown. Since some of the variables might be repeated in more

than one class and this leads to compile time errors during

implementation, e.g. variable employee_id Moreover, if the

function for printing the class values is defined three times

and one has to print the values in the inherited class then three

function calls are mandatory, i.e. print(), printk(), printl().

This leads to poor functionality. Hence a new function has to

be defined to print all the inherited class attributes. This leads

to repetition of coding. Only option in this case is to redesign

the classes and make a single class in place of three with all

the functionality in it.

VPE: When classes are not designed correctly, reflection

has to be used. Reflection is a feature in the Java

programming language. It allows an executing Java program

to examine or “introspect” upon itself, and manipulate

internal properties of the program. For example, it is possible

for a Java class to obtain the names of all its members and

display them [2], [17]-[19]. As shown in CM, instead of

defining a single class, when there are many classes and one

has to access private members of these different defined

classes (which otherwise would have been in a single class),

then one has to use reflection concept.

LUIC: EMS comprises of class Employee. In case of bulky

projects there exists a possibility of defining class

HourlyPaidEmp as in snippet 4. which actually should be

build upon class Employee in snippet 3.

MI: EMS system defines a class Employee as in snippet 1.

and IncomeTax as defined in sinppet 5. There exists a chance

of refactoring in this snippet 5 because designation is not

used in class IncomeTax. Class IncomeTax, when inherited

from class Employee, there will be an extra variable

‘designation’ which is not necessary for class IncomeTax.

Such dangling variables are dangerous. This poses a problem

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

255

for future maintenance of the software. This extra variable

will not be present in the specification and has to be

initialized correctly to some initial value; else it might lead to

bizarre error.

MP: Snippet 6 of EMS defines class Salary with three

different calls to calcSal(TypeOfEmp). Because of the

polymorphism, only one set of names calcSal() should be

defined which is used for all three specific versions of these

functions, one for each type of Employee, later compiler will

automatically select the right function based upon the data

being used [18]. The individual version of these functions

defines the specific implementations for each type of data. If

the class is developed initially for MonthlyEmp salary

calculation only and much later the class is modified to

include for HourlyPaidEmp and WeeklyPaidEmp types then

for the same calcSal() operation there exist a possibility to

define a class as in snippet 7. These results in similar code

(not the same code) in different names provide same interface

for different types. Such cases provide a wonderful chance

for refactoring.

Calculation of the cost of refactoring from the above

analysis; NCMC = 2; as there are two classes in the system

which are misused. NVPEC = 2; as there are places in the

class structure where we need to introspect the properties of

the other class. NLUIC = 1; as there exist one class which

comes under LUIC. NMIC = 1; as IncomeTax class has

misused the inheritance concept. At last NMPC = 3; because

three methods in class Salary performs in correct use of

polymorphism. Which leads us to the input to the FRCR as [2

2 1 1 3]. Once supplying this input we get output as 17%

which means that if the original cost of the project is e.g.

1,00,000 units then the refactoring charges are 17,000 units.

Snippet 1:

class Employee{

private:

 int employee_id;

 String designation,

dept_name;

 float da, basic, gross;

public:

 print();

…….

}

class EmpAddress{

private:

 int employee_id;

 String apartment_no,

flat_name, street_name;

public:

 printk();

…….

}

class EmpName

{

private:

 int employee_id;

 String first_name,

middle_name, last_name;

public:

 printl();

…….

}

Snippet 2:

class Employee{

private:

 int employee_id,

dept_name;

public:

 void setInfo();

 void showInfo();

 }

Snippet 5:

class IncomeTax extends Employee{

private:

 float totalTax;

public:

 void showTax();

}

Snippet 3:

class HourlyPaiedEmp

extends Employee{

private:

 int hours;

public:

 void showHours();

}

Snippet 6:

class Salary{

……..

public:

 int calcSal(MonthlyEmp);

 int calcSal(HourlyPaidEmp);

 int calcSal(WeeklyPaidEmp);

}

Snippet 4:

class HourlyPaiedEmp{

private:

 int employee_id,

dept_name, hours;

public:

 void setInfo();

 void showInfo();

 void showHours();

}

Snippet 7:

class Salary{

……..

public:

 int calcSalMonthlyPaid();

 int calcSalHourlyPaid();

 int calcSalWeeklyPaid();

}

V. CONCLUSION

This paper presents a methodology to analyze cost of

refactoring projects using a fuzzy logic based system (FRCR).

The examples simulated indicate the potential for using such

a procedure for analyzing the cost of complex systems and

performing a meaningful evaluation and/or analysis of the

cost. Analysis based on the rules mansion in

Table 2. leads a conclusion that for these opportunities as

an input one may estimate the cost of a project, which will be

based on the number of faults count, the range of cost

measured in simulation for random numbers is found to be

3-85% of the original project cost.

The cost impact analysis is performed on these five inputs

and conclusion is derived that the major cost is encured due to

NVPEC and NMPC because from our experience of studying

projects, when concluded, gives us the idea that it is difficult

to find more instances of NVPEC and NMPC but when found,

even if they are very few in count, impacts highly on RC. On

the other hand, NCMC can be found easily in large count but

at the same time its impact is negligible on RC. NLUIC and

NMIC leaves very close impact on RC which is intermediate

compared to other three.

FRCR if used then the homogeneous cost of refactoring

can be anticipated. The companies which find difficulty in

persuasive to their clientele to justify their charges for

making the changes in the software; especially when the

software system is refactored; as in refactoring the clientele

may argue, when they will not see changes in the outlook of

the system. So such a system may be useful for various

software companies who undertakes refactoring projects and

where it is difficult to analyze the final cost of the refactored

project.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

256

+print() : void

-employee_id : int

-designation : char

-dept_name : char

-da : float

-basic : float

-gross : float

Employee

+printk() : void

-employee_id : int

-apparment_no : char

-flat_name : char

-street_name : char

EmpAddress

+printl() : void

-employee_id : int

-first_name : char

-middle_name : char

-last_name : char

EmpName

Related Classes must be defined as single Class

UML 1. Static structure of snippet 1.

UML 2. Static Structure of snippet 2 – 3.

+print() : void

+printHours()

-employee_id : int

-designation : char

-dept_name : char

-da : float

-basic : float

-gross : float

-Hours : int

HourlyPaidEmp

This must be subclassed from Employee but redefined here

UML3. Static structure of snippet 4.

+showTax() : void

-totalTax : float

IncomeTax

+print() : void

-employee_id : int

-designation : char

-dept_name : char

-da : float

-basic : float

-gross : float

Employee

1 1

This must not be inherited as it leaves dengling variables

UML 4. Static Structure of snippet 5.

UML 5. Static structure of snippet 6.

UML 6. Static structure of snippet 7.

ACKNOWLEDGMENT

This work is incomplete if few people are not

acknowledged. The first and the most important person who

motivated and boost us to do this contribution in research

community is Mr. J. T. Lalchandani, we thank you for the

great help. We also thank CHARUSAT, our university which

is always ready to support us in research in terms of funding

and providing useful resources.

REFERENCES

[1] U. Zdun, “Using Split Objects for Maintenance and Reengineering

Tasks,” 8th European Conference on Software Maintenance and

Reengineering (CSMR), Tampere, Finland, March, 2004.

[2] Serge Demeyer, Stéphane Ducasse, Kim Mens, Adrian Trifu, Rajesh

Vasa, and Filip Van Rysselberghe, “Object Oriented Reengineering”,

ISBN 978-3-540-22405-1, June, 2004.

[3] Oscar Nierstrasz, Stéphane Ducasse and Serge Demeyer, “Object

Oriented Reengineering Patterns an Overview,” ISBN

978-3-540-29138-1, October, 2005.

[4] Ankit Desai, Jaimin Chavda, Amit Thakkar, Amit Ganatra, and

ypkosta, “Refactoring Software Projects Using Object Oriented

Concepts,” presented at ICICCA, Bangaluru 2010.

[5] Bryan Klingenberg, “A Time-Varying Harmonic Distortion Diagnostic

Methodology Using Fuzzy Logic,” july2004.

[6] L. A. Zadeh, “Fuzzy Sets, Information and Control,” 1965.

[7] E. Piveta, J. Araujo, M. Pimenta, A. Moreira, P. Guerreiro, and R. T.

Price, “Searching for Opportunities of Refactoring Sequences:

Reducing the Search Space,” Computer Software and Applications,

2008. COMPSAC '08. 32nd Annual IEEE International.

[8] Soodeh Hosseini and Mohammad Abdollahi Azgomi, “UML Model

Refactoring with Emphasis on Behavior Preservation,” august - 2008.

[9] Hojjat Salehinejad and Siamak Talebi, “Dynamic Fuzzy Logic-Ant

Colony System-Based Route Selection System,” Hindawi Publishing

Corporation Applied Computational Intelligence and Soft Computing,

vol. 2010.

[10] Jim Murtha, “Applications of fuzzy logic in operational meteorology,”

June, 2010.

[11] Jos é M. Alonso and Luis Magdalena, “An Experimental Study on the

Interpretability of Fuzzy Systems,” IFSA-EUSFLAT 2009.

[12] Miguel P. Monteiro and João M. Fernandes, “Refactoring a Java Code

Base to AspectJ: An Illustrative Example,” Proceedings of the 21st

IEEE International Conference on Software Maintenance (ICSM’05),

2005.

[13] Dave Binkley, Mariano Ceccato, Mark Harman, Filippo Ricca, and

Paolo Tonella, “Automated Refactoring of Object Oriented Code into

Aspects,” Proceedings of the 21st IEEE International Conference on

Software Maintenance (ICSM’05), 2005.

[14] M. Delgado and F. Cofré, “A Fuzzy model for work performance

assessment,” EUSFLAT - LFA 2005.

[15] M. Oussalah and A. Eltigani, “Personalized Information Retrieval

system in the Framework of Fuzzy Logic,” EUSFLAT - LFA 2005.

[16] M. Hellmann, “Fuzzy Logic Introduction.”

[17] A. Kiezun, M. Ernst, F. Tip, and R. Fuhrer. “Refactoring for

parameterizing Java classes,” In the Proceedings of International

Conference on Software Engineering (ICSE) 2007.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

257

[18] Raffi Khatchadourian, Jason Sawin, and Atanas Rountev, “Automated

Refactoring of Legacy Java Software to Enumerated Types.” ICSM,

2007.

[19] N. Raj Kiran and V. Ravi, “Software reliability prediction by soft

computing techniques,” The Journal of Systems and Software, 2007.

Ankit B Desai is a student of Master of Technology in

computer Engineering at Dharmsinh Desai University,

Nadiad, Gujarat, India. He is also an Assistant Professor

at U and P U. Patel Department of Computer Engineering

at Charotar University of Science and Technology,

Changa, Dist. Anand, Gujarat, India. He has received his

B.E. degree from Charotar Institute of Technology,

Changa, Gujarat, India in 2007. He has joined

M. Tech. at Dharmsinh Desai University, Nadiad, Gujarat, India in 2010. His

current research interest includes Refactoring, Soft-computing and Data

Mining Classification (Cost-Sensitive Boosters).

Amit P. Ganatra (B.E.-’00-M.E. ’04-Ph.D.* ’11) has

received his B.Tech. and M.Tech. degrees in 2000 and

2004 respectively from Dept. of Computer Engineering,

DDIT-Nadiad from Gujarat University and Dharmsinh

Desai University, Gujarat and he is pursuing Ph.D. in

Information Fusion Techniques in Data Mining from

KSV University, Gandhinagar, Gujarat, India and

working closely with Dr. Y. P. Kosta (Guide).

He is a member of IEEE and CSI. His areas of interest include Database and

Data Mining, Artificial Intelligence, System software, soft computing and

software engineering. He has 11 years of teaching experience at UG level

and concurrently 7 years of teaching and research experience at PG level,

having good teaching and research interests. In addition he has been

involved in various consultancy projects for various industries. After

spending almost a year in C.U.Shah college of Engineering, Wadhwan,

Gujarat, he joined CITC as a faculty member in 2001. His general research

includes Data Warehousing, Data Mining and Business Intelligence,

Artificial Intelligence and Soft Computing. In these areas, he is having good

research record and published and contributed over 70 papers (Author and

Co-author) published in referred journals and presented in various

international conferences. He has guided more than 90 industry projects at

under graduate level and 47 dissertations at Post Graduate level. He is

concurrently holding Associate Professor (Jan 2010 till date), Headship in

computer Engineering Department (since 2001 to till date) at CSPIT,

CHARUSAT and Deanship in Faculty of Technology-CHARUSAT (since

Jan 2011 to till date), Gujarat. He is a member of Board of Studies (BOS),

Faculty Board and Academic Council for CHARUSAT and member of BOS

for Gujarat Technological University (GTU). He was the founder head of CE

and IT departments of CITC (now CSPIT).

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

258

