

Abstract—The layout of traditional disks is optimized for file

systems with large sequential access. For these sequential

workloads, cost of seeks and rotational latencies are amortized

on the transfer of a large amount of data to/ from the disk. Each

access from a file system workloads, however incurs a time

consuming seek and rotational latency that dominate the

request response time, resulting in very less data rate. In the

designed model to enhance the speed of data accessing from the

hard disk and there by improving the over all performance of

the system, we distribute one file in to the different platters

available in the hard disk. For this, first split the file in to the

number of parts based on the block size and the number of

platters available in the hard disk by the file splitting storage

algorithm. The first part is stored on the first storage surface.

Then, the second part is stored on the same cylindrical location

of the second storage surface. This process is repeated for the

remaining parts of the file. During the reading process, place

the head dedicated to the storage surface to the correct location.

Then perform the reading simultaneously. The access time can

be reduced drastically. The main intention behind the designs

model is to supply the data as fast as possible to the RAM. This

model is helpful for enhancing the virtual memory and paging

mechanism by creating an illusion of the presence of data in the

RAM, so that user can execute his program more efficiently

with less amount of RAM.

Index Terms—Hard disk drive, internal data transfer,

internal fragmentation, response time.

I. INTRODUCTION

Page oriented work loads are commonplace in many real

world applications varying from virtual memory subsystem

to database buffer pool managements. This work loads are

characterized by small fixed size, random access reads and

writes [1]-[3]. The layout of traditional disks is optimized for

workloads with large sequential accesses. For this sequential

workloads, seek and rotational latencies are optimized over

the transfer of a large amount of data to/from the disk and the

application sees good data transfer rates. Each access from a

page oriented workload, however incurs a time consuming

seek and rotational latency that dominate the request

response time, resulting in very low data rate. Each access

from a page oriented workload, however incurs a time

consuming seek and rotational latency that dominate the

request response time, resulting in very low data rate. Today

the data access from the hard disk is performed in the serial

Manuscript Manuscript received February 17, 2012; revised March 30,

2012. This work was technically and financially supported in part by SCMS

school of engineering and technology, Cochin, India.

Mr. Shihabudheen P M was with the department of computer science and

engineering, SCMS school of engineering and technology, Cochin, India. He

is now with the Broadcast Business Unit, Tata Elxsi Limited, Trivandrum,

India (e-mail: shihabudheen27@gmail.com).

manner [4].i.e. one location of the hard disk is reading at a

time. In many of the operating system the memory allocated

is fixed block. It leads to the internal fragmentation. The

randomly allocated space leads to the external fragmentation.

In fact, we can’t utilize the full amount of memory available

in the hard disk. The most important drawback of the existing

system is of large access time. After the read head starts to

read the location, the disk will waits until a block of data is

read completely. Only after completing one block it sends

data to the RAM. Then the disk drive is needed to wait to get

the next block and so on. This will affect the overall

performance of the system since the virtual memory concept

influences the execution speed. In the designed system, we

enhance the speed of data accessing from the hard disk and

there by improving the over all performance of the system by

distributing one file on to different platters available in the

hard disk.

II. RELATED WORKS

Numerous researches are concerned with the problem of

reducing the cost of read and write of the disk subsystem.

Typically the technique used involves some combination of

data replication (mirroring), striping across multiple disks,

dynamic data placements and track alignment. Disk

shadowing [5] is a technique that has long been used to

improve the disk performance, redundancy and availability.

Each disk serves as an identical copy of the others. Writes are

copied on to each disk, and reads can be serviced from any of

the disks. Since only the first write must make it to stable

storage to ensure consistency, the disk with the smallest

access latency cost determine the performance of writes.

Likewise, reads can also be serviced by the disk with the

smallest latency. Hou and Patt [6] and Dishon Liu [7]

demonstrate policies, which copy data on to many disks to

improve performance under simulation and examine the

benefit of storing multiple copies of a file throughout a file

system spanning multiple storage nodes. S.W.mg [8]

examines analytically the benefit of mirroring data within a

single disk. In particular blocks are placed twice, on the disk,

180 degree out of phase of one another in the same track. The

result is that the average rotational delay is reduced by a

factor of two, improving read performance [9]. Also

mirroring blocks on to different tracks to help reduce seek

latencies.

III. DYNAMIC DATA PLACEMENTS

There are thousands of file systems for file management.

All of them store the data in the hard disk in similar manner.

Data Distribution and Improving Disk Performance for

Faster Memory Access

 Shihabudheen P M, Member, IACSIT

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

181

Only the management scheme may differ. In hard disk the

space is allocated in blocks. It suffers from internal

fragmentation. Random memory allocation leads to external

fragmentation. In the proposed system, we distribute one file

on to the different platters, available in the hard disk. For this,

first split the file in to the number of parts based on the size

and the number of the platters available in the hard disk by

the file splitting storage algorithm. The first part is stored in

the first storage surface. Then, the second part is stored on the

same cylindrical location of the second storage surface. The

process is repeated for remaining parts of the file. Dynamic

data placement characterizes system where the mapping of

logical blocks to physical blocks changes, usually allowing

the system to easily write data to the closest free block when a

write request is made.

IV. TRACK ALIGNMENT

Y. dishon [4] uses two disks, a logging disk and a data disk,

to improve synchronous write performance. During reading,

the head is moved a large distance and the spindle motor

operation is more. The accessing speed is reduced and the

power consumption is more due to the spindle motor rotation.

The disk head of the long disk is kept over relatively free

track, and log writes can be issued without seek and minimal

rotational latency. In our designed system during the reading

process place the heads dedicated to the storage surface and

place it to the correct location. Then perform the reading

simultaneously. So the access time can be reduced. Number

of storage space available in the hard disk is two times the

number of platters available. Here the storage space is more

compacted. That is the allocated space for a file is not spread

in the hard disk. So the rotation needed by the spindle motor

to read a particular file is reduced. It will help to reduce the

power consumption and there by the performance of the

system.

V. HARD DISK DRIVE SPECIFICATIONS

A. Head Switch Time

In the hard disk drive, only one head is active at a time.

After reading the first block from one platter surface, if the

second data block is on the other platter, the head

corresponding to that platter surface must be activated. It is a

pure mechanical operation and it takes considerable amount

of time which is known as the head switch time. Heads in the

HDD is mounted on a head actuator which is responsible for

the movement of the head in radial direction. During the head

switch time, the actuator is static.

In the designed system, all heads corresponding to each

storage surface is active during reading and writing of data.

So there is no head switch time.

B. Internal Data Transfer Rate

All hard drive data transfer includes two separate storage

locations- the hard drive buffer and system memory. The

internal data transfer rate is the amount of data transfer from

hard disk platter to the hard disk buffer in unit time. The

external data transfer rate is the amount of data transferred

from hard drive buffer to the system memory in unit time. In a

HDD, the internal data transfer rate is always less than the

external data transfer rate (since the HDD is purely a

magnetic device and it takes considerable amount of time to

read or to write the data).

In the proposed system, we try to increase the internal data

transfer rate. Once the data is available in the hard disk buffer,

it can be send to the RAM with the already existing SATA or

PATA method.

VI. DESIGNED SCHEME AND ALGORITHM

In the existing system, the data is stored in cylindrical

positions to reduce the head movement. It writes the data in

one track completely, and then writes on the same track of the

second surface. In the existing system, accessing time is more

due to head switch time, seek time, and latency. In the

designed system, the data is evenly distributed to platters so

that, it can read parallel using heads to the different storage

surface.

Storage surface= (2*no .of platters)-2.

The access time can be reduced to and a reduction in the

rotation of spindle motor is achieved to save energy.

File splitting storage algorithm (int n):-

1) start

2) divide the file into number of parts each of having size n

3) if the number of the parts is greater than the number of

the storage surfaces then repeat the step from 3 to 13

4) put the file blocks which is same as the number of

storage surfaces available in the disk into the hard disk

buffer

5) if name of the file is not existed in the file allocation table,

make entry in the file allocation table

6) else make the modification in the file allocation table

7) write the data from the buffer to the to the cylindrically

similar position of the different storage surfaces

8) then the number of file parts remaining is number of the

file parts-number of the storage surfaces

9) if the new number of file blocks of size n is less than the

number of the available storage surfaces, then repeat the

step from 9 to 13

10) if the value of n is 16 bit, then divide remaining file

portions into number of blocks having length 16 bits and

store it into the cylindrically similar positions of

different storage surfaces and go to step 14

11) file size becomes the file size-the stored data size

12) n = n / 2

13) divide the remaining file portion into the number of

blocks each of having length n

14) stop

In the algorithm n is the maximum block size supported by

the file system. During reading also this algorithm is used to

control the head movement. In the designed system, the bits

are present in similar cylindrical position of the different

platters.

VII. IMPLEMENTATION

The core of the system is a paged disk drive. This disk

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

182

drive allocates and manages blocks to maximize random read

and write performance of page sized block of data. Install a

hard disk with specific properties. In Linux, file system can

be implemented more easily. The fuse module provides

standard method to control file operation. User applications

such as data base and virtual memory systems interface with

the paged file system, which provides a page-based instead of

file-based view of storage. It is possible that performance

gain will be realized by simplifying the file system. But the

file system of our investigation improves the ability of a disk

drive to minimize rotational and seek latency.

 There are three implementation methods to enhance the

hard disk performance and thereby the system as a whole.

Fig. 1 .System model

A. Block Splitting Storage Method

Most of the operating system uses the fixed blocks of size

1KB, 2KB or 4KB. While storing the block into the hard disk

split the block into the number of parts as same as the storage

surface available in the disk. Then, distribute these parts to

the platters. I.e. store the different parts into the cylindrically

similar positions of different storage surfaces. So when

reading one block, it can read in parallel manner and send to

the RAM. In this case we can preserve the existing file

systems with its normal operations. The modification is done

in the hard disk drivers only.

B. File splitting Storage Method

In this implementation scheme, first we divide the entire

file according to the file splitting storage algorithm. The input

to the algorithm is the maximum block size. The maximum

block size can be selected according to the file system. Then

distribute the blocks to the different storage surfaces as the

algorithm is proceeds. In buffer, separate space should be

allocated for data from/to each platter.

During the reading process, the first half of buffer space is

allocated for all the platters. After completing the first read

operation, the first half of the buffer contains the data. This

data, we can’t send simultaneously to the RAM because of

the smaller size of interface cable. During this process, the

hard disk should start to read the second portion of the file

and put the data into the second half of the buffer. Similarly

the buffer allocation is switched between these two portions

to avoid the missing of data.

C. File and Block Splitting Storage Method

First, take one block size of the data from the file. Then,

split it into the number of parts and store as mentioned in the

fist case. Then the remaining portion of file is split and store

as mentioned in the second case. So the response time can be

reduced along with faster access and fragmentation removal.

To implement the above described methods, first we need

a hard disk drive with specified properties. In the present

scenario, the heads of the hard disk is mounted on to single

arm and head switching is performed to read data from

different platter surfaces. In the new system, all the heads

should be active at a time to read the data from different

platters simultaneously. To implement the second and third

methods we have to modify the file allocation table, since

most of the operating systems use the fixed block size. But in

the designed system, we use blocks of variable size.

VIII. RESULTS

 It is often difficult to evaluate the performance of

modifications to a disk, as the result depends on many factors,

ranging from workload parameters to the design of the disk

hardware.

 The existing hard disk drive technology is flexible and

efficient to perform the storage management, but it lags in

data transfer rate and utilization of the storage area. This

leads to the degradation of system performance as a whole.

In the graph x axis represent the time in microsecond and y

axis represent internal data transfer rate in MB. The

horizontal lines indicate the time required to place the head

on the starting place of the block. Assume that 2 platters are

available in the disk. So there are 4 storage surfaces in the

disk and the maximum block size is 4 KB.

In the block splitting storage method, distribute a single

block onto different platter surfaces, so that each platter

surface contains 1KB of data and they are at the cylindrically

similar positions. When the data is read simultaneously from

all these surfaces, the time taken to read a block becomes

1/4th of the time taken in existing method. The seek time is

same in both the cases. Due to the reduction in the rotation of

spindle motor the power consumption also gets reduced.

Fig. 2. Block splitting storage method (BSSM)

In file splitting storage method, the entire file is distributed

to different storage surfaces in the disk. The maximum block

size is 4KB. First store the 4*4KB on 4 storage surfaces. So

the 16 KB of data is stored in to the disk. While reading, this

16KB of data can read within the time taken to read one block

of data in the existing system. So the internal data transfer

rate is 4 times as in the existing system. If the remaining file

size is not sufficient to split to 4, 4KB blocks then the block

size is reduced to 2KB. This procedure is repeated in the

entire life cycle. So the internal fragmentation can be reduced

to a great extend.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

183

Fig. 3. File splitting storage method (FSSM)

In the block and file splitting storage method, the above

two methods are combined. The second method improves the

internal data transfer rate to a great extend. But the response

time is same as the existing system. In this first 4KB of file is

extracted and split into 4, 1KB blocks and stored in different

storage surface. The remaining file data is stored according to

the file splitting storage algorithm. So the response time is

almost 1/4th as that of existing system and the internal data

transfer rate is 4 times as that of exiting system.

Fig. 4. Block and file splitting storage method (BFS)

The table below analyzes the various optimizing

parameters for the three proposed methods. ‘X’ is a variable

which represents the value of a particular parameter in the

present hard disk system. later, the value of same parameter

in the present system is mentioned in terms of ‘X’.

TABLE I: PARAMETER COMPARISON

Parameter
Existing

system

Block

Splitting

Storage

Method

File

Splitting

Storage

Method

File and

Block

Splitting

Storage

Internal data

transfer rate
X 4X 4X 4X

Response time
X micro

sec.

X/4 micro

sec.

X micro

sec.

X/4 micro

sec.

Internal

fragmentation
Normal Normal Reduced Reduced

Spindle motor

rotation
Normal Reduced Reduced Reduced

In short, by the file and block splitting storage method, the

hard disk storage mechanism can be optimized in terms of

internal data transfer rate, internal fragmentation, response

time and power consumption of spindle motor.

IX. CONCLUSION

The main intention behind this technique is to supply the

data instantaneously to the RAM. It will improve the

execution efficiency of the system. The designed system

enhances the features of virtual memory. The paging

mechanism is enhanced to create the illusion of the presence

of data in the RAM, so that user can execute his programs

more efficiently with less amount of RAM. The internal

fragmentation in the system is drastically reduced. This is

possible by effectively splitting the file and allocating the

space in accordance with the space of each part.

REFERENCES

[1] Diana Bitton and Jim Gray, Disk storage shadowing in proceedings of

the fourteenth international conference very large data bases, pp.

331-338, 1988.

[2] C. Chao, R’ English, D. Jacobson, A. Stepanov, and J. Wilkes, “Mime a

high performance parallel storage device with strong recovery

guarantees.” 1992.

[3] Jzi cker chiweh and lan Huang, “Track based disk logging.” In

international conference on dependable system and networks

(DSM ’02), pp. 429-438, 2002.

[4] Y. Dishon and T. S. Lui, Disk dual copy methods and their performance

in providing of 18th international symposium on Fault tolerance

computing (FTCS-18), pp. 314-318, 1988.

[5] R. M. English and A. A. Stepanov, “Loge; A self organizing storage

device.” In proceedings of USENIX winter g2 technical conference, pp.

237-251, USENIX, January 1992.

[6] R. Hou and Y. N. Paft, Trading disk capacity for performance in

proceedings of the 2nd international symposium on high performance

distributed computing, pp. 263-270, 1993.

[7] Christopher lumb, Jiri schindler, Gregores R. Ganger, Erile Riedel,

and David Nagle, “Towards higher disk head utilization extracting free

band width from busy disk drives.” In proceedings of the 4th

symposium on operating system design and implementation [OSDI] pp.

87-102, October 2000.

[8] S. W. mg, “Improving disk performance via latency reduction.” IEEE

transaction on computers, pp. 307-316, January 1993.

[9] J. schindler, J. Griffin, C. Lumb, and G. ganger, “Track aligned extents;

matching access patterns to disk drive characteristics.” 2002.

Mr. Shihabudheen P M was born at Kerala, India on

27th March, 1989. He complete his bachelor degree in

computer science and engineering from SCMS school

of engineering and technology, Cochin, India affiliated

to Mahatma Gandhi university, Kerala, India in the

year of 2011. He has published number of research

articles in the area of computer architecture and image

analysis. He is currently working as a engineer in Tata

Elxsi Limited, Trivandrum, India. He was nominated

as a member of international technical committee for International

Conference on Computer Technology and Development held at china in the

year of 2011. His research interests includes theoretical computer science

and its applications, representation and transmission of data in the domain of

digital video and audio broadcasting.

Mr. Shihabudheen was an active member of Computer society of India

(CSI). Now is a member of International Association of Computer Science

and Information Technology (IACSIT) since 2011.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

184

