



Abstract—The main focus of this article is the possibility of

the performance testing for information systems. Our proposal

focuses on steps, which perform the performance testing itself.

The individual steps of our proposal have been mapped for each

phase of the software testing standard IEEE 829. To visualize

the process of testing, the model was outlined using UML

diagrams.

Index Terms—Performance testing, System testing, UML.

I. INTRODUCTION

Testing is an essential pre-requisite for successful

implementation of software product. It belongs to one of the

most important phases of software life cycle and each system

must be tested. Testing can be done by either manual or

automation testing [1]. One of the most important phases of

the testing is system testing, that largely takes advantage of

test automation.

A. System testing

System testing is often used as a synonym for “black-box

testing”, because during system testing the test team concerns

itself mostly with the application’s “externals” [2].

System testing is done to find out those imperfections that

were not found in tests conducted earlier. This includes

forced system failure and validation of total system as it will

be put to use by its user(s) in the actual working environment.

It generally starts with low volumes of transaction based on

real data. Gradually, the volume is increased until the

maximum level for each transaction type is attained [3].

Though this is one of the most important phases, it is often

compromised owing to strict deadlines or eagerness of the

users to directly go for conversion [3].

B. Performance Testing

Performance tests verify that the system application meets

specific performance efficiency objectives. Performance

testing can measure and report on data as input / output rates,

total number of I/O actions, average database query response

time and CPU utilization rates [2]. Performance testing

measurement and criteria

In order to accurately measure performance there are a

number of key indicators that must be taken into account [4].

These indicators are part of the performance requirements,

Manuscript received February 20, 2012; revised March 31, 2012.

Authors are with the Institute of Applied Informatics, Automation and

Mathematic at the Slovak University of Technology, Trnava, Slovakia

(phone: +421 918 646 061; fax: +421 33 5511758; e-mail:

pavol.tanuska@stuba.sk, ondrej.vlkovic@stuba.sk,

lukas.spendla@stuba.sk).

simply we can divide them into two types: service-oriented

and efficiency-oriented [5].

Service-oriented indicators are availability and response

time; they measure how well (or not) an application is

providing a service to the end users. Efficiency-oriented

indicators are throughput and utilization; they measure how

well (or not) an application makes use of the application

landscape [5].

1) Response time

Response time is a time defined by start client request and

end response from server. Response time is the key software

performance total response time is defined by network time

and application time [6].

2) Concurrency user

In practical testing, testing engineer pays more attentions

to business concurrency users, that is how many concurrency

users in the business model is available. In (2), the C is the

mean concurrency users, n is the amount of login session, L is

the mean length of login session, and T is the inspected time.

A login session is a time interval defined by a start time and

end time [6].

T

L
nC * (1)

CCCp *3 (2)

3) Throughout

Throughout is the amount of users requests processed

within one second [7]. Throughout is the directly load

performance, it is normally defined by hits per second or

pages per second, there are two aspects role. One is used to

design performance testing scenery, verify performance

testing scenery achieved test object or not, the other one is to

analyze performance bottleneck, the limit of throughout is

the mainly aspect of performance bottleneck. Throughout is

related to concurrency users when no bottleneck happened,

defined as [6]:

T

R
F NVU

* (3)

4) Performance counter

Performance counter is used to describe the performance

of server or OS, such as Processor Time, Memory Available

Megabyte, Physical disk Time, Successful or Failed Hits,

Hits per Second, Attempted Connections, User 0

Connections, Number of deadlocks, Buffer Cache hit [6].

C. Standards for Software Testing

Over the years a number of types of document have been

invented to allow for the control of testing. They apply to

software testing of all kinds from component testing through

to release testing. Every organization develops these

documents themselves and gives them different names, and

The Usage of Performance Testing for Information

Systems

P. Tanuska, Member, IACSIT, Member, IEEE, O. Vlkovic, and L. Spendla

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

144

in some cases confuses their purpose.To provide a common

set of standardized documents the IEEE developed the 829

Standard for Software Test Documentation for any type of

software testing, including User Acceptance Testing.

This White Paper outlines each of the types of document in

this standard and describes how they work together. There

are eight document types in the IEEE 829 standard, which

can be used in three distinct phases of software testing [8].

II. THE PROPOSAL OF PERFORMANCE TESTING

The starting point for our proposal is standard for software

testing IEEE 829. Its individual phases were slightly

modified for better simplicity and clearness.

The phase Test Plan, describes how the testing will

proceed and it is captured by modeled sequence diagram as a

whole. Phases Test Log and Test Incident Report were

merged to the Test Execution phase, mainly because of

phases modeling difficulty [8].

Our proposal focuses on steps, which perform the

performance testing itself. The previous identification and

analysis as well as the following tuning activities are not

captured by our proposed models.

A. The sequences of Proposed Performance Testing

The first result of our proposal is the following sequence

diagram (captured in Fig. 2), which captures the steps of

automated performance testing in terms of time.

Among the first steps of our proposal belong: obtained

requirement of the specification for testing system and

creation of performance model.

The performance model represents the analysis of different

functionalities as well as the rates of use for these

functionalities which the test system provides. These two

initial points are captured with a certain degree of abstraction,

because it is more complex and more difficult steps. These

steps will be more detailed modeled in the next iteration of

proposal.

The next step is the analysis of system that will be tested.

The result of this analysis is an initial state of the system,

therefore the state in which the system is before testing. The

following step is to specify test objectives, system load at

which testing is performed as well as condition, which

determines when test stops.

These sequences are followed by the testing itself. In this

part, the individual sessions are parallel created in such

number as is required by definition of distribution. This

distribution represents the rates of use for different

functionalities as we described above.

In the individual sessions there are generated a test scripts,

which represent a mix of end-users activities. In the next step,

the injectors are assigned to the individual session, in number,

which corresponds to the required load. In the injectors there

are generated and loaded data, which are used for system load

in session. The required data from the session of the

performance testing are recorded. If the number of sessions is

smaller than is required (e.g. one session ended) a new one is

created (based on the rate from the distribution) and the

whole cycle is repeated until the condition is fulfilled.

If the condition is not met, the testing itself ends, the

results from individual sessions are analyzed and test will

provide relevant results with regard to defined objectives.

B. The Overview of States in Proposed Performance

Testing

The second result of our proposal is the following state

machine diagram (captured in Fig. 1), which identifies the

events that activate transitions. A set of states is captured as a

synchronous sequence. This is mainly due to the complexity

and clarity over asynchronous model. Because of the degree

of abstraction of our model, we have not captured and

described internal actions and activities in individual states.

A set of previous standard states, according to standard

IEEE 829, is captured as initial state, named

PreviousStandardStates. This complex state occurs as the

first state in our proposed testing process. When the event

gainedPerformanceModel occurs, testing process passes to

the state ProblemDomainSpecification, where the input

action is invoked. The role of this action is to define the rate

of use described in the distribution for every possible

functionality. The state has also the task to specify the test

load, and analyze the test system. At signalizing the output

event, the output activity defines test objectives required for

the test.

Fig. 1. Proposed state machine diagram.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

145

Fig. 2. Proposal of performance testing step.

By the event testCondition the process passes into the state

SessionCreation. The role of the input action is to generate

the unique test script for current session, which is carried out

by one or more Injectors. It should be noted, that as an output

action, the verification of the generated test script must be

carried out. After the verification of the test script the process

moves to InjectorCreation state.

After reaching this state, the loadTestScript action is

executed, which means that the previously created test script

is loaded. In this state there are also loaded functional test

data and generated the synthetic test data, which represent

random actions in the injector script approach. Assigning a

created injector to current session is an output action of this

state.

When the event addedInjectorToSession occurs, testing

process passes to the state SessionExecution, only if the

required load is achieved. If the actual load is under required

load, a new injector is created. Since our model is captured as

synchronous sequence, the individual injectors in our model

are created one after another.

The role of input action in SessionExecution is to load

previously created session script. The main task of this state,

is to run created injectors for current session. The role of

output action is to gather the data and from them create

session performance data.

If the condition is not fulfilled and the test execution is not

interrupted, a new session is created with the probability

described in distribution. Otherwise, the process passes to

state TestSummary. Task of its input action is to retrieve

performance data from all previous sessions. After that, the

performance data are analyzed, and the test log is created,

taking into account the test objectives.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

146

III. CONCLUSION

The aim of this article was to design automation of

performance testing. In our proposal we have focused on

performance testing itself and therefore we don't present a

proposal of load testing. Our proposal is based on the basic

steps of performance testing, which are captured in our

modeled diagram. It should be noted, that our proposal is

based on the software testing standard IEEE 829. Our

proposal was captured by sequence and state machine

diagram in UML 2.0.

REFERENCES

[1] P. Tanuska, L. Spendla, and O. Vlkovic, “Accelerated stress testing of

control systems,” Annals of DAAAM and Proceedings of DAAAM

Symposium. - ISSN 1726-9679. - Vol. 21, No 1. Annals of DAAAM

for 2010 and Proceedings of the 21st International DAAAM

Symposium “Intelligent Manufacturing and Automation: Focus on

Interdisciplinary Solutions” 20-23rd October 2010, Zadar, Croatia,

DAAAM International Vienna, 2010, PP. 409-410

[2] DUSTIN Elfredie; RASHKA Jeff; PAUL John. “Automated Software

Testing: Introduction, Management, and Performance,”

Addison-Wesley Professional, 1999, ISBN 978-0201432879

[3] Isrd Group, “Structured System Analysis And Design”, Tata

McGraw-Hill Education, 2006, P432, ISBN 007-0612048

[4] SKAMLA Michal, HAMERNÍK Peter, and VAZAN Pavol. “The

evaluation of influence of priority rules in job shop scheduling,”

Process Control 2010: 9th International Conference. Kouty nad

Desnou, Vol. 7-10, No. 6. 2010, University of Pardubice, 2010, ISBN

978-80-7399-951-3

[5] MOLYNEAUX Ian. “The Art of Application Performance Testing”,

O’Reilly Media, Sebastopol, CA, 2009, ISBN 978-0-596-52066-3

[6] YUNMING P. and MINGNA X. “Load Testing for Web

Applications,” The 1st International Conference on Information

Science and Engineering, Dec 18th to 20th 2009, PP. 2954-2957, ISBN

978-0-7695-3887-7

[7] TRNKA Andrej and TANUSKA Pavol. “Statistical methods in control

process,” Process Control 2010: 9th International Conference. Kouty

nad Desnou, Vol. 7-10, No. 6. 2010, University of Pardubice, 2010,

ISBN 978-80-7399-951-3

[8] TANUSKA Pavol, LKOVIC Ondrej, and SPENDLA Lukas. “The

Proposal of Step Stress Testing Automation,” International Journal of

Computer Theory and Engineering, Vol. 2, No. 6, 2010, P860, ISSN

1793-8201

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

147

