

Abstract—The paper presents a proposal of a hybrid method

for embedded system modeling with emphasis on constraints

analysis. Since one of the major factors for most embedded

system from the performance point of view is the real-time

response of component execution the proposed method focuses

on analysis of attributes affecting such performance

requirements and optimizes the design process accordingly. The

core idea of the method is to separate components into three

distinctive groups as critical, hybrid and non-critical and select

an appropriate memory and resources sharing model

accordingly. Experimental case study is provided to verify the

method performance compared to other available modeling

methods like best-effort or dependable embedded system design

methods. The hybrid method shows its advantages in more

effective use of available implementation platform resources

while meeting all of the required real-time response constraints.

Index Terms—Embedded systems, information systems,

real-time response, software architecture modeling.

I. INTRODUCTION

Information systems in recent decades made significant

progress in their development and subsequent applications.

Their practical use, thanks to technological development in

recent years has further expanded into areas with which

designers and software engineers in the past did not count at

all. One such area is the application of information systems

and related modified software engineering methods, tools

and technologies on objects of the physical environment, i.e.

embedded systems [1], [2].

The Embedded systems nowadays draw more attention

mainly due to the positive trend in the development of new

microprocessor technologies. Since embedded systems are a

specific type of information systems, theirs design

methodologies have always been different from the general

information systems design methodologies. The main reason,

despite the increasing computation performance of available

embedded system technologies, is the fact, that there will

always be a strong link between required system

functionality, existing implementation platform and real

Manuscript received August 24, 2011; revised December 25, 2011. This

work was supported by the Slovak Research and Development Agency under

the contract no. APVV-0008-10 and by the Scientific Grant Agency of the

Ministry of Education - VEGA Grant No. 1/0531/12 Use of Knowledge in

Software Processes.

O. Zeleznik is with the Department of Computers and Informatics,

Faculty of Electrical Engineering and Informatics, Technical University of

Košice, Letná 9, 042 00 Košice, Slovakia (e-mail: o.zeleznik@gmail.com).

Z. Havlice is with the Department of Computers and Informatics, Faculty

of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, Slovakia (e-mail: zdenek.havlice@tuke.sk).

.

environment objects on which the mentioned embedded

system functionality is applied. Such interconnection

between the embedded system computation process and the

real physical environment arises on the basis of two main

interactions: Reaction to the actual physical environment and

computation process execution on the real implementation

platform. Based on these two interactions we can define two

types of physical constraints: the reaction constraints and the

computation process execution constraints.

One of the important reaction constrain that creates a

major influence on proper embedded system functionality is

the real-time response and its management, discussed in more

detail in [3]. When designing such embedded system, it is

essential to take into account also the real-time response

requirements of every component in the system. It may seem

to one that achieving better real-time response could be

solved simply by deploying computationally more powerful

technology. The real-life situation however suggest that the

current embedded system applications real-time response

requirements are either on the edge or are far exceeding the

capabilities of implementation technology available. To

successfully resolve such problem it is therefore necessary to

select an appropriate methodology for embedded systems

design, optimize processes such as embedded systems

component execution management and focus on each type of

application problem separately to achieve the expected

quality of service parameters.

Several domain specific attributes usually describe

embedded systems typical properties. Apart from the already

mentioned real-time response, those also include:

• Reliability – Embedded systems should provide certain

degree of reliability due to their deployment in harsh

conditions or in critical applications. Such embedded

system usually includes several redundant subsystems

and employs various means for improving reliability

and error tolerance.

• Use of specialized hardware is selected when group of

special functions is to be implemented. One suitable

example is signal processing domain where the digital

signal processors are the core hardware element.

• Low cost plays an important role in many areas of

embedded system applications. We can consider it a key

parameter in most of advanced digital electronic designs

of today‟s commercial electronic devices. Such attribute

then influences selection of the implementation

technology and enforces designers to proceed with

thorough design optimization.

• Substantiality is a key parameter for embedded system

deployment in environments with harsh natural

conditions. As a good example can server an automotive

Knowledge Based Embedded System Modeling With

Real-Time Response Requirements

Otto Zeleznik and Zdenek Havlice

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

103

or aerospace industry. Embedded systems deployed in

such environment must withstand extreme thermal

stress, excessive mechanical jitter or significant power

fluctuations. The designer must ensure the system will

function properly even at such stress levels.

• Flexibility requirement forces some system designs to

proceed with microprocessor solution rather than

discreet components design. The resulting advantage is

the ability to allow for flexible reprogramming of the

same implementation platform for various different

products using same implementation platform thus

lowering overall cost.

• Low power consumption is utterly essential attribute

when one attempt to design a battery powered

embedded system. Such systems require architecture

designers to be focused most of the time on lowering

power consumption to extend the battery life as much as

possible. They use techniques like dynamic system

clock frequency decrease or individual processor

segments power down to achieve it.

Another embedded system partitioning is based on several

distinctive design criteria and principle viewpoints:

• Distributed embedded systems use components which

can be physically located at different places distant from

each other. Partial computations can be executed on

multiple distant microprocessors interconnected via a

communication network. Such solution is usually less

expensive since several 8bit microprocessors have

lower cost than its few 32bit rivals. Furthermore,

multiple distributed microprocessors can increase

failure resistance compared to one large type.

Distributed systems also simplify and enhance complex

systems ordering – they allow for individual subsystems

to be installed at locations required by physical nature of

given solution.

• Centralized embedded systems are usually designed as

such because the implementation environment does not

allow proceeding with distributed type. The main

limitation factor can be physical size constraints of the

implementation platform itself. The designed is then

forced to use more complex microprocessors which are

capable of providing all necessary implementation

resources to perform all computations and

communications at one place.

• Reaction-based type of embedded systems is a special

group where the computation process requires a

feedback type signal to be provided as a main

computation parameter. Such approach creates a

reaction on processed parameters with no regards to

input parameters of the system.

• Transformation-based embedded systems are a

complementary to the reaction-based types. The core

difference is they do not process the feedback parameter

at all, but they only process input parameters via internal

transformations controlling thus output parameters

according to the requirements and definitions.

• Control-dominant embedded systems are focused on

regulation applications and are basically designed to

achieve very good response on external asynchronous

events which occur within the application environment.

Such systems must carefully manage priority of

processed events and they use special architectures to

achieve that [4].

• Data-dominant embedded systems typically consist of

architecture optimized on effective data operations and

transfers. Data is often generated or gathered within a

certain fixed time period e.g. sampling period. Signal

processing architectures are considered an example of

data-dominant embedded systems [5].

One of the main individualities when designing embedded

systems is the necessity to define properties and constraints

of the software as well as hardware architecture well in

advance of the design. This fact forces the designers and

programmers to use particular design methods which rather

differ from design methods of standard information systems.

When designing a general information system, one usually

employs an abstract representation, such as model. This

model is created from the input user/designer requirements

and constraints. The mentioned model is later used as a

formal specification for complete automated system

generation. For example, in case of software design process,

we need a compiler capable of generating output code. In

case of hardware design, the designer uses an abstract

hardware description. Such abstract description layer is later

used in specialized software tools that generate the actual

hardware schematic layout. Both design cases are however

similar in sharing some common design elements used in

design process. Adaptation and re-use of already designed

components eventually found in libraries, systematic

step-by-step model modifications are the methods that ensure

safe fulfillment of the input requirements and constraints.

Even though the described methods show lots of similarities

with general information system design methods, the real-life

situation is quite different when it comes to details in

embedded systems design. The embedded systems by their

nature almost always respond to the values coming from the

real physical environment. It is therefore required to employ

a more complex viewpoint at such systems in the design stage,

joining knowledge from various areas of engineering,

informatics, software design, hardware design, regulation

theory, signal processing and others and applying those at the

design at once.

II. ARCHITECTURAL-SEMANTIC EMBEDDED SYSTEM

MODELING METHODS

In the chapter below are described few essential embedded

systems modeling methods which emphasize architectural

and semantic modeling. Since full description of these

methods is out of scope of this paper, these are covered in

greater detail in related papers referred in the paragraphs

below.

A. Modeling Method Based on Programming Languages

and Synthesis

The modeling method based on programming languages

and synthesis is considered a standard approach in computer

systems modeling. The programming languages modeling

methods are based on software design. They are generally in

close link with a particular programming language with its

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

104

own runtime environment, provided rather with fixed priority

multitasking capability. As examples of such systems it can

be considered Ada, RT-Java. Synthesis methods on the other

hand come from the hardware and electronic circuits design.

They are based on processing the system specification in a

structured form or in form of HDL language fragments,

which are afterwards used for automated implementation

generation basically adhering to specified input constraints

[6].

B. Modeling Method Independent on Implementation

Platform

Such method is considered a new generation of the design

and modeling methods. It is basically enforcing a semantic

separation of the design layer from the implementation layer.

As such, the method gains an advantage of creating a new

level of independence from any particular implementation

platform. Several examples are available. Synchronous

programming languages for example already embed the

abstract hardware semantic layer (synchronization

properties), implementation technologies are available on

several various platforms not excluding architectures with

timed execution synchronization. The SystemC

programming language [7] combines synchronous hardware

semantics layer with asynchronous execution algorithms

coming from the software, the implementation layer requires

fragmentation on components, which are then realized on the

hardware platform as well as within the software itself.

C. Modeling Method Independent on Execution Semantics

Modeling method independent on execution semantic is

based on object-oriented modeling approach types and

modeling tools like UML (Unified Modeling Language) or

AADL (Architecture Analysis and Design Language) [8], [9],

[10], [11]. Mentioned modeling tools try to be as generic in

abstract description domain, not only for the implementation

platform but also for the execution platform and interaction

semantics of the system. Due to this method, the designer

acquires rather valued independence of any specific

programming language and at the same time the method

allows for emphasis on the architectural design itself, better

organizing computation process criteria, communications

and other resources which are provided by the given

architecture. The method is dealt with in greater detail in [12],

[13], [14], [15].

III. EMBEDDED SYSTEMS MODELING METHODS WITH

EMPHASIS ON CONSTRAINTS ANALYSIS

Embedded systems by their nature mostly interact directly

with physical variables of the real ambient environment and

thus control and analyze time-variant dynamic processes. To

guarantee a correct behavior of implemented functions and

components in a role of control processes, it is necessary to

design and implement the application code the way that it

will maintain correct execution not only from the semantics

point of view but also from the strictly defined real-time

response point of view. Let„s consider the component ADD

will perform an operation Y = A+B in time t1, let‟s define t2

as component„s required real-time response based on the

application input properties. In case of t1 > t2, we can

consider the performance of the mentioned ADD component

inadequate for some embedded system scenarios thus

invalidate its results completely no matter whether the

semantic part of the component result is correct or not. Due to

the existence of special areas of embedded systems

applications it is of equal design importance to consider not

only the semantic correctness of the components but also to

guarantee component real-time response-correct execution.

The area of embedded system applications where it is

essential to analyze the real-time response of various

variables and components is wide-spread. Most of the

mentioned applications can be found in the theory of

regulation and the signal processing, where the real-time

response-rules for individual operations are defined very

strictly. Detailed description on the signal processing

components response theory can be found in [16].

The mentioned necessity to define the real-time response

has direct influence on architecture design process for any

selected embedded system. Most of the influence will appear

as a strong link between software architecture and

implementation hardware architecture. The application

modeling therefore must be measured from various

viewpoints considering the resources of the target hardware

architecture such as computational power of the core

processor, various specific properties of memory types,

memory sizes, communication channels between peripherals,

language types and evaluation of mixed or hand-optimized

programming need for critical parts of the system (OS

scheduler, peripheral drivers, etc). When considering for

example a common PC platform where properties like

memory size and/or CPU power are insignificant, these can

accommodate very extensive and even complex software

architectures and very large data structures with nearly no

limitation however with a trade-off for response performance.

Embedded systems on the other hand are mostly designed on

smaller processors and less powerful hardware platforms

where specific architectural factors are due. One of these

factors is small available memory and specific memory

model within existing CPU. Also memory model must

strictly be questioned before the design is due since

embedded hardware architectures [17] usually support only

two access memory types of unequally partitioned sizes: Fast

Layer 1 memories for execution critical code and data storage

(available only in several kilobytes), Slower Layer 2

memories for execution non-critical code and data storage

(depending on CPU available up to max. few Mbytes). There

is also a cache support, but with limited performance,

especially when executing critical code. Layer 1 memories

are usually 3-10times faster than Layer 2 memories and full

CPU performance is obtained only when executing code

from Layer 1 memories. Adhering to the above facts,

programmer or software architecture designed must carefully

evaluate which data structure will be stored and operated

from Layer 1 memory and which will be stored and operated

from Layer 2 memory. The same applies for code separation

as well. Available memory size also affects the way, how

data and information is handled in the embedded system.

Proper algorithm design helps reducing size of temporary

data structures used for data processing. Using rather one

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

105

common variable/buffer for data storage and processing in all

processing algorithms is one way how to use memory

properly. Moving less critical data buffers into Layer 2

memory and more critical data buffers into Layer 1 memory

improves performance as well. Choice or rather a necessity of

using a certain programming language in embedded systems

defines another group of constrains in software architecture

selection possibilities. Real-time embedded systems require

very optimized and dense code since it may enhance

execution performance. This is achievable usually by

designing assembly written routines and so avoiding use of

any higher-level compiler available for embedded systems

design. Programming and design experience indicates that

even the best-of-the-class compilers are unable to achieve

performance of well-optimized hand-written assembly code.

Gain in performance is about 5 to 25 per cent in favor of

hand-optimized code. It is up to programmer to decide

carefully, which part of application requires such a high

performance (routines running most of execution time) and

which part of application can be designed using higher level

programming languages like C and running least of execution

time but with high software architecture complexity.

Real-time embedded systems usually work fine with

assembly language used for time-critical processing routines.

These usually require very basic data structure types (circular

buffers, simple variables) use with nearly no abstract models

and only Layer 1 fast memory partitioning [18]. On the other

hand C language is mostly used for control algorithms, which

are of higher software complexity. Data structures become

also more complex with use of dynamic memory allocation

and management. They are however strictly located in Layer

2 memory region only. This complexity gain also gives a

possibility to employ more complex and perhaps more useful

software architecture components and interconnection

in-between them.

For easy illustration purposes of the above mentioned

modeling characteristics for all further descriptions we will

consider using component architecture as framework

architecture due to its self-declarative nature [19]. Let‟s

consider that every component of such architecture has got its

semantic definition well defined side by side with its proper

real-time response requirement definition as well. Based on

the above mentioned embedded systems input constraints

with emphasis on modeling optimization we suggest defining

two basic attribute types which evaluate the execution

success rate for each component as follows:

• First attribute, so-called rate of semantically-correct

execution, quantifies rate of successful component

execution strictly from the semantics viewpoint. To

consider any component to be semantically correctly

executed, it is necessary for such component to generate

a correct result (from the viewpoint of expectations) and

that being generated with no association to time

response needed for achieving such result.

• Second attribute, so-called rate of real-time

response-correct execution, quantifies rate of successful

component execution in comparison with the

component‟s response time definition. To consider any

component to be response-correctly executed, it is

necessary to guarantee the execution to be performed

within the response time smaller or equal of the defined

real-time component response. This parameter however

does not regard the semantic correctness of the

output result.

When designing an embedded system, the designer usually

evaluates which of the two attributes has priority over the

other for the overall system performance and properties and

that fact selects the appropriate design method. In case when

the rate of real-time response-correct execution has the same

priority as the rate of semantically-correct execution, the

dependable embedded system design method is selected

despite the increase in computation power requirements and

advanced complexity and cost of the resulting

implementation platform. Right the opposite case is an

embedded system where very few to none components

require deterministic execution in time, e.g. rate of real-time

response-correct execution is not necessarily at 100%

requirement, or another important criteria is the overall

system cost. Occasional execution response delays in such

cases do not jeopardize the overall functionality of the

embedded system. Should some or all of the mentioned

requirements be met, it is preferred to use the best-effort

embedded system design method.

T
IM

IN
G

-C
O

R
R
E
C

T

E
X
E
C

U
T
IO

N
 L

A
T
E
N

C
Y
 P

R
O

B
A
B
IL

IT
Y

C
O

M
P
O

N
E
N

T

DETERMINISTIC RESOURCES

IMPLEMENTATION

DYNAMIC SHARING RESOURCES

IMPLEMENTATION

C
P
U

 R
E
S
O

U
R
C
E
S
 R

E
Q

U
IR

E
M

E
N

T
S

100% M
O

R
E

B
ES

T-
E
FF

O
R
T

ES
 D

ES
IG

N

D
EP

EN
D
A
B
LE

ES
 D

E
SIG

N

Fig. 1. Best-effort embedded system modeling vs. Dependable embedded

system modeling properties.

The Fig.1 depicts characteristic parameters of both

mentioned design methods. Illustrated is the relation between

real-time response-correct component execution delay

probability and the approach chosen for component design. It

can be seen from the chart that best-effort design method

saves lots of implementation platform resources at the

resulting design, while it is necessary to use dynamic

computation resources sharing. The trade-off here however is

raising probability of real-time response-correct component

execution delay. In case of deterministic design approach

selection such as the dependable embedded system design

method, the response delay probability is minimized

although for a price of increased implementation platform

complexity and increased required computation resources.

The next two chapters describe in detail both the best-effort

embedded systems design method and the dependable

embedded systems design method.

A. Dependable Embedded Systems Design Method

Dependable embedded systems design method attempts to

provide as the result the most dependable and reliable

embedded system with no regards or constraints to the effort

well spent on either design process or platform resources

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

106

themselves. Individual components must fulfill the required

(usually almost) 100% rate of real-time response-correct

execution. Tolerance for response delay probability is

extremely low and depends only on particular designed

embedded system or its application domain constraints. Such

requirements are imposed on the dependable systems despite

very harsh implementation environment conditions mainly

for their best performance and reliability interest. The

described design method is thus based on as conservative as

possible strict analysis and estimation of the system dynamics

and employing rather static system resources allocation on

any intended implementation platform. Such conservative

estimation and analysis results later force designers to use

mostly very simple implementation platforms with no

operating system support. Another suitable processor

architectures are those which are capable of deterministic

code execution response evaluation. Typical example of

dependable systems are control systems found in automotive

or aerospace industry. Mentioned examples require the

real-time response parameters to be defined as „hard“. Such

hard real-time response is achieved by employing the

worst-case scenario execution timing analysis as well as

static code execution planning. The maximum computation

resources for code execution must be available within the

implementation architecture at all times. Other ways to

improve reliability and dependability of the embedded

system is by using means of redundancy as well as

implementing subsystems for error detection and correction.

Appropriate example of dependable embedded system design

methods is Time-triggered Architecture (TTA) [20], [21].

This architecture is used by the designers in the safety-critical

applications like brake-by-wire, drive-by-wire, fly-by-wire,

used in automotive and aviation applications. The TTA node

is composed of the two subsystems: communication unit and

main computation unit. All communication within the nodes

of such system has strict ground rules defined well in

advance and is based on static synchronous timing. Every

communication unit has precisely defined message

architecture description, which defines at what time is what

node allowed to gain authorization to send or receive a

message with what peer node, all of it precisely defined in

advance. Synchronization protocol is further defined to

provide means for error and fault correction and is distributed

throughout the whole system as a part of synchronization

process.

B. Best-Effort Embedded System Design Method

The dependable embedded systems design method

employs the worst case code execution timing analysis to

meet the required real-time response. The Best-effort

embedded systems design method on the other hand prefers

the code execution timing analysis to be done for an average

case. There could also be situations where there is an a priori

definition of tolerable component real-time response delay.

Such method could also be described as optimization method

since it attempts to dynamically optimize performance

parameters of any given embedded system implementation

while expecting the embedded system to work within the

specified implementation constraints. Another considerable

approach within the best-effort design methodology is

dynamic resources allocating and sharing. This allows for

effective computation and communication resources to be

spread across the individual components or system sections

thus optimizing system throughput and achieving balanced

resources load which indirectly lowers overall cost of the

implementation platform as well. The trade-off for such cost

savings and simple architecture advantage due to the

dynamic resources sharing is unwanted occasional

performance decrease of individual subsystems that may at

the given time request to use any particular system resource

(communication peripheral, computation unit) but the

resource is not available due to its allocation by other

subsystem that may be busy as well. Such performance

decrease may in extreme circumstances result even into total

temporary failure of any given subsystem or component. Due

to the soft real-time response requirement is however such

behavior of the best-effort embedded systems reasonably

accepted, depending in rate on given particular application.

The quality-of-service parameter is in case of best-effort

method provided thanks to the use of adaptive mechanism of

code execution scheduling as well as thanks to use of

feedback signals for dynamic control and optimization of

executed code. Described methods ensure maximum

computation process optimization as well as effective

behavioral anomalies solving. As the characteristic examples

of best-effort designed embedded systems may serve various

multimedia and communication systems. These systems

often use optimization methods which ensure that different

services and processes are provided to different users with

different priority in different time. The overall average

system performance is however at the level specified yet in

advance. Small deviations from the average performance

figures (sometimes occurred due to timing errors) are

however well tolerable and do not cause system malfunction.

IV. HYBRID EMBEDDED SYSTEM DESIGN METHOD WITH

EMPHASIS ON CONSTRAINTS ANALYSIS

There are many examples in real life world when the

designer needs to create an embedded system which shows

requirements employed partly in both mentioned design

approaches. Based on this fact, it is essential to make a

compromise and rather choose either one or the other design

method. The result is a system which is either too expensive

and thanks to its complex deterministic-designed

implementation architecture is hard to modify and maintain,

or the system in case of best-effort method use is unreliable

enough and in some critical situations is not uncommon to

see either serious parameter worsening or partial system

failure.

Fair resolution of depicted compromise scenario was to

design so-called hybrid design method that combined

advantages of both above described design methods with no

obligation to employ any trade-off solution. Basic concepts

of the hybrid design method are summarized in the following

paragraph:

• Use of component architecture as framework

architecture because of its simple self-illustrative

nature.

• Estimation of required rate of real-time response-correct

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

107

execution depending on the input constraints and

requirements.

• Embedded system component arrangement based on the

rate of real-time response-correct component execution,

split into three distinctive groups based on priority,

memory model applicability and computation resources

allocation as follows:

• Critical components – required rate of real-time

response-correct execution 90%-100%, preferred static

computation resources allocation model, preferred

critical memory model (strictly deterministic memory

type).

• Hybrid components – required rate of real-time

response-correct execution 1%-99%, preferred dynamic

computation resources sharing model, preferred hybrid

memory model (use of deterministic and

non-deterministic memory type, static and/or dynamic

allocation).

• Non-critical components – required rate of real-time

response-correct execution of no significant value,

preferred dynamic computation resources sharing

model, preferred non-critical memory model (external

non-deterministic memory type).

• Application of conservative deterministic worst-case

scenario time analysis for group of critical components,

static a priori allocation of all computation and memory

resources for the mentioned component group.

• Worst-case, best-case and average-case estimation for

the hybrid component group, design of appropriate

dynamic resources scheduling mechanism based on

input requirements and rate of real-time

response-correct execution, estimation of necessary

partial static resources allocation used for correct hybrid

components dynamic resources management.

• Worst-case, best-case and average-case estimation of

rate of real-time response-correct execution for

non-critical components.

• In case of unfit resulting parameters of non-critical or

hybrid components, the component re- qualification is

essential, depending on constraints, either into

non-critical, hybrid or critical group, possible

component attributes change, following repeated rate of

real-time response-correct execution analysis.

A. Memory Layer Model of Hybrid Embedded System

Design Method

Memory layer model of hybrid embedded system design

method presents an interconnection of the three mentioned

component groups (critical, hybrid, non-critical) with the

type of memory available within the implementation

architecture.

CRITICAL COMPONENTS WITH
DETERMINISTIC RESPONSE

DYNAMIC RESOURCES SHARING
CONTROLLING MECHANISM

SHARED
RESOURCES
COMPONENT

(INTERNAL) MEMORY LAYER 1 (EXTERNAL) MEMORY LAYER 2

HYBRID RESPONSE COMPONENTS

Deterministic access time:

1 system clock cycle

Non-deterministic access time:

10-1000 system clock cycles

SHARED
RESOURCES
COMPONENT

Fig. 2. Hybrid method memory model.

Fig. 2 of the memory mode depicts basic separation of two

distinctive memory access types, e.g. deterministic and

non-deterministic.

The deterministic memory type, most of the time of the

highest throughput and shortest access time is used for

critical components and the application has generally a priori

defined static allocation.

Components of the hybrid group, depending on their rate

of real-time response-correct execution, require reasonable

decomposition of individual component parts and variables

as into deterministic so well into non-deterministic memory

types too. Appropriate ratio and partially static or dynamic

allocation ensures achieving required rate of real-time

response-correct component execution.

Non-critical component group puts the least requirements

on memory access type and throughput. Since there is no

significant requirement on rate of real-time response-critical

execution, usually in most cases non-critical components

may be assigned to a non-deterministic memory type with

least speed grade and throughput. The non-critical

component group also shares some of common computation

and memory resources, it is therefore essential to employ a

resources sharing and managing mechanism. Such

component core is usually allocated statically in a faster

memory type due to the need of effective and

faster-than-component-itself behavior. Any particular

allocation type however depends always on given embedded

system application.

B. Knowledge Base Layer of the Hybrid Embedded System

Design Method

The knowledge based artificial intelligence systems helps

designer to solve complex modeling related tasks which are

unsolvable by means of algorithmic resolution under normal

circumstances. Such systems include also the knowledge

based systems and expert systems. These can be well applied

on optimization of embedded system design based on the

implementation platform information analysis and input

constraints processed by such system. Fig. 3 illustrates a

framework architecture of a knowledge layer of the

employed hybrid embedded system design method.

EMBEDDED SYSTEM

KNOWLEDGE

BASE

COMPONENT MODEL

MEMORY MODEL

CPU RESOURCES MODEL

Fig. 3. Hybrid method knowledge-base architecture.

The advantage of using knowledge based layer when

designing an embedded system is the capability to automate

some of the design processes which are determined on the

available knowledge base. Such (data)base often contains

multiple application domain specific knowledge information

that usually can not even be known by the individual

designers due to its rather extended expert scope. If such

modeling approach is employed, it is usually demonstrated

that due to better expert knowledge of particular application

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

108

details that are already gathered within the knowledge base

(specific system dynamics, structural particularities, etc.), the

overall system safety as well as component and architecture

stability is greatly improved. For further architecture

improvements, the designer is recommended to use the

knowledge layer on various levels of modeling process. The

knowledge base can be employed on individual modeling

levels, also while performing any later system maintenance,

or even while system run-time in real-time, if it is necessary

to modify any part of the model on-the-fly as well as check its

integrity and functionality as is suggested in [22].

The knowledge base layer of the hybrid embedded system

design method serves mainly for optimizing component

design process for various expert application domains with

strong link to the architectural attributes of such embedded

system. The knowledge base layer further optimizes and

verifies the memory model design (selection of component

and memory model link based on system constraints) and

also manages computation resources model. It is reasonable

to further extend a knowledge base with additional parameter

types or design specifications in relation with the considered

implementation platform.

V. CASE STUDY ARCHITECTURE

A case study embedded system architecture layer model

was designed for the needs of experimental verification,

including the knowledge base layer, depicted on Fig. 4.

APPLICATION
DOMAIN LAYER

EMBEDDED SYSTEM
LAYER

KNOWLEDGE BASE

LAYER

MODELLING AND DESIGN

TOOLS LAYER

Fig. 4. Layer model of the Hybrid method architecture.

A described hybrid embedded system design method was

employed for the individual component design. The design

process was successfully verified for every defined

component group (critical, hybrid, non-critical). Due to the

performance comparison possibility of each design method

the case study architecture design was carried out by all three

discussed methods, the dependable embedded system design

method, the best-effort embedded system design method as

well as hybrid embedded system design method.

Since the application domain of the experiment is signal

processing, particularly a sound processing, the

implementation platform was based on the digital signal

processor components. The selected Blackfin family [23]

comes from the Analog Devices manufacturer and is

considered to be top of the class at the given time. The case

study embedded system architecture is depicted on Fig.5.

APPLICATION DOMAIN:
SOUND SIGNALS, USER CONTROLS

PC BASED MODELING SYSTEM FOR
REAL-TIME MODEL DEFINITION (XMI)

CRITICAL

COMPONENTS

HYBRID

COMPONENTS

NON-CRITICAL

COMPONENTS

SIGNAL

PROCESSING
AND AUDIO IC

COMMUNICATION

DYNAMIC
RESOURCES

MANAGEMENT,

CONTROL
COMMUNICATION

FRONT

PANEL
DISPLAY AND

CONTROL

DSP-BASED COMPONENT
EMBEDDED SYSTEM

SYSTEM MODEL
KNOWLEDGE BASE

(USER MODEL KNOWLEDGE)

Fig. 5. Layer model of the Hybrid method case study architecture.

The dependable-system-like design showed an increased

architectural complexity of implementation throughout the

whole design process – it was necessary to employ four

parallel DSP processors to achieve successful

implementation of the given case study. Due to the very

limited Layer 1 memory it was inevitable to distribute all of

the designed components into those mentioned four DSP

processors which resulted in necessity to implement

additional utility component for inter-processor parallel

execution and process synchronization management.

Another disadvantage was to utilize low-level programming

languages due to the critical nature of designed components

as well as other hardware constraints (memory size and

speed). Achieved component execution response time was

however approaching the physical (electrical) capabilities of

serviced peripherals. The real-time response of processed

sound samples which directly influenced the input-output

sound delay was in the range of few single samples, e.g.

depending on sampling frequency in range of few tenths of

microseconds. Such achieved real-time response times when

evaluated from the psychoacoustic perception viewpoint are

supernumerary in case of general audio systems use and are

only necessary in case of specific measurement equipment.

Common acceptable psychoacoustic perception delay times

are within the one-millisecond range, discussed more in

detail in [3], [24]. Based on all the above results, the

dependable embedded system design method appeared

unreasonable for such case study embedded system design

due to its excessive increase in architecture complexity.

The best-effort method on the other hand was capable of

reducing the required DSP processor amount to only one.

Unfortunately due to its design nature the resulted

architecture could not function properly especially in case of

several critical components and showed significant real-time

component execution response limitations. The most affected

component‟s response of the case study architecture was in

the critical group of sound processing and conversion

peripheral servicing components. In case of the best-effort

method, use of only Layer 2 memory type was requisite

together with the dynamic resources sharing mechanism

which resulted in increase of necessary real-time response

margin and memory size margin to ensure safe and correct

component execution. The component real-time response has

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

109

therefore risen to the series of several tenths to hundreds

milliseconds which was unacceptable from the

psychoacoustic sound delay perception point of view. Due to

the indicated properties the resulted architecture was

rendered non-functional and it was necessary to propose a

method which appropriately combined the two discussed

design particularities.

The described hybrid embedded system design method

successfully reduced the required DSP processor count to

one and was furthermore capable of effectively using all

provided hardware and memory resources such that all

executed components achieved real-time execution response

within specified input requirements. Thanks to the

component distribution into three distinctive groups, the

implementation was well optimized with regards to various

component computation resources and real-time response

requirements. The critical component group achieved

real-time response in series of hundreds of microseconds.

The hybrid component group achieved real-time response in

series of ones of milliseconds to tenths of milliseconds

(depending on each component specific requirement). The

non-critical component group due to its negligible real-time

response requirement was left non-optimized. The designed

case study architecture further provided an increase in

execution safety for the critical component group for cases

when less critical component failed to execute properly by

locking its execution in favor of the critical component

group.

The designed case study architecture consists of the

following layers (as depicted on Fig.5):

• Application domain within the architecture layer model

is considered the external environment. The embedded

system itself is usually designed to work directly with

the application domain values. Our case study

application domain was the sound signal since the

application function is to process and modify the sound

properties based on the user requirements. Another

application domain environment to consider was the

user controls employed to modify the model parameters

in real-time.

• Direct link with the application domain layer is found on

the embedded system layer which is one level above the

mentioned application domain layer within the layer

model of the hybrid method architecture. The embedded

system is designed in regards with required real-time

component execution response in a way that the overall

architecture functions as effectively and reliably as

possible. The components were therefore distributed

based on the hybrid method into three real-time

response-related groups:

• Critical components – components of the sound

conversion peripherals, components of the sound

communication peripherals – these required 100% rate

of real-time response-correct execution due to the

necessity of fully uninterrupted sound signal flow.

• Hybrid components – components of the dynamic

resources sharing for computation and memory

non-critical component resources, components of

communication peripherals, component of auxiliary

digital signal processor management.

• Non-critical components – component of local front

panel control and display.

• The knowledge base layer in case study was used for

user‟s model design optimization and for the attribute

control. The knowledge base layer was deployed within

the embedded system together with the user model

interpretation. Several qualitative sound signal

parameters were gathered and analyzed in real-time

within the embedded system. Based on these results, the

design optimization rules and knowledge were

dynamically defined providing help in user‟s model

real-time design process. Such knowledge base layer

implementation facilitated and expedited modeling

process and enhanced safety and integrity of the

obtained user model by means of employing special

rules that allowed only appropriate combinations of

components depending on defined particular sound

properties.

• The top layer within the hybrid method architecture

model represents the modeling tools for creating the

overall system model and implementation. The case

study architecture top layer proposes using a modeling

environment for real-time dynamic user model design

which is interpreted at the same time in the embedded

system. Further research is already on-going in the area

of employing object-oriented modeling and generation

tools such as modeling languages (UML) and model

description standards (XMI) [25], [26] which are to be

used to simplify portability and re-use of the model.

VI. CONCLUSION

This paper presents embedded systems design methods

oriented on input constraints analysis, particularly on

analysis and optimization of the rate of real-time

response-correct component execution. The core idea of the

suggested hybrid design method is the separation of

components into three distinctive groups (critical, hybrid,

non-critical). Memory model is selected and optimized as

well as computation resources model is selected based on the

mentioned component grouping. Overall advantage of the

described method is the capability of achieving optimized

architecture model from the viewpoint of required real-time

response, use of available implementation platform resource

which is hardly achievable when employing either only

dependable or the best-effort embedded system design

method.

ACKNOWLEDGMENT

This work was supported by the Slovak Research and

Development Agency under the contract No. APVV-0008-10

and by the Scientific Grant Agency of the Ministry of

Education - VEGA Grant No. 1/0531/12 Use of Knowledge

in Software Processes.

REFERENCES

[1] S. R. Ball, “Embedded microprocessor systems – Real World Design, ”

3rd ed. Burlington, USA: Elsevier Science, 2002, ch.1

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

110

[2] T. A. Henzinger and J. Sifakis, “The Embedded Systems Design

Challenge,” in Proc. 14th International Symposium on Formal

Methods, Hamilton, CA, 2006, pp.1-15.

[3] O. Železník and Z. Havlice, “Software Architectures for Real-Time

Embedded Applications for broadcasting,” in Proc. 10th International

Conference on Information System Implementation and Modeling

ISIM'07, Hradec nad Moravici, Czech republic, 2007, pp. 63-70.

[4] P. S. Roop, Z. Salcic, M. Biglari-Abhari, and A. Bigdeli, “A new

reactive processor with architectural support for control dominated

embedded systems,” in Proc. 16th International Conference on VLSI

Design VLSID’03, Washington, USA, 2003, pp. 189 – 194.

[5] L. Carro, F. Wagner, M. Kreutz, and M. Oyamada, “A Design

Methodology For Embedded Systems Based On Multiple Processors,”

in Proc. IFIP International Workshop on Distributed and Parallel

Embedded Systems, Deventer, Netherlands, 2000, pp. 33-42.

[6] T. Henzinger and J. Sifakis, “The Discipline of Embedded Systems

Design,” IEEE Trans. Computer, vol. 40, no. 10, pp. 32-40, Oct. 2007.

[7] SystemC 2.2, Core SystemC Language and Examples, Open SystemC

Initiative, 2011. Available:

http://www.systemc.org/downloads/standards/

[8] UML 2.0 OCL specification, Object Management Group, 2003.

Available: http://www.omg.org/ocl

[9] J. Schmuller, Myslíme v jazyku UML, Prague, Czech republic: Grada

Publishing, 2001, ch. 1.

[10] D. Bell. (2003). UML basics: An introduction to the Unified Modeling

Language. IBM Global Services, Rationale Software. [Online].

Available:

https://www.ibm.com/developerworks/rational/library/769.html

[11] M. Fowler, UML Distilled: A Brief Guide to the Standard Object

Modeling Language, 3rd ed. Boston, USA: Addison-Wesley

Professional, 2004, ch.1.

[12] F. Balarin et al., “Metropolis: An Integrated Electronic System Design

Environment,” IEEE Trans. Computer, vol. 36, no. 4, pp. 45-52, Apr.

2003.

[13] J. Eker et al., “Taming Heterogeneity - The Ptolemy Approach,” in

Proc. IEEE, vol.91, no. 1, pp. 127-144, Jan. 2003.

[14] K. Balasubramanian et al., “Developing Applications Using

Model-Driven Design Environments,” IEEE Trans. Computer, vol. 39,

no. 2, pp. 33-40, Feb. 2006.

[15] J. Sifakis, “A Framework for Component-Based Construction,” in Proc.

Soft. Eng. And Formal Methods SEFM’05, Koblenz, Germany, 2005,

pp. 293-300.

[16] B. P. Lathi, Signal Processing and Linear Systems, Carmichael, USA:

Berkeley-Cambrige Press, 1998, ch. 2.

[17] O. Železník and Z. Havlice, “MDA Approach in Embedded Systems

with Strict Real-Time Response and On-the-fly Modelling

Requirements,” Trans. Acta Electrotechnica et Informatica, vol. 9, no.

4, pp. 30-36, 2009.

[18] M. Ko, Ch. Shen, and S. Bhattacharaya, “Memory-constrained Block

Processing Optimization for Synthesis of DSP Software,” in Proc.

Embedded Computer Systems: Architectures, Modeling and

Simulation, IC-SAMOS’06, Samos, 2006, pp. 137–143.

[19] R. Hametner, A. Zoitl, and M. Semo, “Automation Component

Architecture for the Efficient Development of Industrial Automation

Systems,” in Proc. 6th annual IEEE Conference on Automation

Science and Engineering, Toronto, CA, 2010, pp.156-161.

[20] H. Kopetz, Real-Time Systems: Design Principles for Distributed

Embedded Applications, Norwell, USA: Kluwer Academic Publishers,

1997.

[21] H. Kopetz and G. Bauer, “The Time-Triggered Architecture,” in Proc.

IEEE, vol.91, p. 112-126, Jan. 2003.

[22] O. Železník and Z. Havlice, “On-the-fly MDA application modelling

using Executable and Translatable UML,” presented at the Model

Driven Software Engineering Workshop on Transformations and Tools

MDSE 2008, Berlin, Germany, 11.-12.12.2008.

[23] Analog Devices ADSP-BF533 Blackfin Processor Hardware Reference,

Analog Devices Inc., Norwood, USA, 2003.

[24] B. Gold and N. Morgan, Speech and Audio Signal Processing:

Processing and Perception of Speech and Music, New York, USA:

John Wiley and Sons., 1999.

[25] UML profile for modeling Quality of Service and Fault Tolerance

Characteristics And Mechanisms, Object Management Group, 2004.

Available: http://www.omg.org/spec/QFTP/

[26] XML Metadata Interchange (XMI) – Formally Released Version of

XMI, Object Management Group, 2011. Available:

http://www.omg.org/spec/XMI/, 2011

Otto Železník was born on 7.7.1977. In 2000 he

graduated (MSc.) at the department of Computers and

Informatics of the Faculty of Electrical Engineering and

Informatics at Technical University in Košice. He is

currently studying his PhD and his scientific research is

focused on software architectures modeling in embedded

systems.

Zdeněk Havlice was born on 14. 02.1958. In 1982 he

graduated (MSc.) with honors at the Department of

Computers and Informatics of the Faculty of Electrical

Engineering and Informatics at Technical University in

Košice. He defended his PhD. in the field of visual

programming and user interface design in 1991; his

thesis title was: "Design of User Interface for Dialogue

Systems". Since 1999 he is working as an associated

professor at the Department of Computers and Informatics. His scientific

research is focusing on the area of special languages, compilers, CASE

systems, software methodologies, methods and tools.

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

111

