

Abstract—This paper introduces AcceptSoftware which is a

tool to easily create and run client readable acceptance tests,
and describes how it can be used to allow a simple but powerful
acceptance-test driven software development. We then describe
our AcceptSoftware tool that extends EasyAccept by
maintaining a history of acceptance test results. Based on the
history, AcceptSoftware is able to generate reports that show
when an acceptance test is suddenly failing again.

Index Terms—Software testing, acceptance test, ATDD,
test-driven development.

I. INTRODUCTION
Acceptance testing is an important aspect of software

development. Acceptance tests (sometimes referred as story
tests in agile teams) are high level tests of business operations.
They are not meant to test internals or technical elements of
the code, but rather are used to ensure that software meets
business goals. Executable (i.e. automated) acceptance tests
can be used as a measure of project progress.

As the software system becomes more complex, analysts
spend more time on requirements specifications. A solution is
to repeat the development cycle in small incremental
iterations, as recommended by agile methods [1]. One of the
biggest contributions of agile methodologies is the concept of
test-driven development (TDD). In TDD, the tests are written
before writing the actual code. The tests can be used to
evaluate the development progress by measuring the number
of passing or failing tests and to perform continuous
regression testing, which can help maintain high software
quality by notifying the developers of software defects as
soon as the code is changed.

Automated acceptance tests [2] are used in TDD which is
called Executable Acceptance Test Driven Development
(EATDD). It is also known as Story Test Driven
Development or Customer Test Driven Development.
Acceptance tests for a feature should be written first by the
customer with the help of the development team, before the
application code is implemented. The tests represent system
requirements and specifications. Then, the development team
will work on implementation with guidance of the acceptance

Manuscript received October 1, 2011; revised December 15, 2011.
Azarm Mazandarani is with the Department of Engineering, Azad

University, Kordkouy Branch, Kordkouy, Iran. (e-mail:
azarm.mazandarani@gmail.com)

Mohamad Javad Rostami is with the Department of Computer
Engineering, Bahonar University, Kerman, Iran (e-mail:
mjrostamy@yahoo.com).

Ali Mohammad Norouzzadeh is with Guilan Science and Technology
Park, Rasht, Iran (e-mail: ahmadi.abbas64@yahoo.com).

tests. The implementation is completed when all the
corresponding acceptance tests are passed.

While TDD focuses on unit tests to ensure the system is
performing correctly from a developer’s perspective,
EATDD starts from business-facing tests to help developers
better understand the requirements, to ensure that the system
meets those requirements, and to express development
progress in a language that is understandable to the customers
[3].

There is often a substantial delay between defining an
acceptance test and its first successful pass [4]. Therefore, it
becomes important for teams to easily be able to distinguish
between tasks that were never tackled before and tasks that
were already completed but whose tests are now failing again.
This is achieved by using AcceptSoftware.

This paper introduces AcceptSoftware which is a tool to
easily create and run client readable acceptance tests, and
describes how it can be used to allow a simple but powerful
acceptance-test driven software development. We then
describe our AcceptSoftware tool that extends EasyAccept
[5], [6] by maintaining a history of acceptance test results.
Based on the history, AcceptSoftware is able to generate
reports that show when an acceptance test is suddenly failing
again.

The rest of this paper is organized as follows. We review
the related work in Section II. We then review EasyAccept
and present our motivation to improve it in Section III, and
also we introduce AcceptSoftware. We discuss its
implementation in Section IV. Section V contains our
evaluations. Finally, Section V concludes the paper.

II. RELATED WORK
In this section, we review existing researches and tools

related to EATDD. We divide them into three categories as
the following sub-sections.

A. Table-Based Frameworks
There are several open-source frameworks and tools that

support EATDD. Table-driven tests are best suited to express
business rule examples in input-output pairs that can be
linked to the business logic algorithmically. On the other
hand, sequential command-driven tests are suited to express
the business logic workflow. It is well suited to testing from a
business perspective, using tables to represent tests and
automatically reporting the results of those tests.

Examples of tools in this category include Fit [7], Fitness
[8], and Selenium [9]. The most widely known tool for
acceptance testing is Fit (Framework for Integrated Testing).
Fit requires developers to design individual fixture classes

Design and Implementation of a Tool for Executable
Acceptance Test Driven Development

Azarm Mazandarani, Mohamad Javad Rostami, and Ali Mohammad Norouzzadeh, Member, IACSIT

International Journal of Computer Theory and Engineering, Vol. 3, No. 6, December 2011

755

with hookup code for every type of table used in the tests and
cope with data being referenced across tables.

B. Text-Based Frameworks
Although table-based frameworks might be the

mainstream right now, they are not the only class of
frameworks suitable for acceptance testing. Not everyone
likes authoring tests as tables. The text written into the cells
of test tables is often close to written English, but the table
structure brings with it a degree of syntax.

Text-based tests are written as simple texts using a text
editor. These kinds of tests are useful to represent work flows
[10]. Examples of tools in this category include Exactor [11],
Text Test [12], Easy Accept, JAccept [13]. Exactor uses
textual scripts, JAccept is based on a graphical editor and
XML test files, and Text Test tests programs with
command-line textual input and output. They are suited to
express the business logic workflow.

C. Scripting Language-Based Frameworks
There is another category of acceptance-testing tools that

can offer a great deal of power through flexibility and
friendliness of a scripting language. A good example of this
category of tools is Systir [14] which makes use of the Ruby
scripting language’s syntax for building reasonably-good
custom domain-specific languages.

III. EASYACCEPT AND MOTIVATION TO IMPROVE
AcceptSoftware tool extends EasyAccept by maintaining a

history of acceptance test results. EasyAccept is an
open-source tool that can be found at [6]. It takes acceptance
tests enclosing business rules and a Façade to access the
software under development, and checks if the outputs of the
software's execution match expected results from the tests.
Driven by EasyAccept runs, software can be constructed with
focus, control and correctness, since the acceptance tests also
serve as automated regression tests.

In short, EasyAccept is a script interpreter and runner. It
takes tests enclosed in one or more text files and a Façade to
the program that will be tested. Accessing the program
through Façade methods that match user-created script
commands, EasyAccept runs the entire suite of tests and
evaluates actual and expected outputs or behaviors of the
program under test. In a test report, the tool shows
divergences between actual and expected results, or a single
message indicating all tests were run correctly.

The acceptance tests are written in text files with
user-created commands close to natural language.
EasyAccept provides some built-in commands which are
combined with such customized user-created commands
specific for each application to create the tests.

The overhead of getting started with EasyAccept is
practically zero, and it requires minimal additional work on
the part of the developers. They only need to provide a
Façade to the program to be tested containing methods whose
signatures match the user-created commands. A single
Façade that exposes the program's business logic helps
separate business and user interface concerns, and may even
already exist in programs not created with an ATDD

approach, since this separation is an advocated architectural
best practice. Other textual testing tools use various
approaches, none of which involves the use of a single
Façade.

A. Motivation to Improve
A major difference between UTDD and EATDD is the

timeframe between the definition of a test and its first
successful pass. In UTDD, the expectation is that all unit tests
pass all the time and that it only takes a few minutes between
defining a new test and making it pass [15]. As a result, any
failed test is considered as a problem that needs to be
resolved immediately. Unit tests cover very fine grained
details which make this expectation reasonable in a TDD
context.

Acceptance tests, on the other hand, cover larger pieces of
system functionality. Therefore, we expected that it takes the
developers several hours or days, sometimes even more than
one iteration, to make them pass. Due to the substantial delay
between the definition and the first successful pass of an
acceptance test, a development team can not expect that all
acceptance tests pass all the time. A failing acceptance test
can actually mean the followings.
1) Non-implemented Feature: The development team has

not yet finished working on the story with the failing
acceptance test (including the developer has not even
started working on it).

2) Regression Failure: The test has passed in the past and is
suddenly failing, i.e., a change to the system has
triggered undesired side effects and the team has lost
some of the existing functionalities.

Keeping history of number of passed and failed acceptance
tests of a project helps the development team understand the
development progress. From such statistics, the development
team can grasp the speed of their development and where
they are in the development process.

AcceptSoftware has the functionality of showing the test
result history. Test result history is kept in the database. To
show the test result history, a chart showing the test running
date and result details are provided.

Changes are often made to acceptance tests. Most people
make changes to acceptance tests many times a day when
they come up with new ideas. Acceptance tests which were
changed before might need to be reversed back to a previous
version. However, only keeping the version information is
not sufficient enough. Sometimes the developers or tests
make improper changes and keep adding changes to the tests
for a period of time. Afterwards, when people discover the
mistake, provided only a version number and a date, it is very
hard for them to decide which version of the test is useful. It
will be very helpful if the test result information can be kept
with the corresponding versions of the test. By viewing the
test results, people can easily identify the test that is
performing as expected. AcceptSoftware achieves this goal
by keeping test result record after each test run. In addition,
identifying the regression failure of acceptance tests requires
keeping history of the tests to identify the last version of
successful tests.

Acceptance tests can be divided into the following
categories.

International Journal of Computer Theory and Engineering, Vol. 3, No. 6, December 2011

756

1) Tests containing lots of information and formulas. It is
efficient to represent such tests using tables.

2) Tests containing job rules. It is efficient to represent such
tests using texts.

None of the existing EATDD tools supports both the
above categories of tests. In addition, none of the existing
EATDD tools keeps history of tests. We developed
AcceptSoftware that adds these two features into
EasyAccept.

B. The AcceptSoftware Tool
Fig. 1 demonstrates the test framework which is used in

AcceptSoftware. AcceptSoftwrae extends EasyAccept by
maintaining a history of acceptance test results. A class called
Façade is used to call procedures of the under-test program.
All commands in test scripts must be compatible to Façade’s
methods. Façade helps the developer in the future when the
developer implements a user interface.

AcceptSoftware contains the same internal commands
used in EasyAccept except for an internal command called
expectable. We have extended this command in
AcceptSoftware providing the possibility in AcceptSoftware
to read a data table from a database (including Oracle, Access,
MySQL, and SQL-Server databases) and then use the data to
test the program.

AcceptSoftware keeps a complete history of test cases and
test results in a database. This makes it possible to avoid
redundant test cases when the software is under development.
For example, let us consider a program which is recently
developed. The programmer defines a large number of test
cases and starts testing the program. After this stage of testing,
a number of faults are detected in the program. Then, the
programmer tries to change the program to remove the faults.
Then, the programmer does another phase of testing. If the
programmer uses an existing tool for testing, he/she has to
repeat all the test cases again. Using AcceptSofware, the
programmer needs to repeat only the following two sets of
test cases.
1) The test cases which failed at the previous stage of

testing.
2) The test cases that depend on the new changes in the

program.
Since AcceptSoftware decides on the new test cases

according to the results of the previous test cases, it also
considers the relation between test cases to improve test case
reduction. AcceptSoftware considers the following kind of
relation between test cases a and b.
1) If a fails, then b may fail: This implies that we have to

include test case b in the new stage of testing.
2) If a fails, then b passes: This implies that we have to

exclude test case b in the new stage of testing, only if a
fails.

Fig. 1. Overview of AcceptSoftware

3) If a passes, then b may fail: This implies that we have to

include test case b in the new stage of testing.
4) If a passes, then b passes: This implies that we have to

exclude test case b in the new stage of testing, only if a
passes.

These are the relations leading to a certain decision in
either including or excluding test case b. Other kinds of
relations do not lead to a certain decision and can not be used.

IV. IMPLEMENTATION OF ACCEPTSOFTWARE
In this section, we describe our implementation of

AcceptSoftware.

A. Class AcceptSoftware
This class is the core of AcceptSoftware that manages

operations such as detecting the Façade of the under-test
program, detecting test script files, and doing test operations
for each script file.

B. Class AcceptRunner
This class tests the program using a procedure called

runnScript() considering the script file. The test operation is
done using a method in the Script class.

C. Class Script
This class contains a method called runn() that runs the

script on the under-test program and reports the result.
Another method in this class called execute() helps in
execution of the scripts. To properly perform the tests using
the script file, this class parses the script file and associatively
accesses Façade.

D. Class ParsedLineReader
Using method getParsedLine() in this class, the script files

is parsed line by line and keywords are searched.

E. Tokens
Tokens are the keywords used to write the scripts. The

tokens defined in AcceptSoftware include: echo, expect,
expectdifferent, expecterror, expectwithin, equalfiles, quit,
stringdeli, iter, stacktrace, executescript, threadpool, repeat,
expectable.

F. Class ExpectTableProcessor
This class searches the filename or the id of the database in

the script file. This operation is successful only when the tool
reads keyword “expectTable” before the name of the
database. Then, it connects to the database and reads the data
table. It creates a new script file containing the data and
executes this file. In this way, the data stored in a database
can be used for testing a program.

G. Class DatabaseHandler
This class handles detection of database type, connecting

to database, reading data from database, and creating the
script file from it.

H. Database Implementation to Keep Test History
One of the advantages of AcceptSoftware over

EasyAccept is the capability of storing data and statistics
which are related

International Journal of Computer Theory and Engineering, Vol. 3, No. 6, December 2011

757

Fig. 2. Defined tables and their relationship.

to different executions of the under-test program. To achieve
this feature, we implemented a database to log all the events
and statistics related to execution of the program.

We define the following five tables (Fig. 2) in the database
for keeping test history.
1) tbl_Test
2) tbl_Script
3) tbl_Command
4) tbl_Facade
5) tbl_TestTOscript

A record is stored in a table called tbl_Test for each
under-test façade. A record is stored in a table called
tbl_Script for each script file which is tested on the façade. A
script file contains a number of command lines. Each
command line is stored in a table called tbl_Command as a
record.

Applying a command line during testing, the test result is
updated in tbl_Command. This process continues until all the
command lines are executed. Then, the result of executing
the entire script file is updated in tbl_Script. Finally when the
façade is tested by script files, the total result of this version
of tests is updated in a table called tbl_Test.

A façade may be tested multiple times in the database. In
this case, only one record is inserted in tbl_Facade whereas
multiple records are inserted in tbl_Test. This feature avoids
data redundancy and makes it easier to report a façade.

V. PERFORMANCE EVALUATION
In this section, we evaluate AcceptSoftware compared

with EasyAccept and then review the results. We define two
scenarios defined in Table I and II. In Scenario I, we evaluate
AcceptSoftware and EasyAccept in testing an accounting
program while the parameters are fixed. In Scenario II, we
change initial number of test cases in different experiments.

TABLE I: EVALUATION PARAMETERS IN SCENARIO I

Parameter Value

Program under test
An accounting

program written
in C++

Initial number of test cases 1147
Number of test stages 8

Number of changes in program per test stages 12

A test experiment contains a number of stages. Initial
number of test cases is the total number of test cases which
can be included. They are all included in the first stage of
testing. As we move to the next stage, the same test cases are
included in testing when we use EasyAccept. As we move to
the next stage, fewer test cases are included in testing when
we use AcceptSoftware.

TABLE II: EVALUATION PARAMETERS IN SCENARIO II

Parameter Value

Program under test
An accounting

program written
in C++

Initial number of test cases variable from
100 to 10000

Number of test stages 8

Number of changes in program per test stages
proportional to
number of test

cases

A. Numerical Results
Fig. 3 shows number of test cases which have to be

considered in stages of testing in Scenario I. Since
EasyAccept does not keep history of tests, it has to reconsider
all the test cases in the next stages. In contrast,
AcceptSoftware reduces number of test cases averagely by
55 percent whenever it moves to next stage. In the 8th stage,
AcceptSoftware needs only 2 test cases.

0

500

1000

1500

1 2 4 8

Test Stage

N
um

be
r o

f a
ct

iv
e

te
st

 c
as

es

AcceptSoftware EasyAccept

Fig. 3. Number of active test cases versus test stage (Scenario I)

0
2000
4000
6000
8000

10000

1000 2000 4000 8000

Initial number of test cases

To
ta

l t
es

t d
ur

at
io

n
(s

)

AcceptSoftware EasyAccept

Fig. 4. Total test duration versus initial number of test cases (Scenario II)

Fig. 4 shows total time required for testing versus initial
number of test cases in Scenario II. Since Easy Accept has to
reconsider all test cases in the next stages, doubling number
of test cases leads to doubling test duration. This feature
reduces scalability of Easy Accept. In contrast, when using
AcceptSoftware, doubling number of test cases leads to
averagely 73 percent increase in test duration. This is because
of the fact that the more initial test cases we have the more
test cases AcceptSoftware is able to exclude in the next stage.

International Journal of Computer Theory and Engineering, Vol. 3, No. 6, December 2011

758

VI. CONCLUSION
This paper presents AcceptSoftware which is an

EasyAccept-based tool for automated acceptance testing and
a self-evaluation of the tool. Existing tools are limited in
supporting Acceptance Test Driven Development as they do
not provide enough information to distinguish two different
kinds of test failures. AcceptSoftware distinguishes these
failure states by maintaining a test result history on the server,
which is valuable for analyzing the existing progress and
making improvements. Table III compares AcceptSoftware
with the existing open-source tools of acceptance testing.

As a tool supporting agile methodology, it will be helpful
to integrate this work with other practices in Agile. For
instance, acceptance tests can be used in conjunction with
story card management to provide more meaningful reports
for the customers.

The work presented in this paper is a preliminary step in

constructing an effective tool for supporting EATDD in
Agile software development environment. There is still a lot
of room in this research area for future work.

From the self-evaluation, we can see that AcceptSoftware
can provide useful support for EATDD. However, this
self-evaluation is limited in time and the number of
acceptance tests. Therefore, the next research step is to
conduct a more formal evaluation of the approach to assess if
AcceptSoftware as a whole is useful for development teams
to practice executable acceptance test driven development.

Another idea for future work involving AcceptSoftware is
a comparison to other ATDD approaches, particularly those
that use different formats of acceptance tests such as FiT
tables. Such a comparison would allow us to abstract away
which ATDD patterns and techniques are tool-dependent and
which are general, improving the state-of-the-art of
acceptance testing.

TABLE III: COMPARISON OF SOFTWARE TESTING TOOLS

Tool TextTest Exactor EasyAccept Selenium FIT AcceptSoftware

Acceptance
Testing
Criteria

Edit/Run * * * * * *
Supporting the text format * * * - - *
Supporting the HTML
format - - - * * *

Supporting the Excel format - - - - * *
SQL, Oracle, XML format - - - - - *

Test Result
Criteria

Detection of regression
errors and non-implemented
features

- - - - - *

Presenting test result history - - - - - *

Other Criteria
Open source * * * * * *
Being user friendly * * * * * *
Containing a Façade - - * - - *

REFERENCES
[1] Calgary Agile Method User Group home, Available:

http://www.agilenetwork.ca/camug/.
[2] A. Neto, J. P. Sauvé, and A. Dantas, “Patterns for Scripted Acceptance

Test-Driven Development,” in Proc. the 12th European Conference on
Pattern Languages of Programs, Irsee Monastery, Germany, 2007, pp.
A4.1-A4.13.

[3] L. Koskela, Test Driven: practical TDD and acceptance TDD for Java
developers, USA: Manning Publications, 2007.

[4] L. Crispin, T. House, and C. Wade, “The Need for Speed: Automating
Acceptance Testing in an Extreme Programming Environment,” in
Proc. Second Int'l Conf. eXtreme Programming and Flexible Processes
in Software Eng, 2001, pp.96-104.

[5] J. P. Sauvé, A. Neto, and W. Cirne, “EasyAccept: a tool to easily create,
run and drive development with automated acceptance tests,” in Proc.
the 2006 international workshop on Automation of software test, 2006.

[6] EasyAccept, Available: http://easyaccept.org.
[7] FiT, Available: http://agile.csc.ncsu.edu/SEMaterials/tutorials/fit/.
[8] R. Mugridge, and W. Cunningham, Fit for Developing Software:

Framework For Integrated Tests, USA: Prentice Hall, 2005.
[9] Selenium homepage on OpenQA, Available:

http://www.openqa.org/selenium/.
[10] J. Andersson, G. Bache, P. Sutton, “XP with Acceptance-Test Driven

Development: A rewrite project for a resource optimization system,” in
Proc. the 4th International Conference on Extreme Programming,
2003.

[11] Exactor, Available: http://exactor.sourceforge.net/.
[12] TextTest, Available: http://texttest.carmen.se/.
[13] Jaccept, Available: http://maven.agilos.org/sites/jaccept/released/.
[14] Systir, Available: http://systir.rubyforge.org/.
[15] K. Beck and C. Andres, Extreme Programming Explained, 2nd ed.

Boston, USA: Addison-Wesley, 2005.

Azarm Mazandarani was born in 1979 in Iran. Ms.
Mazandarani received her B.Engr. degree from
University of Science And Technology (Behshahr, Iran)
in 2002 and her M.S. degree at Emam-Hosein University
(Tehran, Iran) in 2008 in computer engineering. Since
2006, she is working as a lecturer at Azad University,
Gorgan branch. She is interested in the area of software
engineering.

Mohammad Javad Rostami was born in 1978 in Iran.
He received his B.Sc in computer engineering from
Bahonar University (Kerman, Iran) in 2001 and M.Sc in
computer engineering from Amirkabir University of
Technology (Tehran, Iran) in 2005. He has been a
faculty member of Bahonar University since 2006. His
main research interests include diverse routing and QoS
routing algorithms, wireless sensor networks, and

heuristic network algorithms. Mr. Rostami is a member of International
Association of Computer Science and Information Technology.

Ali Mohammad Norouzzadeh was born in 1984 in Iran.
Mr. Norouzzadeh received his B.Engr. degree from Azad
University, Lahijan branch (Lahijan, Iran) in 1996 and his
M.S. degree from Azad University, Gazvin branch
(Qazvin, Iran) in computer engineering in 2011. Since
2008, he is working as a lecturer at Azad University,

Gazvin branch. He is interested in the area of wireless networks and network
engineering.

International Journal of Computer Theory and Engineering, Vol. 3, No. 6, December 2011

759

